


American Spread Option Pricing

Aanand Venkatramanan

August 21, 2005





Declaration

I confirm that this is my own work, and the use of all material from other

sources has been properly and fully acknowledged.

i



Contents

1 Introduction 1

2 Spread Options 4

2.1 Option basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Implied Volatility . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Spread options . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Implied Correlation . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Option Pricing 9

3.1 A brief overview . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Vanilla Option pricing . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Black-Scholes(BS) model . . . . . . . . . . . . . . . . . 10

3.2.2 Univariate normal mixture model . . . . . . . . . . . . 11

3.2.3 Binomial tree approach . . . . . . . . . . . . . . . . . . 12

3.3 Spread option pricing . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Kirk’s formula . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.2 Bivariate normal mixture model . . . . . . . . . . . . . 16

4 Pricing American Spread Options 19

4.1 3-D tree model . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ii



CONTENTS iii

4.2 Extension of BNM model . . . . . . . . . . . . . . . . . . . . . 21

5 Description of Code 25

5.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Univariate normal mixture module . . . . . . . . . . . 25

5.1.2 Bivariate normal mixture module . . . . . . . . . . . . 26

5.1.3 Calibration module . . . . . . . . . . . . . . . . . . . . 26

5.1.4 Binomial tree module . . . . . . . . . . . . . . . . . . . 29

5.2 Working of code . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 List of functions . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Analysis 35

7 Summary and Conclusion 49

A Newton-Raphson Method 51



List of Figures

2.1 Volatility smile (source: www.investopedia.com) . . . . . . . . 6

3.1 2-D Binomial tree . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 3-D tree structure . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 Control flow diagram . . . . . . . . . . . . . . . . . . . . . . . 31

6.1 BS price versus strike and maturity . . . . . . . . . . . . . . . 36

6.2 BS price versus strike - different maturities . . . . . . . . . . . 36

6.3 Calibrated UNM price variation with strike and maturity (stock1) 37

6.4 UNM price of stock 1 as a function of sigma1 and sigma2 . . . 38

6.5 UNM price of stock 2 as a function of sigma1 and sigma2 . . . 38

6.6 Plot of the square of difference between UNM and BS prices

versus sigma1 and sigma1 - Stock 1 . . . . . . . . . . . . . . . 39

6.7 Plot of the square of difference between UNM and BS prices

versus sigma1 and sigma2 - stock 2 . . . . . . . . . . . . . . . 40

6.8 Square of difference between UNM and BS prices (lambda =

0.07, stock 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iv





Notations

Throughout this report we follow the usual notations given below:

K - strike price

T - time to expiry / residual maturity

Si - price of the stock i

σi - volatility of the stock i

ρ
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In addition to this, the early-exercise feature of American options makes it

even worse. Although there has been extensive research in this field, no

efficient and accurate pricing model has yet been developed.

Some of the work done so far for pricing American spread options can be
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for a call or put respectively. Since the payoff depends only on the stock price

for a particular strike, tracking the stock price movement would be a useful
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Figure 2.1: Volatility smile (source: www.investopedia.com)

maturity. Although the Black-Scholes(BS) model performs well the assump-

tion is proved to be flawed. When the volatility is computed (implied) by

a model for a set of market prices for different strikes, the volatility is not

observed to be a constant rather it is skewed. In the case of currency option

markets the implied volatility of in-the-money and out-of-the-money options

is greater than the at-the-money options as shown in the figure. Hence the

volatility smiles in this case! This is explained by the fact that traders spec-

ulate a larger price movement than is assumed in the BS model. Since every

other parameter is a constant in the BS model the disparity in the computed

and market prices can be explained only by increasing the volatility.
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2.3 Spread options

Spread options are derivative products on two or more assets. Most often

they are referred to those written on the difference between the values of two

indexes. For example, a European call spread on two underlying assets with

prices S1 and S2 will have a pay off function [S1−S2−K]+. The + superscript
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detailed illustration the reader is advised to refer to the works suggested

therein.

3.2 Vanilla Option pricing

3.2.1 Black-Scholes(BS) model

The most earliest and powerful tool to compute the price of European options

was discovered by Black and Scholes(1973). Even thirty years later it remains

to be one of the most preferred model and serves as the basis for many others

in the world of options theory. It states that the price of a call option at a

time t is given by the solution of the backward parabolic partial differential

equation

δp0

δT
= (r − q)S0

δp0

δS r
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where r is the short rate of interest. We then have,

p = S(0)Φ(d1) − Ke−rT Φ(d2) (3.3)

where

d1 =
ln (S(0)erT

K
)

σ
√

T
+

1

2
σ

√
T and d2 = d1 − σ

√
T (3.4)

Here Φ(x) represents the cumulative distribution function of the standard

normal N(0, 1) distribution, i.e.,

Φ(x) =
1√
2π

∫ x

−∞

e
−u

2

2 du (3.5)
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Figure 3.1: 2-D Binomial tree

the latter and continue calculating the option price in the preceding

level.

• The price thus obtained at the initial node corresponding to time t = 0,

is the required American option price.

Figure 3.1 shows how the American option price is calculated.

3.3 Spread option pricing
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was based on the Black-Scholes price for spread options expressed as an

expectation of the payoff function, as in 3.6. The formula is as follows:

p̂ = x2Φ

(

ln

(

x2

x1+Ke−rT

)

σK + σK

2

)

− (x1 + Ke−rT )Φ

(

ln

(

x2

x1+Ke−rT

)

σK − σK

2

)

where

σK =

√

σ2
2 − 2ρσ1σ2

x1

x1+K exp−rT + σ2
1

(

x1

x1+K exp−rT

)2

(3.10)

Carmona and Durrleman performs a comparative study of how this model

performs against other models. A more refined approach can be found in

Eydeland and Wolyniec(2003).

3.3.2 Bivariate normal mixture model
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σiC , σiT are the volatilities of core and tail normal densities. P2GBM is the

price of 2-Geometric Brownian motion model(2GBM). The 2GBM models as-

sume two correlated log-normal diffusions to model European spread options

(Ravindran 1993, Shimko 1994, Kirk 1995, James 2002 and others).

The difference here is that the terminal risk neutral density will be a bi-

variate normal mixture instead of bivariate normal, but the transition prob-

abilities still remains normal. An interesting fact is that although the option

price is a linear combination at time t = 0 and T (bivariate normal mixture),

at time t = υ one can uniquely identify the price (P
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Pricing American Spread

Options

4.1 3-D tree model

The three dimensional binomial tree model for two asset options is shown

in figure 4.1. The space variables used are xt = ln S
(1)
t /S

(1)
0 and yt =

ln S
(2)
t /S

(2)
0 instead of the stock prices themselves. This means that the step

sizes are of constant sizes, rather than proportional to the stock prices, hence

making it simpler. The first node in the tree has value zero. If the risk-neutral

drift of S
(1)
1 is r − q1, then the drift of xt is r − q1 − 1

2
σ2

1 = mx, and yt is

r −q2 − 1
2
σ2

2 = my



CHAPTER 4. PRICING AMERICAN SPREAD OPTIONS 20

Figure 4.1: 3-D tree structure

The Wiener processes for the two space variables can be written as

δxt = mxδt + σx

√
δtz1

δyt = myδt + σxsqrtδtz2 = myδt + σx

√
δt{ρz1 +

√

1 − ρ2z3}

where z1 and z3 are uncorrelated standard normal variates.

Hence the following equations:

δyα = myδt + σx

√
δt{ρ +

√

1 − ρ2}

δyβ = myδt − σx

√
δt{ρ −

√

1 − ρ2}

δyγ = myδt − σx

√
δt{ρ +

√

1 − ρ2}

δyδ = myδt + σx

√
δt{ρ −

√

1 − ρ2} (4.1)
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of pairs (S1, S2) for which S1 − S2 = K. In order to overcome this it was

assumed that the strike convention used to calculate the implied volatility

was K1 = S1 − (K − S1 + S2)/2 and K2 = S2 − (K − S1 + S2)/2. When

the strike is zero they give rise to exchange options, which are more easier to

handle. An analytic pricing formula for exchange options was first derived

by Margrabe(1978).

For the sake of simplicity, we assume that σi1 > σi and σi2 < σi. One

would expect σi2 ≈ σi as that addresses the core volatility of the normal

mixture. Without loss of generality we assume that 0 < λ < 0.5. This

implies that the higher volatility makes lower contribution and the lower

volatility makes higher contribution to the overall volatility.

A similar argument applies for the correlation as well, where ρCC <

ρ and ρ < ρT T . We assume that ρCT = ρT C and that ρT T takes values

close to twice as that of ρ.

Then, three dimensional binomial trees are constructed using each of the

above correlations ρCC , ρCT , ρT C , and ρT T and the corresponding volatilities.

That is, each of the four covariance matrices, V1, V2, V3, and V4
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5.1.4 Binomial tree module

This module calculates the American spread option price using the 3-D bino-

mial tree discussed in 4.1. There is no interaction between this module and

the rest. The calibrated values of correlation and volatilities, initial stock

prices, time-step size and other usual data serve as the input to this module.

This module has an array implementation of a 3-D binomial tree where

an array is logically manipulated as a tree with no physical li
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Analysis

In this section we shall look at the results of the program discussed in 5.2 and

discuss its performance. We compare the output of the calibrated Univari-

ate normal mixture(UNM) model with Black-Scholes’ and that of Bivariate

normal mixture (BNM) model with Kirk’s. The behaviour of the prices ob-

tained from each of these models are shown in the figures that follow. Unless

specified the stock prices of assets 1 and 2 are taken to be 100. The volatility

of stock 1 is 25% and stock 2 is 40%. The correlation between the stocks is

-0.5.

Fig. 6.1 shows the Black-Scholes price (pBS) as a function of strike and

maturity. The Black-Scholes price increases linearly with strike as shown and

tries to imitate the actual pay off function.

When K < S, the Black-Scholes price is comparatively low and when

K ≥ S, the price increases linearly with strike as shown in fig. 6.1. The

change of price with respect to time to maturity (T ) is lesser. Fig. 6.2 shows

how the price curve shifts away from the actual payoff as T increases.

Fig. 6.3 shows how the UNM price function behaves with respect to strike

and maturity for the calibrated values of volatility. As discussed in sec. 4.2,

since the UNM model was calibrated to the BS model (with different volatil-

35
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maturity.

Since the Kirks formula was derived based on the Black-Scholes model

by expressing the option price as an expectation of the payoff function, it

is natural to expect Kirks spread option price to behave on the lines of the
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Figure 6.18: American Spread option price using 3-D tree model

option as a function of step size. With decreasing step size the resulting

price increases. The price obtained using the BNM approach is found to be

greater than that of a direct implementation (by substituting σ1, σ2, and ρ)



CHAPTER 6. ANALYSIS 48

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35



Chapter 7

Summary and Conclusion

This project aims to price American spread options by extendin
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The values of the American spread options were found to be greater than

that of Europeans’ as expected. But this is by no means an effective tool to

validate the results obtained. A better conclusion can be arrived by compar-

ing the results with the actual market data.

This project has contributed by using an amalgamation of analytic and

numerical approaches to find the American spread option prices. The main

advantage of this method, which has never been implemented so far, is its

simplicity which is mainly borrowed from the BNM and 3-D binomial tree

models. There is a greater scope for further research and one can find innu-

merable ways of pricing American spread options.

The 3-D binomial tree approach used was a basic approach and the results

can be improved if we were to use the model described by Boyle(1988). On

the numerical front, since we were interested in the lambda, sigma and rho

values only up to two decimal places, the choice of the fixing the lambda and

rho values and their step size (see sec. 5.1.3) is justified.

If one were to find more accurate results the univariate approach adopted

would not prove a good choice. In that case we can adopt higher dimen-

sional descent methods, like gradient methods, Krylow subspace method

and others, for optimisation. Proposing the problem as a linear optimisa-

tion problem with a set of constraints would be a more efficient and elegant

approach. In brief, by adopting the extended Kirk’s formula, advanced 3-D

tree approaches and efficient optimisation techniques this new approach can



Appendix A

Newton-Raphson Method

Let f(x) be a continuous smooth monotonically increasing/decreasing or a

convex function with only one zero. The Newton-Raphson method allows

one to find the zero of the function iteratively considering the function, its

derivative, and an arbitrary initial x-value. The value of the iterate depends

on the value and derivative of the function at the previous point. It is given

by:

xn+1 = xn − f(x)

f ′(x)
where f ′(x) ≈ f(x + ∆x) − f(x)

∆x

where, xn is the current known x-value, f(xn) represents the value of the

function at xn, and f ′(xn) is the derivative (slope) at xn. xn+1 represents the

new x-value that we are trying to find. This method has a quadratic rate of

convergence.

The first order derivative in the program was calculated using a ∆x of

0.005 which produced a satisfactory approximation to the actual value. This

makes a good choice as the values of the Kirk’s and Black-Scholes formulas are

not much altered for small changes in correlation and volatility, respectively.
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