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ABSTRACT ii

Abstract
A new, uni�ed transform method for boundary value problems on linear and integrable

nonlinear partial di�erential equations was recently introduced by Fokas. We consider initial-

boundary value problems for linear, constant-coe�cient evolution equations of arbitrary order

on a �nite domain. We use Fokas’ method to fully characterise well-posed problems. For odd

order problems with non-Robin boundary conditions we identify su�cient conditions that may

be checked using a simple combinatorial argument without the need for any analysis. We derive

similar conditions for the existence of a series representation for the solution to a well-posed

problem.

We also discuss the spectral theory of the associated linear two-point ordinary di�erential

operator. We give new conditions for the eigenfunctions to form a complete system, characterised

in terms of initial-boundary value problems.
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Introduction
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1.1. Background and motivation
This thesis is concerned with the theory of linear two-point initial-boundary value problems,

the spectral theory of linear di�erential operators and the connections between the two �elds.

The boundary value problems we study are posed for linear, constant-coe�cient, evolution

partial di�erential equations in one space and one time variable. One of the best known examples

of such a problem is the heat equation for a �nite rod,

qt = qxx; x 2 [0; 1]; t 2 [0; T ]:

The primary interest in this work is not second order partial di�erential equations, such as the

heat equation, but third and higher odd order equations. Indeed we study equations of the form

@tq � (@x)nq = 0; x 2 [0; 1]; t 2 [0; T ]; (1.1.1)

for any n > 3, n an odd integer.

To de�ne an initial-boundary value problem for the partial di�erential equation (1.1.1) one

must specify the initial state of the system, by prescribing q(x; 0) to be equal to some known

function, and impose some conditions on the value of q and its x-derivatives at the left and

right ends of the space interval. The problem is then to �nd a su�ciently smooth function

q : [0; 1]� [0; T ]! C which satis�es the partial di�erential equation (1.1.1), the initial condition

and the boundary conditions. It is reasonable to ask two questions relating to such problems:

(1) Does a solution exist and is that solution unique?

(2)
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The wave equation was introduced and solved by d’Alembert [11], albeit under strict re-

strictions on the boundary conditions. The method was re�ned by Euler [21]. Bernoulli [2]

introduced the idea that a solution of the wave equation might be expressed as an in�nite series

and Fourier [30] studied the heat equation similarly.

A form of Laplace transform method for partial di�erential equations was introduced by

Euler in a paper [22], �rst presented in 1779 but not published until 1813. The integral Euler

used had inde�nite limits. Lagrange [38], originally published in 1759, used a Fourier transform

method with de�nite integrals to solve the wave equation. Laplace himself solved a linear

evolution partial di�erential equation using his eponymous transform with de�nite limits in

Section V of [43], originally published in 1810, where he also derived an inverse transform. A

survey of the history of the Laplace transform is given in [17, 18].

Fokas’ transform method was originally developed for solving boundary value problems for

non-linear partial di�erential equations [23] but has been successfully applied to elliptic [60] as

well as evolution [24] linear partial di�erential equations. A good introduction to the signi�cance

of Fokas’ method is given in [23] but it should be noted that the method was not fully re�ned

at this stage. Sections 1.1{1.3 of [24] give a good overview of the method for linear, constant-

coe�cient boundary value problems.

Separation of variables

We aim to �nd a solution to a partial di�erential equation subject to an initial condition and

some boundary conditions. To solve such an initial-boundary value problem using the method

of separation of variables [30] one must make two assumptions: that a solution exists and that

a solution is separable, in the sense that there exist sequences of functions �k(x), �k(t), whose

products �k(x)�k(t) satisfy the partial di�erential equation and boundary conditions, such that

the solution may be expressed as a series with uniform convergence,

q(x; t) =
X
k2N

�k�k(xt
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It is trivial to �nd the general solutions of these equations in terms of the common spectral

parameter, � 2 C. The boundary conditions then restrict � to a sequence of discrete points �k,

de�ning the �k, �k. Under the assumption that the series (1.1.2) converges uniformly, Fourier

transform methods are used to determine the constants �k in terms of the initial datum. It is

well-known that the family of solutions �k obtained from particular spectral problems forms an

eigenfunction basis for the x-di�erential operator, with eigenvalues �nk , but for partial di�erential

equations of third or higher order with any but the simplest boundary conditions this is not

always true. This connection is critical in our work.

Laplace transform

In the Laplace transform method, separability of the solution is not assumed directly but it

is necessary to assume that the Laplace transform can be inverted. The �rst step is to apply the

time Laplace transform to the partial di�erential equation (1.1.1). Using the properties of this

transform and the initial datum, this yields an inhomogeneous ordinary di�erential equation of

order n in the Laplace transform of q. Solving this equation subject to the boundary conditions

yields an expression for the Laplace transform of the solution.

The �nal step is to reconstruct the solution from its Laplace transform. If the domain is semi-

in�nite in time, if T =1, and the boundary data have su�cient decay then the transform may

be invertible. An example is given in Appendix C of [28]. However, we study initial-boundary

value problems on a �nite domain so the solution at �nal time appears in the representation. To

remove the e�ects of this function, it is necessary to make arguments similar to those we make

for Fokas’ method. However these arguments are more complex than their equivalents below

because of the presence of fractional powers in the integrands.

Fokas’ uni�ed transform method

The �rst step of Fokas’ method is to construct a Lax pair for the partial di�erential equation.

The term ‘Lax pair’ is usually reserved for nonlinear partial di�erential equations, following
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is trivial to �nd an integral solution with lower limit at an arbitrary point in the domain of

the original partial di�erential equation. In Proposition 3.1 of [24] it is argued that, by taking

the lower limit at each corner of the domain, a sectionally analytic function in the auxiliary

parameter � is de�ned in the whole complex �
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the Laplace transform method uses a transform in only the time variable. Di�erent partial

di�erential equations and di�erent boundary conditions require di�erent transforms and �nding

a transform that will work for a particular initial-boundary value problem is not a simple task.

It is particularly problematic when the partial di�erential equation is of third or higher order,

particularly odd order, or the boundary conditions are complex.

In Fokas’ method, as a simultaneous spectral analysis in both the space and the time variable

is performed, a di�erent type of transform is used. This simpli�es the process of choosing the

relevant transform as it may be immediately deduced from the Lax pair and is independent of

the boundary conditions. It is therefore unsurprising that such a method should yield novel

results, not only for nonlinear but also for linear partial di�erential equations.

One great advantage of the universal applicability of Fokas’ method in the linear, constant-

coe�cient context is that for it to produce a solution one only has to guarantee that the problem

is well posed, whereas separation of variables requires an extra assumption on the solution, that

it be separable or that the x-di�erential operator admits a suitable basis of eigenfunctions.

This means that, armed with Fokas’ method, question (2) on page 2 may be considered fully

resolved for any initial-boundary value problem posed for the partial di�erential equation (1.1.1).

Question (1) may be expressed as the question Is the problem well-posed? This is one of the

major topics of the present work.

Another great di�erence between the methods presented above is the representation of the

result. Separation of variables yields a discrete series representation of the solution whereas

Fokas’ method gives the solution as a contour integral. The use of the de�nite article to describe

‘the solution’ in the previous sentence is intentional as both of the methods are applied to

problems known to be well-posed. This means that for separable, well-posed problems we now

have two methods which yield two di�erent representations of the same solution.

A method for converting the integral representation to a series representation for third

order problems with particular boundary conditions is discussed in [9, 54]. In any attempt

to generalise this argument to higher order problems and those with more exotic boundary

conditions it is certainly necessary to consider another question, supplementary to the two

questions on page 2: Which well-posed initial-boundary value problems have the property that

their solutions may also be expressed as discrete series? The answer to this question is the

second major topic of this thesis.

It is shown in [54] that there is no series representation of the solution for a particular exam-

ple. Algebraic methods are used in [36] to show that some linear partial di�erential equations

are inseparable for any boundary conditions but this requires either non-constant coe�cients or

systems of constant-coe�cient equations. There is an important distinction between the work of

Johnson et al. and our work|the partial di�erential equations we study are all separable because

separation of variables always yields a solution for periodic boundary conditions, it is particular

sets of boundary conditions that may make the initial-boundary value problem inseparable by

preventing the eigenfunctions of the di�erential operator from forming a basis.
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1.1.2. Spectral theory of two-point ordinary di�er-

ential operators
Birkho� [3, 4
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� Investigate the existence of a series representation of the solution to well-posed problems

in general, giving both necessary and su�cient conditions.

� Investigate inseparable boundary conditions by linking the initial-boundary value prob-

lem to the study of the ordinary di�erential operator.

� Contribute to the spectral theory of degenerate irregular non-self-adjoint two-point

linear ordinary di�erential operators.

Chapter 2

As noted above, it is known that one may use Fokas’ transform method to �nd a solution to

any well-posed initial-boundary value problem on a linear, constant-coe�cient evolution partial

di�erential equation on a rectangular domain. In view of this it is perhaps surprising that any

improvement may be made to the means of derivation of a solution but we have some small

contributions in this area beyond the overview of the established method in Section 2.1.

Chapter 2 provides a modest development upon the method in the following way. While it is

established that a system of linear equations for the boundary functions must exist in the method

as presented in [27], we derive that system explicitly and in general. The reduced global relation

is given in Lemma 2.17. Further, we explicitly solve the system to yield, in Theorem 2.20, the

general expression for the solution in terms of the initial and boundary data and the solution

at �nal time. Mathematically this is elementary linear algebra but the explicit determination of

these functions is necessary to support the remainder of the thesis.

Chapter 3

Chapter 3 contains a discussion of well-posedness of initial-boundary value problems and

the existence of a series representation of their solutions using only analytic techniques.

We make a pair of assumptions on the decay of certain meromorphic functions, which are the

general analogues of the functions appearing in the integrands of equation (1.1.4). In Section 3.1

we work under those assumptions, removing the e�ects of the solution at �nal time and obtaining

a series representation for the the solution. The second and third sections are devoted to

discussing those assumptions.

In Section 3.2 one of the aforementioned assumptions is shown to be equivalent to well-

posedness of the initial-boundary value problem. This new condition of well-posedness is at

once much simpler to check than the characterisation by admissible functions of [27] and more

general than the result for simple, uncoupled boundary conditions of [53] and [55]. We also give

the �nal result of Fokas’ method in Theorem 3.29, an integral representation for the solution

involving only the initial and boundary data. In the case of odd-order problems with non-Robin

boundary conditions, we give a pair of conditions su�cient for well-posedness and demonstrate

their use for a variety of examples.

For well-posed problems, it is shown that the other decay assumption is equivalent to the

existence of a series representation of the solution in Section 3.3. We also give a pair of su�cient

conditions for a well-posed odd-order problem with non-Robin boundary conditions to have a

solution that admits representation by a series. These conditions mirror those in the previous

section.
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In order to discuss complete, biorthogonal and basic systems of eigenfunctions it is necessary

to understand the established theory of these concepts in Banach spaces. We give an overview

of the essential de�nitions and a few theorems in Section 4.4, following the construction in [15].

More complete treatments of the subject are given in the excellent two-part survey article [56,

57] and the lecture notes [58]; these sources have large bibliographies containing the original

research upon which they draw.

Chapter 5

In Chapter 5 we present two examples, one of which has degenerate irregular boundary

conditions. We prove that the eigenfunctions of this operator do not form a basis, following

a method of Davies [14, 15]. Indeed, we show that certain projection operators, de�ned in

terms of the eigenfunctions, are not uniformly bounded in norm. The exponential blow-up

of these norms is of the same rate as the divergence of the meromorphic function from the

initial-boundary value problem.

Chapter 6

In the �nal chapter we draw together some conclusions and present some directions for

further work.
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Initial-boundary value problems

11
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In this chapter we give an account of Fokas’ uni�ed transform method for solving initial-
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for the function �(x; t; �), where cj(�) are the functions de�ned in equations (2.1.6).

Proof. We take the x partial derivative of equation (2.1.8),

@x@t� = �a�n
24@x�+

nX
j=1

(i�)�j@jxq

35
= �a�n

24q + i��+
nX
j=1

(i�)�j@jxq

35 ; (2.1.10)

the latter equality being justi�ed by equation (2.1.9). Similarly, we take the t partial derivative

of equation (2.1.9),

@t@x� = @tq + i�@t� (2.1.11)

� (2.1.11)
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Following Proposition 3.1 of [24] we choose the the points (x?; t?) to be the four corners of 
,

de�ning the functions �Y (x; t; �) for Y 2 fD�; E�g:

�E+(x; t; �) =

Z x

0
ei�(x�y)q(y; t) dy + ei�x

Z t

0
e�a�

n(t�s)
n�1X
j=0

cj(�)
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E+

D+

E+

E�

D�

E�

M(x; t; �) = �ei�x��2t
1X
j=0

cj(�) efj(�)

M(x; t; �) = �ei�(x�1)��2t
1X
j=0

cj(�)egj(�)

M(x; t; �) = e
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initial datum, q0(x), and �nal function, qT (x) = q(x; T ). We de�ne these Fourier transforms as

q̂0(�) =

Z 1

0
e�i�xq0(x) dx =

Z
R
e�i�xq0(x)�[0;1] dx � 2 C;

q̂T (�) =

Z 1

0
e�i�xq(x; T ) dx; � 2 C:

Now we derive the global relation.

Lemma 2.3 (Global relation). Let q : 
 ! R be a formal solution to an initial-boundary

value problem speci�ed by the partial di�erential equation (2.1.1) and initial condition (2.1.2).

Then the functions q̂0, q̂T de�ned above and the functions efj and egj, given by (2.1.6) satisfy

n�1X
j=0

cj(�)
�

~fj(�)� e�i�~gj(�)
�

= q̂0(�)� ea�nT q̂T (�); � 2 C: (2.1.16)

Proof. For (x; t) 2 
 and � 2 C let

X(x; t; �) = e�i�x+a�ntq(x; t); Y (x; t; �) = e�i�x+a�nt
n�1X
j=0

cj(�)@jxq(x; t):

Then

@tX(x; t; �) = e�i�x+a�nt(a�n + @t)q(x; t);

@xY (x; t; �) = e�i�x+a�nt(�i�+ @x)

n�1X
j=0

cj(�)@jxq(x; t)

hence

(@tX � @xY )(x; t; �) = e�i�x+a�nt

24(a�n + @t) + (i�� @x)
n�1X
j=0

cj(�)@jx

35 q(x; t)
= e�i�x+a�nt

24(a�n � a(�i@x)n)� a�n(i�� @x)

n�1X
j=0

(i�)�(j+1)@jx

35 q(x; t);
using the di�erential equation (2.1.1) and the de�nition of the polynomials cj ,

= e�i�x+a�nta
�
(�n � (�i@x)n)� �n(1� (i�)�n@nx )

�
q(x; t)

= 0:

If we apply Green’s Theorem B.1 to 
 then we see thatZ



(@tX � @xY )(x; t; �) dx dt =

Z
@


(Y dt+X d92 Td@e3(w)27(e)-333(see)-33TJ/F44 7.9701 Tf 4.242 4.504 Td [(n)]TJ/F15 10.9091 Tf 5.637 -4.595d92 Td@e3(w)27(e)-333(see)-33T17]TJ/F15Db633(sf 11.712 0 Td [(d)]TJ/F43 10.9091.6 Tdt9.892 Td [(e)]TJ/F46 7.9701 Tf 5.079 4.505 Td 350)]TJ/F43 10.9091 Tf 4.243 0 Td [(x;)-167(t;)-166(�)]TJ/F15 10.923 0 Td [(� 10.9091 Tf 6.061 0 Td0 -4.505 Td0/F15 10.9091 Tf 8.758 4 30.909 0 511 0 TJ/F43 10.9091 Tf 10.909 000.99121 0 Td [(x)]TJ/F15 10.9091 Tf 8.053 0 Td [(d)]TJ/F43 10.9091 Tf 6.061 0 Td659(X)]TJ/F15 10.9071 Tf 11.712 0 Td [(see)-33T17]TJ/F15Db643(sf 11.712 0 Td [(d)]TJ/F43 1T/F15Db633(sf 11.7121.398 9.893 Td [(e)]TJ/F46 7.9701 Tf 5.08 51 T15 Td 350)]TJ)]TJ/F43 10.9091 Tf 8.485 0 Td [(x;)-01J/F15 10.9091 Tf 5.26163.559 Td [511 0 Td [())-167(d)]TJ/F43 10.9091 291276121 0 Td [(x)]TJ/F15 10.9091 Tf 8.053 0 Td [(d)]TJ/F4tTf 5.637 -4.595)-333463.915 10.98[(@)]TJ/F44 7.97071 Tf 11.712 0 Td [(see)-9 [(1)]TJ -4.848 -21.586 Td [(0)]TJ/F43 10.9091 Tf 11.398 9.893 Td [(e)]TJ/F46 7.9701 Tf 5.08 4.504 Td [250x; t; �
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where efj , egj are de�ned in (2.1.6), from which the result follows. �

The global relation is useful because of the particular form of the spectral transforms of the

boundary functions. The transformed boundary functions may be considered as functions not of

� but of �n. This means that the transforms are invariant under the map � 7! !j�, for ! = e
2�i
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By examining the de�nitions (2.1.21) we see that the transformed boundary functions are func-

tions of �2. This means that they are invariant under the map � 7! ��, that isef0(��) = ef0(�);ef1(��) = ef1(�);

eg0(��) = eg0(�);eg1(��) = eg1(�):
(2.1.22)

Since the global relation (2.1.20) is valid for any � 2 C, evaluating it at �� we obtain

�i�
� ef0(��)� ei�eg0(��)

�
+
� ef1(��)� ei�eg1(��)

�
= q̂0(��)� e(��)2T q̂T (��);

which, by equations (2.1.22), is

�i�
� ef0(�)� ei�eg0(�)

�
+
� ef1(�)� ei�eg1(�)

�
= q̂0(��)� e�2T q̂T (��): (2.1.23)

The global relation equations (2.1.20) and (2.1.23) may now be written in matrix form

B(�)

0BBBB@
ef1(�)eg1(�)

i� ef0(�)

i�eg0(�)

1CCCCA =

 
q̂0(�)

q̂0(��)

!
� e�2T

 
q̂T (�)

q̂T (��)

!
(2.1.24)

where

B(�) =

 
1 �e�i� 1 e iÚ
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for each k = 0; 1; 2. The global relation equations (2.1.28) may now be written in matrix form

B(�)

0BBBBBBBBB@

ef2(�)eg2(�)

i� ef1(�)

i�eg1(�)

��2 ef0(�)

��2eg0(�)

1CCCCCCCCCA
=

0B@ q̂0(�)

q̂0(!�)

q̂0(!2�)

1CA� e�3T

0B@ q̂T (�)

q̂T (!�)

q̂T (!2�)

1CA (2.1.29)

where

B(�) =

0B@1 �e�i� 1 �e�i� 1 �e�i�

1 �e�i!� ! �!e�i!� !2 �!2e�i!�

1 �e�i!2� !2 �!2e�i!
2� ! �!e�i!2�

1CA :

Equation (2.1.29) corresponds to Corollary 2.4.
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2.1.5. A classi�cation of boundary conditions
In De�nition 2.7 we provide a rough classi�cation of boundary values. We classify the

boundary conditions in terms of the representation used in Locker’s work [47] on di�erential

operators.

Definition 2.7 (Classi�cation of boundary conditions).
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Example 2.8. The boundary conditions

qx(0; t) = qx(1; t) q(0; t) = q(1; t) = 0

may be expressed by specifying the boundary data h1 = h2 = h3 = 0 and boundary coe�cient

matrix

A =

0B@0 0 1 �1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1CA :

Hence these boundary conditions are homogeneous and non-Robin but coupled.

Example 2.9. The boundary conditions

qx(0; t) = t(T � t) q(0; t) = q(1; t) = 0

may be expressed by specifying the boundary data h1 = t(T � t), h2 = h3 = 0 and boundary

coe�cient matrix

A =

0B@0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1CA :
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into the two vectors V and W . The entries in W are the transform, efj or egj , of a boundary

function that is, in equation (2.1.32), multiplied by a pivot of A, where the entries in V are the

other entries in the vector (2.2.1) and overall we preserve the order of the entries in the original

vector (2.2.1).

2.2.1.1. Developing some notation

Notation 2.12. Given boundary conditions de�ned by equations (2.1.32) and (2.1.33) such

that A is in reduced row-echelon form, we de�ne the following index sets and functions.

� bJ+ = fj 2 f0; 1
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Example 2.13. If n = 3 and the boundary conditions are speci�ed by equation (2.1.32)

where

A =

0B@0 0 1 �1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1CA (2.2.2)

then c2(�) = �ai, c1(�) = a�, c0(�) = ai�2,

W (�) =

0B@ef1(�)ef0(�)eg0(�)

1CA and V (�) =

0B@ef2(�)eg2(�)eg1(�)

1CA :

Indeed, comparing equations (2.1.33) and (2.2.2) we see that

0B@�1 2 �1 2 �1 1 �1 1 �1 0 �1 0

�2 2 �2 2 �2 1 �2 1 �2 0 �2 0

�3 2 �3 2 �3 1 �3 1 �3 0 �3 0

1CA =

0B@0 0 1 �1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1CA :

The pivots in this boundary coe�cient matrix are �1 1, �2 0 and �3 0 so

bJ+ = f0; 1g; bJ� = f0g;eJ+ = f2g and eJ� = f1; 2g:

Following through Notation 2.12 in order we see that

J = f2; 4; 5g; J 0 = f0; 1; 3g;

(Jj)
3
j=1 = (5; 4; 2); (J 0j)

3
j=1 = (3; 1; 0);

V (�) =

0B@ef2(�)eg2(�)eg1(�)

1CA and W (�) =

0B@ef1(�)ef0(�)eg0(�)

1CA :

We also note that, de�ning the sequences

bJ+
j =

8<:2 if j = 0;

1 if j = 1;

bJ�j = 3 for j = 0;

the pivots in A are

� bJ+

(J01�1)=2
(J 01�1)=2

= �1 1; � bJ+

(J02�1)=2
(J 02�1)=2

= �2 0 and � bJ�
J03=2

J 03=2
= �3 0:

Indeed the aim of the de�nition of sequences ( bJ+
j )

j2 bJ+ and ( b
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2.2.1.2. The main lemma

We may now state the result.

Lemma 2.14. Let q : [0; 1] � [0; T ] ! R be a solution of the initial-boundary value prob-

lem speci�ed by the partial di�erential equation (2.1.1), the initial condition (2.1.2) and the

homogeneous, non-Robin boundary conditions (2.1.32). Assume the matrix A, whose entries are

de�ned by equation (2.1.33), is in reduced row-echelon form. Then the vectors V and W from

Notation 2.12 satisfy

A(�)

0BBBBB@
V1(�)

V2(�)
...

Vn(�)

1CCCCCA =

0BB@
q̂0(�)

...

q̂0(!n�1�)

1CCA� ea�nT
0BB@

q̂T (�)
...

q̂T (!n�1�)

1CCA and (2.2.3)

0BBBBB@
W1(�)

W2(�)
...

Wn(�)

1CCCCCA = � bA
0BBBBB@
V1(�)

V2(�)
...

Vn(�)

1CCCCCA ; (2.2.4)

where

Ak j(�) =

8><>:
!(n�1�[Jj�1]=2)(k�1)c(Jj�1)=2(�) Jj
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with the simple, homogeneous boundary conditions

0B@0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1CA

0BBBBBBBBB@

f2

g2

f1

g1

f0

g0

1CCCCCCCCCA
= 0: (2.2.8)

Then, as in Example 2.13,

W (�) =

0B@ef1(�)ef0(�)eg0(�)

1CA and V (�) =

0B@ef2(�)eg2(�)eg1(�)

1CA :

The boundary conditions (2.2.8) may be rewritten

I3

0B@f1

f0

g0

1CA+ 03

0B@f2

g2

g1

1CA = 0;

where I3 is the 3� 3 identity matrix and 03 is the 3� 3 zero matrix, which yields0B@f1(t)

f0(t)

g0(t)

1CA = 0 t 2 [0; T ]:

Applying the t-transform (2.1.30) entrywise we see that

W (�) =

0B@ef1(�)ef0(�)eg0(�)

1CA = 0; � 2 C (2.2.9)

This corresponds to the reduced boundary conditions (2.2.4) in the lemma.

The fact we have exploited here is that, because it is in reduced row-echelon form, the

boundary coe�cient matrix has I3 as a maximal square submatrix. This allows us to break the

boundary coe�cient matrix into two parts: the identity and the rest of it, which we call the

reduced boundary coe�cient matrix. In this example the reduced boundary coe�cient matrix

is the zero matrix. This need not be the case but, provided the boundary conditions are non-

Robin, this matrix must be diagonal. Of course, this process will work for any regularised

boundary coe�cient matrix, the only requirement being that the boundary coe�cient matrix

has the identity as a maximal square submatrix, which is guaranteed by the reduced row-echelon

form it is assumed to take.

We still have to �nd the other three boundary functions, those that appear in the vector

V . To do this we will make use of the global relation in the form of Corollary 2.4. The partial

di�erential equation (2.2.7) studied in this example de�nes n = 3 and a = i so the corollary may
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be written

0B@1 �e�i� i� �i�e�i� ��2 �2e�i�

1 �e�i!� !i� �!i�e�i!� �!2�2 !2�2e�i!�

1 �e�i!2� !2i� �!2i�e�i!
2� �!�2 !�2e�i!

2�

1CA

0BBBBBBBBB@

ef2(�)eg2(�)ef1(�)eg1(�)ef0(�)eg0(�)

1CCCCCCCCCA

=

0B@ q̂0(�)

q̂0(!�)

q̂0(!2�)

1CA� ei�3T

0B@ q̂T (�)

q̂T (!�)

q̂T (!2�)

1CA ;

the right hand side of which is the right hand side of the reduced global relation (2.2.3) from

the lemma. The left hand side must be simpli�ed. Substituting the reduced boundary condi-

tions (2.2.9) into the global relation gives

0B@1 �e�i� i� �i�e�i� ��2 �2e�i�

1 �e�i!� !i� �!i�e�i!� �!2�2 !2�2e�i!�

1 �e�i!2� !2i� �!2i�e�i!
2� �!�2(e
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entries in W in terms of the entries in V hence in terms of the Fourier transforms of the initial

datum and �nal function.

2.2.1.4. Proof of the main lemma

Using Example 2.16 as a model, we give the full proof of Lemma 2.14.

Proof. Because A is in reduced row-echelon form it has the n� n identity matrix, In, as a

submatrix. That submatrix is the one obtained by taking all n rows of A but only the columns

which contain pivots. These are the columns of A indexed by 2n � j, where j 2 J 0. Any such

column multiplies the boundary function f(j�1)=2 or gj=2, for j odd or j even respectively, in the

boundary conditions (2.1.32). The columns of A not appearing in the identity submatrix are

those indexed by 2n� k for k 2 J . Any such column multiplies the boundary function f(k�1)=2

or gk=2, for k odd or k even respectively, in the boundary conditions (2.1.32). The sequences

(Jj)
n
j=1 and (J 0j)

n
j=1 simply ensure the entries in the vectors V and W appear in the correct

order. We may now break the n�2n matrix A into two square matrices, rewriting the boundary

conditions in the form

In

0BBBBB@
Y1

Y2

...

Yn

1CCCCCA+ bA
0BBBBB@
X1

X2

...

Xn

1CCCCCA = 0; (2.2.11)

where

Xj =

8<:f(Jj�1)=2 Jj odd,

gJj=2 Jj even,
Yj =

8<:f(J 0j�1)=2 J 0j odd,

gJ 0j=2 J 0j even,
(2.2.12)

and bA is initially de�ned as the square matrix given by

bAk j =

8<:�k (Jj�1)=2 Jj odd,

�k Jj=2 Jj even.

If Jj is odd then there does not exist k 2 f1; 2; : : : ; ng such that �k (Jj�1)=2 is a pivot of A.

Because the boundary conditions are non-Robin, this implies

�k (Jj�1)=2 = 0 8 k 2 f1; 2; : : : ; ng; 8 j odd.

If Jj is even then there does not exist k 2 f1; 2; : : : ; ng such that �k Jj=2 is a pivot. If it happens

that there does exist some k 2 f1; 2; : : : ; ng such that �k Jj=2 is a pivot, that is Jj + 1 2 J 0

hence Jj=2 2;
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column in A whose entries are given by powers of ! multiplied by the sum of exponential powers

of � and a constant (type (3)) then that is the only column with those powers of !.

Consider boundary conditions that are all speci�ed at the end x = 1, that is the boundary

coe�cient matrix has the form

A0 =

0BBBBB@
0 1 0 0 : : : 0 0

0 0 0 1 : : : 0 0
...

...
...

...
...

...

0 0 0 0 : : : 0 1

1CCCCCA :

Then eJ+ = f0; 1; : : : ; n� 1g and eJ+ = ; so A0 is a Vandermonde matrix which has rank n, as is

shown in Section 1.4 of [50]. This matrix contains all columns of type (1) that may appear in

any A, so given any A the columns of the corresponding A of type (1) are linearly independent.

If instead the boundary conditions are all speci�ed at x = 0, that is

A00 =

0BBBBB@
1 0 0 0 : : : 0 0

0 0 1 0 : : : 0 0
...

...
...

...
...

...

0 0 0 0 : : : 1 0

1CCCCCA ;

then the determinant of A00 is equal to the determinant of the same Vandermonde matrix. This

matrix contains all columns of type (2) that may appear in any A, so given any A the columns

of the corresponding A of type (2) are linearly independent.

Other columns of any A, that is a column of type (3), can be written as the sum of two

columns: one of type (1) and one of type (2). But we have already established that neither of

these may appear in A and neither may be written as a linear combination of columns that do

appear in A. This establishes that the column rank of any reduced global relation matrix is

n. �

2.2.2. General boundary conditions
In this subsection we state and .J/F15o435 -2132(oundary)-375o435 -df 8.0 -3 df 8.8(y)- 8.Lemmay
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reduced row-echelon form. Then the vectors V and W from Notation 2.12 satisfy

A(�)

0BBBBB@
V1(�)

V2(�)
...

Vn(�)

1CCCCCA = U(�)� ea�nT

0BB@
q̂T (�)

...

q̂T (!n�1�)

1CCA and (2.2.15)

0BBBBB@
W1(�)

W2(�)
...

Wn(�)

1CCCCCA =

0BBBBB@
~h1(�)

~h2(�)
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where X and Y are given by equations (2.2.12) in the previous proof and the reduced bound-

ary coe�cient matrix, bA, is de�ned by equation (2.2.20). Now the t-transform (2.1.30) may

be applied to each line of equation (2.2.21) and by the linearity of the transform we obtain

equation (2.2.16).

We may rewrite equation (2.2.16) in the form

efj(�) = eh bJ+
j

(�)�
X
r2 eJ+

� bJ+
j r
efr(�)�

X
r2 eJ�

� bJ+
j r
egr(�); for j 2 bJ+ and (2.2.22)

egj(�) = eh bJ�j (�)�
X
r2 eJ+

� bJ�j r
efr(�)�

X
r2 eJ�

� bJ�j r
egr(�); for j 2 bJ�: (2.2.23)

Corollary 2.4 may be rewritten as the system of linear equations

n�1X
j=0

cj(�)!(n�1�j)r efj(�)�
n�1X
j=0

e�i!
r�cj(�)!(n�1�X

j=0
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hence

X
j2 eJ+

efj(�)

24cj(�)!(n�1�j)r �
X
k2 bJ+

� bJ+
k j
ck(�)!(n�1�k)r + e�i!

r�
X
k2 bJ�

� bJ�k j
ck(�)!(n�1�k)r

35
�
X
j2 eJ�

egj(�)

24e�i!r�cj(�)!(n�1�j)r +
X
k2 bJ+

� bJ+
k j
ck(�)!(n�1�k)r

�e�i!r�
X
k2 bJ�

� bJ�k j
ck(�)!(n�1�k)r

35
= q̂0(!r�)�

X
j2 bJ+

cj(!
r�)eh bJ+

j
(�) +

X
j2 bJ�

e�i!
r�cj(!

r�)eh bJ�j (�)� ea�nT q̂T (!r�);

for r 2 f0; 1; : : : ; n � 1g. Taking a factor of cj(�) out of each square bracket and using the

identity

ck(�)

cj(�)
= (i�)j�k;

we establish

X
j2 eJ+

efj(�)cj(�)

24!(n�1�j)�1�j)�n�1�j
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into two matrices

Xk j =

8>>><>>>:
c(Jj�1)=2(�)!(n�1�[Jj�1]=2)(k�1) �

X
r2 bJ+

� bJ+
r (Jj�1)=2

cr(�)!(n�1�r)(k�1) Jj odd,

�
X
r2 bJ+

� bJ+
r





2.3. AN EXPLICIT INTEGRAL REPRESENTATION 38

and

�PDE (�) = det

0B@1 �e�i� �i�e�i�

1 �e�i!� �!i�e�i!�

1 �e�i!2� �!2i�e�i!
2�

1CA
in accordance with the following De�nition 2.19. Indeed �j may be found from �j by replacing

q̂0 with q̂T . Applying Theorem B.2 to the reduced global relation (2.2.10) and observing that

the reduced boundary coe�cient matrix is 03 we obtain

ef2(�) =
b�1(�)� ei�3T b�1(�)

�PDE (�)
;

eg2(�) =
b�2(�)� ei�3T b�2(�)

�PDE (�)
;

eg1(�) = i�
b�3(�)� ei�3T b�3(�)

�PDE (�)
;

ef1(�) = ef0(�) = eg0(�) = 0:

Substituting the abovhe
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We de�ne further

�j(�) =

8>>>>>><>>>>>>:

c(Jj�1)=2(�)b�j(�) Jj odd,

cJj=2(�)b�j(�) Jj even,

c(J 0j�n�1)=2(�)b�j(�) J 0j�n odd,

cJ 0j�n=2(�)b�j(�) J 0j�n even,

�j(�) =

8>>>>>><>>>>>>:

c(Jj�1)=2(�)b�j(�) Jj odd,

cJj=2(�)b�j(�) Jj even,

c(J 0j�n�1)=2(�)b�j(�) J 0j�n odd,

cJ 0j�n=2(�)b�j(�) J 0j�n even,

(2.3.2)

for � 2 C, where the monomials ck are de�ned in equations (2.1.5). De�ne the index sets

J+ = fj : Jj oddg [ fn+ j : J 0j oddg;

J� = fj : Jj eveng [ fn+ j : J 0j eveng:

Also let

�PDE (�) = detA(�); � 2 C: (2.3.3)

Note that, for homogeneous boundary conditions, the �j are simply the �j with q̂T replacing

with q̂0.

Now by Lemma 2.17 and Cramer’s rule, Theorem B.2, we may obtain expressions for the

boundary functions:

b�j(�)� ea�nT b�j(�)

�PDE (�)
=

8>>>>>><>>>>>>:

ef(Jj�1)=2(�) Jj odd,egJj=2(�) Jj even,ef(J 0j�n�1)=2(�) J 0j�n odd,egJ 0j�n=2(�) J 0j�n even,

hence

�j(�)� ea�nT �j(�)

�PDE (�)
=

8>>>>>><>>>>>>:

c(Jj�1)=2(�) ef(Jj�1)=2(�) Jj odd,

cJj=2(�)egJj=2(�) Jj even,

c(J 0j�n�1)=2(�) ef(J 0j�n�1)=2(�) J 0j�n odd,

cJ 0j�n=2(�)egJ 0j�n=2(�) J 0j�n even,

(2.3.4)

and

n�1X
j=0

cj(�) efj(�) =
X
j2J+

�j(�)� ea�nT �j(�)

�PDE (�)
;

n�1X
j=0

cj(�)egj(�) =
X
j2J�

�j(�)� ea�nT �j(�)

�PDE (�)
:

This establishes the following theorem, the main result of this chapter.

Theorem 2.20. Assume that there exists a unique q : [0; 1]� [0; T ]! R solving the initial-

boundary value problem speci�ed by the partial di�erential equation (2.1.1), the initial condi-

tion (2.1.2) and the boundary conditions (2.1.32). Then q(x; t) may be expressed in terms of
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contour integrals of transforms of the boundary data, initial datum and �nal function as follows:

2�q(x; t) =

Z
R
ei�x�a�

ntq̂0(�) d��
Z
@D+

ei�x�a�
nt
X
j2J+

�j(�)� ea�nT �j(�)

�PDE (�)
d�

�
Z
@D�

ei�(x�1)�a�nt
X
j2J�

�j(�)� ea�nT �j(�)

�PDE (�)
d�; (2.3.5)

where D� = C� \ f� 2 C : Re(a�n) < 0g.

Example 2.21. We give another example to illustrate De�nition 2.19 and Theorem 2.20.

The boundary value problem we consider is the same is in Example 2.13; n = 3, a = i and

the boundary conditions are given by equation (2.1.32) with hj = 0 and a boundary coe�cient

matrix n-91 401.515 0BTd [5(n-6 1 224.741 Tlows:)]TJ/F15 10.90915)�
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While Chapter 2 is concerned with deriving an integral representation for the solution to a

well-posed initial-boundary value problem, the present chapter is devoted to investigating well-

posedness of such a problem and the related question of �nding a discrete series representation

of its solution. We continue in the general setting of Chapter 2 with a partial di�erential

equation (2.1.1) speci�ed by its order n > 2 and the parameter a. The form of our results

depends upon the value of a; we present them in the three cases a = i, a = �i and Re(a) > 0.

Theorem 3.1. Let the homogeneous initial-boundary value problem (2.1.1){(2.1.3) obey As-

sumptions 3.2 and 3.3. Then the solution to the problem may be written in series form as

follows:

q(x; t) =
i

2

X
k2K+

[KD+[KE+

[KR[f0g

Res
�=�k

P (�;x; t)

�PDE (�)

X
j2J+

�j(�) +
i

2

X
k2K�

[KD�[KE�

Res
�=�k

bP (�;x; t)

�PDE (�)

X
j2J�

�j(�):

(3.0.6)

If n is odd and a = �i,

q(x; t) =
i

2

X
k2K+

[KD+[KE+

Res
�=�k

P (�;x; t)

�PDE (�)

X
j2J+

�j(�) +
i

2

X
k2K�

[KD�[KE�

[KR[f0g

Res
�=�k

bP (�;x; t)

�PDE (�)

X
j2J�

�j(�):

(3.0.7)

If n is even and a = �i,

q(x; t) =
i

2

X
k2K+

[KD+[KE+

[KD
E

Res
�=�k

P (�;x; t)

�PDE (�)

X
j2J+

�j(�) +
i

2

X
k2K�

[KD�[KE�

[KE
D

Res
�=�k

bP (�;x; t)

�PDE (�)

X
j2J�

�j(�)

+
i

4
Res
�=0

1

�PDE (�)

X
j2J+)

X
j2J+)
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assumptions, once stated, are considered to hold throughout Section 3.1. Particular examples

are not discussed as, for any but the most trivial examples, a lengthy calculation of bounds on

zeros of certain exponential polynomials is required in order to perform any meaningful simpli�-

cation of the general de�nitions or argument. Instead, the de�nitions and subsequent derivation

are broken up depending upon the value of the parameter a.
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3.1. Derivation of a series representation
In this section we apply Jordan’s Lemma B.3 to deform the contours of integration in the

integral representation given by Theorem 2.20. We do not investigate whether the conditions of

Jordan’s Lemma are met, instead we assume that they are met and show that this implies we

may perform a residue calculation, obtaining a series representation of the solution. Sections 3.2

and 3.3 are concerned with investigating the validity of these assumptions.

Consider the same initial-boundary value problem studied in Chapter 2. That is, we wish to

�nd q which satis�es the partial di�erential equation (2.1.1) subject to initial condition (2.1.2)

and boundary conditions (2.1.32) where the boundary coe�cient matrix A, given by equa-

tion (2.1.33), is in reduced row-echelon form. We assume throughout this section that such a

function q exists and is unique hence the initial-boundary value problem is well-posed. The

criteria for Theorem 2.20 are now met.

Definition 3.4. Let the functions P; bP : C� 
! C be de�ned by

P (�;x; t) = ei�x�a�
nt and bP (�;x; t) = e�i�(1�x)�a�nt

We shall usually omit the x and t dependence of these functions, writing simply P (�) and bP (�).

The aim of De�nition 3.4 is that we may write the result of Theorem 2.20 in a way that

emphasises the �-dependence of the integrands, instead of their dependence on x and t. Indeed

as x and t are both bounded real numbers they are treated as parameters in what follows.

We also de�ne the �ve integrals

I1 =

Z
R
P (�)q̂0(�) d�; (3.1.1)

I2 =

Z
�@D+

P (�)
X
j2J+

�j(�)

�PDE (�)
d�; I3 =

Z
@D+

P (�)ea�
nT
X
j2J+

�j(�)

�PDE (�)
d�;

I4 =

Z
�@D�

bP (�)
X
j2J�

�j(�)

�PDE (�)
d�; I5 =

Z
@D�

bP (�)ea�
nT
X
j2J�

�j(�)

�PDE (�)
d�;

where �j , �j , �PDE , J+ and J� are given in De�nition 2.19. We may now rewrite the result of

Theorem 2.20 in the form

2�q =
5X

k=1

Ik: (3.1.2)

3.1.1. The behaviour of the integrands
We put aside I1 for this subsection and investigate the behaviour of the integrands in the

other four integrals in the regions to the left of the contours of integration. The results of this

subsection are summarised in the following lemma.

Lemma 3.5. Let q be the solution of the well-posed initial-boundary value problem studied in

this section. Under Assumptions 3.2 and 3.3 the following hold:

� The integrand of I2 is analytic within eE+ and decays as �!1 within eE+.

� The integrand of I3 is analytic within eD+ and decays as �!1 within eD+.
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� The integrand of I4 is analytic within eE� and decays as �!1 within eE�.

� The integrand of I5 is analytic within eD� and decays as �!1 within eD�.

The open sets eD�; eE�
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R

@D

1
4(�2 � �)

�1

�2

�3

3"1

3"2 = 3"3

Figure 3.1. The bounds on "k

B(�k; "k) \ B(�j ; "j) is empty for j 6= k. Also, for k > 0, the closed disc B(�k; "k) does not

touch any part of @D except, when k 2 K+[K�[KR, the half line on which �k lies. Choosing

such small "k is not necessary for this subsection but it is useful for simplifying the residue

calculations of Subsection 3.1.3. Figure 3.1 shows the suprema of "k given some particular �k;

the shaded regions are the discs B(�k; "k).

The de�nition must be split into two cases, depending upon the value of a. In either case

it is justi�ed as we know that �PDE is holomorphic on C so its zeros are isolated. For each

k 2 KX we de�ne a small disc around �k that is wholly contained within X. This disc is labeled

B(�k; "k), using the \ball" notation to avoid confusion with the notation D, representing the

subset of the complex plane for which Re(a�n) < 0.

Definition 3.8 ("k). Let a = �i. For each k 2 N we de�ne "k > 0 as follows:

� For each k 2 K+ [K� [KR, we select "k > 0 such that

3"k < j�kj sin(�n) and B(�k; 3"k) \ f�j : j 2 N0g = f�kg:

� For each k 2 KD+ [KD� [KE+ [KE� we select "k > 0 such that

3"k < dist(�k; @D) and B(�k; 3"k) \ f�j : j 2 N0g = f�kg:

� We de�ne "0 > 0 such that

B(0; 3"0) \ f�j : j 2 N0g = f�0g:

Let a = ei� for some � 2 (��
2 ;

�
2 ). For each k 2 N we de�ne "k > 0 as follows:

� For each k 2 K+ [K� [KR, we select "k > 0 such that

3"k < j�kj sin( 1
n(�2 � j�j)) and B(�k; 3"k) \ f�j : j 2 N0g = f�kg:

� For each k 2 KD+ [KD� [KE+ [KE� we select "k > 0 such that

3"k < dist(�k; @D [ R) and B(�k; 3"k) \ f�j : j 2 N0g = f�kg:

� We de�ne "0 > 0 such that

B(0; 3"0) \ f�j : j 2 N0g = f�0g:

The next de�nition uses De�nitions 3.6, 3.7 and 3.8 to de�ne subsets of D� and E� on

which the functions
�j
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Definition 3.9. We de�ne the sets of complex numbers

eD� = D� n
[
k2N0

B(�k; "k) and eE� = E� n
[
k2N0

B(�k; "k);

and observe that
�j

�PDE
is analytic on eE� and

�j
�PDE

is analytic on eD�.

Because the positions of the zeros of �PDE are a�ected by the boundary conditions, the setseD�, eE� depend upon the boundary conditions. This is in contrast to the sets D� and E� which

depend only upon the partial di�erential equation (that is upon n and a) and are independent

of the boundary conditions.

To complete this subsection, we give an example for which Assumptions 3.2 and 3.3 hold.

Example 3.10. Consider the initial-boundary value problem of Example 2.21; n = 3, a
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Definition 3.11. We de�ne the index sets

KD
E = fk 2 N such that �k 2 R \ @D+ \ @E�g;

KE
D = fk 2 N such that �k 2 R \ @E+ \ @D�g;

KE
E = fk 2 N such that �k 2 R \ Eg:

Note that in De�nition 3.11 we do not de�ne a set KD
D as such a set is guaranteed to be

empty. This is because a 6= ei� for � 2 (�2 ;
3�
2 ).1 It is also clear from the de�nition and the fact

that D� and E� are open sets that the index sets KD
E , KE

D and KE
E are disjoint with union KR.

Definition 3.12. Let (�k)k2N be the PDE discrete spectrum of an initial-boundary value

problem, and "k be the associated radii from De�nition 3.8. We de�ne the following contours,

whose traces are circles or the boundaries of semicircles or circular sectors. Each is oriented

such that the corresponding �k lies to the left of the circular arc which forms part of the contour;

so that they enclose a �nite region.

� For k 2 KD+ [KE+ [KD� [KE� we de�ne the contour

: �k = @D(�k; "k).

� For k 2 K+ [K� [KD
E [KE

D we de�ne the contours

: �k = @D(�k; "k),

: �Dk = @(D(�k; "k) \D) and

: �Ek = @(D(�k; "k) \ E).

� For k 2 KE
E we de�ne the contours

: �k = @D(�k; "k),

: �+
k = @(D(�k; "k) \ C+) and

: ��k = @(D(�k; "k) \ C�).

� We de�ne the contours

: �0 = @D(0; "0),

: �D
+

0 = @(D(0; "0) \D+),

: �E
+

0 = @(D(0; "0) \ E+),

: �D
�

0 = @(D(0; "0) \D�),

: �E
�

0 = @(D(0; "0) \ E�),

: �+
0 = @(D(0; "0) \ C+) and

: ��0 = @(D(0; "0) \ C�).

Some of the contours in De�nition 3.12 are shown in Figure 3.3. In this example 1 2 KD+

and 2 2 KE
E and the partial di�erential equation is the heat equation, qt = qxx. We do not

claim that there exists any particular set of boundary conditions for the heat equation such that

these particular �1 and �2 are in the PDE discrete spectrum; the �gure is purely to illustrate

De�nition 3.12. The contours associated with 0 and �2 are shown slightly away from these

points for clarity on the �gure but they do pass through the points. Indeed �E
+

0 and �E
�

0 each

self-intersect at 0.

1See Figures 3.4, 3.5 and 3.6.
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E+

E+

D+

E�

E�
D�

�1

�+
2

��2

�E
+

0�E
+

0

�E
�

0�E
�

0

�D
+

0

�D
+

0

"1�1

R

Figure 3.3. Some contours from De�nition 3.12

The �rst step is to rewrite the integrals Ik for k 2 f2; 4g found in equations (3.1) as

I2 =

�Z
�R

+

Z
@E+

�
P (�)

X
j2J+

�j(�)

Figure 3.3.
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D+

E+

D+

E�

D�

E�

n = 3, a = i

E+

D+

E+

D�

E�

D�

n = 3, a = �i

Figure 3.4. The regions D� and E� for n odd and a = �i

Using De�nition 3.12 we may rewrite equations (3.1.5){(3.1.8) as

I2 =

8>><>>:
Z
�R

+

Z
�E
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D+

E+D+

E+

D�

E� D�

E�

n = 4, a = i

E+

D+E+

D+

E�

D� E�

D�

n = 4, a = �i

Figure 3.5. The regions D� and E� for n = 4 and a = �i

Hence KE
E = KD

E = ; and KD
E = KR. The right of Figure 3.4 shows the positions of D� and

E� for a = �i when n = 3.

3. n even, a = i. Then statement (3.1.13) holds hence KE
E = ;, KD

E = fk 2 KR such that

�k > 0g and KE
D = fk 2 KR such that �k < 0g. The left of Figure 3.5 shows the positions of

D� and E� for a = i when n = 4.

4. n even, a = �n
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E+

D+
E+

D+

E+

E�

D�

E�

D�

E�

1
4(�2 � �)

n = 4, a = ei�

Figure 3.6. The regions D� and E� for n even

If n is odd and a = i,

q(x; t) =
i

2

X
k2K+

[KD+[KE+

[KR[f0g

Res
�=�k

P (�)

�PDE (�)

X
j2J+

�j(�) +
i

2

X
k2K�

[KD�[KE�

Res
�=�k

bP (�)

�PDE (�)

X
j2J�

�j(�)

� 1

2�

8<:X
k2KR

Z
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If n is even and a = �i,

q(x; t) =
i

2

X
k2K+

[KD+[KE+

[KD
E

Res
�=�k

P (�)

�PDE (�)

X
j2J+

�j(�) +
i

2

X
k2K�

[KD�[KE�

[KE
D

Res
�=�k

bP (�)

�PDE (�)

X
j2J�

�j(�)

+
i

4

1

�PDE
0(0)

d�
X

j2J+[J�
�j(�)

+
1

2�

8<: X
k2KD

E

Z
�Ek

+
1

2

Z
��0

�
Z �1

0
�
X
k2KE

D

Z
�Ek

�1

2

Z
�+

0

+

Z 1
0

9=;
P (�)

�
1

�PDE (�)
� 1

�
H(�) d� (3.1.18)

If n is even and a = ei� for some � 2 (��
2 ;

�
2 ),

q(x; t) =
i

2

X
k2K+

[KD+[KE+

[KR[f0g

Res
�=�k

P (�)

�PDE (�)

X
j2J+

�j(�) +
i

2

X
k2K�

[KD�[KE�

Res
�=�k

bP (�)

�PDE (�)

X
j2J�

�j(�)

� 1

2�

8<:X
k2KR

Z
��k

+

Z
��0

+

Z
R

9=;P (�)

�
1

�PDE (�)
� 1

�
H(�) d�; (3.1.19)

The proofs of these theorems are mathematically simple but, partly due to the range of

values of a, take a large amount of space. For this reason, they are relegated to the Appendix

Section B.2.

3.2. Well-posed IBVP
In this section we investigate Assumption 3.2. Speci�cally, we give a su�cient condition for
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and reduced boundary coe�cient matrix

bA =

0B@0 0 �

0 0 0

0 0 0

1CA :

Following De�nition 2.19 we calculate

�PDE (�) = (!2 � !)c2
2(�)c1(�)

h
(ei� � �e�i�) + !(ei!� � �e�i!�) + !2(ei!

2� � �e�i!2�)��i�



3.2. WELL-POSED IBVP 57

is decaying as � ! 1 from within eD1 because, as noted above, the exponentials ei�(1�x) and

ei!�(1�x) are decaying for x 2 (0; 1). Hence the ratio

�1(�)

�PDE (�)

also decays as � ! 1 from within eD1. The same calculation can be performed to check the

other �j . Indeed the dominant terms in the ratio �2(�)
�PDE (�) have ratio

1

!2 � !

Z 1

0

n
!ei�(1�x) � ei!�(1�x)

o
qT (�)(x) dx

and the dominant terms in the ratio �3(�)
�PDE (�) have ratio

1

!2 � !

Z 1

0

n
ei�(1�x) � ei!�(1�x)

o
qT (�)(x) dx;

both of which decay as �!1 from within eD1.

We do not present the calculation for eD2 or eD3 or for a = �i but it may be checked in the

same way, case-by-case.

Remark 3.15. Although in Example 3.14 the full calculation is not presented for each case

it is not true that

�j(�)

�PDE (�)
! 0 as �!1 from within eDp )

�k(�)

�PDE (�)
! 0 as �!1 from within eDr

for any j; k; p; r and it is not true that if Assumption 3.2 holds for a particular initial-boundary

value problem then it holds for the initial-boundary value problem with the same boundary

conditions but with a di�erent value of a. Speci�c counterexamples are given in Example 3.16

(see Remark 3.17) and the uncoupled example of Chapter 5.

Example 3.16. We consider the 3rd order initial-boundary value problem with a = i and

boundary conditions speci�ed by the boundary coe�cient matrix

A =

0B@0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1CA :

This gives reduced global relation matrix

A(�) =

0B@c2(�) �c2(�)e�i� c1(�)

c2(�) �c2(�)e�i!� !c1(�)

c2(�) �c2(�)e�i!
2� !2c1(�)

1CA
and reduced boundary coe�cient matrix

bA =

0B@0 0 0

0 0 0

0 0 0

1CA :
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Following De�nition 2.19 we calculate

�PDE (�) = (!2 � !)c2
2(�)c1(�)

2X
k=0

!ke�i!
k�;

�1(�) = c2
2(�)c1(�)

2X
k=0

!k+2
�
e�i!

k�q̂T (!k+1�)� e�i!k+1�q̂T (!k�)
�
;

�2(�) = �(!2 � !)c2
2(�)c1(�)

2X
k=0

!kq̂T (!k�);

�3(�) = �c2
2(�)c1(�)

2X
k=0

�
e�i!

k�q̂T (!k+1�)� e�i!k+1�q̂T (!k�)
�

and
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so, provided qT is not identically zero, the numerator approaches in�nity hence

�3(�j)

�PDE (�j)
!1 as j !1:

Hence the ratio (3.2.1) is unbounded for � 2 eD1.

This establishes that Assumption 3.2 does not hold.

Remark 3.17. Although Assumption 3.2 does not hold in Example 3.16, it may be seen

that the ratio

�2(�)

�PDE (�)

is bounded within eD3 and decaying as �!1 from within eD3. Clearly the ratios

�4(�)

�PDE (�)
;

�6(�)

�PDE (�)

both evaluate to 0 and J� = f2; 4; 6g so

P
j2J� �j(�)

�PDE (�)
=

�2(�)

�PDE (�)

so it is possible to make the necessary contour deformations in the lower half plane, that is ineD3, just not in the upper half plane, that is eD1 and eD2. This is not particularly interesting in

this example, except to give one of the counterexamples for Remark 3.15, as the problem is still

ill-posed but a similar fact may be exploited in the uncoupled example of Chapter 5 to give a

partial series representation of a solution to a well-posed problem; see Remark 5.9.

3.2.1. n odd, homogeneous, non-Robin
A su�cient condition for homogeneous, non-Robin boundary conditions to specify a problem

that satis�es Assumption 3.2 may be written as two conditions of the form:

(1) There are enough boundary conditions that couple of the ends of the interval and, of

the remaining boundary conditions, roughly the same number are speci�ed at the left

hand side of the interval as are speci�ed at the right hand side.

(2) Certain coe�cients are non-zero.

More precise formulations of these conditions are given below.

3.2.1.1. The �rst condition

To formally give the �rst condition we require the following:
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Notation 3.18. De�ne

L = jfj : �r j = 0 8 rgj
The number of left-hand boundary functions

that do not appear in the boundary conditions
(3.2.2)

R = jfj : �r j = 0 8 rgj
The number of right-hand boundary functions

that do not appear in the boundary conditions
(3.2.3)

C = jfj : 9 r : �r j ; �r j 6= 0gj
The number of boundary conditions that couple the

ends of the x interval
(3.2.4)

Indeed, there are C boundary conditions that couple the ends of the interval, L boundary

conditions prescribed at the right end of the interval and R boundary conditions prescribed at

the left end of the interval. Clearly n = L+R+ C. We now state the �rst condition.

Condition 3.19. If a = i then the 2� � 1 boundary conditons are such that

R 6 � 6 R+ C

and if a = �i then the 2� � 1 boundary conditons are such that

R 6 � � 1 6 R+ C

where R and C are de�ned by (3.2.3) and (3.2.4).

The remainder of this subsubsection is devoted to showing the relevance of the above con-

dition. Consider the ratio
�j(�)

�PDE (�)
: (3.2.5)

The denominator is an exponential polynomial, hence it is a sum of terms of the form

Z(�)e�i�
Pk
r=1 !

)

�
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� If a = �i then D =
Sn
j=1Dj where

Dj = f� 2 C : �n(2j � 1) < arg(�) < �
n2jg:

For concreteness, let a = i. If � 2 Dj then, for all � 2 Sn and for all k 2 f1; 2; : : : ; ng,

Re

0@ ��jX
r=1�j

!r

1A > Re

 
kX
r=1

!�(r)

!

with equality if and only if k = � and the �rst � entries in � are some permutation of (1� j; 2�
j; : : : ; � � j) (modulo n). Hence the exponential

e�i�
P��j
r=1�j !

r

(3.2.6)

dominates all other exponentials of the form

e�i�
Pk
r=1 !

�(r)

and all functions of the form

Z(�)

Z 1

0
e�i�

Pk
r=1 !

�(r)
e�i�x!

�(k+1)
qT (x) dx:

Hence, if the exponential (3.2.6) multiplied by some polynomial appears in �PDE (�) then As-

sumption 3.2 must hold. The conditions are necessary and su�cient for this exponential to

appear in �PDE (�).

By Lemma 2.14, we know that we may express the matrix A in the form

Ak j(�) =

8><>:
!(n�1�[Jj�1]=2)(k�1)c(Jj�1)=2(�) Jj odd,

�!(n�1�Jj=2)(k�1)cJj=2(�)

�
e�i!

k�1� + � bJ+
Jj=2

Jj=2

�
Jj even,

but we may express this in terms of the three possible kinds of columns that A may contain.

Indeed, using Notation 3.18, A has L columns of the form

c(n�1�j)(�)(1; !j ; : : : ; !j(n�1))T;

R columns of the form

c(n�1�j)(�)(�e�i�;�!je�i!�; : : : ;�!j(n�1)e�i!
n�1�)T

and C columns of the form

c(n�1�j)(�)(�(e�i� + �r j);�!j(e�i!� + �r j); : : : ;�!j(n�1)(e�i!
n�1� + �r j))

T;

where j ranges over L, R and C values within f0; 1; : : : ; n� 1g respectively.

Hence �PDE (�) = detA(�) has terms

�XPl �(!)e�i
PR+l
r=1 !

�(r)�
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for each l 2 f0; 1; : : : ; Cg and � 2 Sn where Pl � are polynomials and X is some (�xed) integer.

The terms appearing in �k(�) are

if L > 1 �Zl �Ll �(!)

Z 1

0
e�i

PR+l
r=1 !

�(r)�e�i!
�(R+l+1)�xqT (x) dx l 2 f0; 1; : : : ; Cg

if R > 1 �
bZl �Rl �(!)

Z 1

0
e�i

PR�1+l
r=1 !�(r)�e�i!

�(R+l)�xqT (x) dx l 2 f0; 1; : : : ; Cg

if C > 1 �Zl �Cl �(!)

Z 1

0
e�i

PR+l
r=1 !

�(r)�e�i!
�(R+l+1)�xqT (x) dx l 2 f0; 1; : : : ; C � 1g

for each � 2 Sn where Rl �, Ll � and Cl � are polynomials and Zl �, bZl � and Z l � are integers.

Remark 3.21. It should be noted that the polynomials Pl � and Rl � and the integer bZl �
depend not upon � but upon the 9O831
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is nonzero if k > 1 or the expressionX
�2Sn:

8 m2R 9 p2R:
�jr(m)=�r(p)

sgn(�)!�
P
m2R �r(m)m�

P
m2C �c(m)m�

P
m2L �l(m)m (3.2.9)

is nonzero if k = 0.

Note that in the case e�j = � for all j 2 C expression (3.2.8) simpli�es toX
�2Sn: 9 �02SC :
(�;�0)2Sk �j � 0

sgn(�)!�
P
m2R �r(m)m�

P
m2C �c(m)m�

P
m2L �l(m)m: (3.2.10)

The set Sk � � 0 , the functions l, r and c and their domains L, R and C are given in De�ni-

tion B.7 and Lemma B.8.

This condition is checked for particular boundary conditions in the examples of Subsubsec-

tion 3.2.1.4.

3.2.1.3. Su�cient conditions for Assumption 3.2

Theorem 3.23. Assume n is odd. If the boundary conditions of initial-boundary value

problem (2.1.1){(2.1.3) are homogeneous and non-Robin, and obey Conditions 3.19 and 3.22,

then Assumption 3.2 holds.

Proof. If the boundary conditions obey Condition 3.19 then 0 6 k 6 C in Condition 3.22

so the set Sk �j � 0 and the relevant expression (3.2.8) or (3.2.9) are all well de�ned.

Fix j 2 f1; 2; : : : ; ng and let � 2 eDj . Then the modulus of

e�i
P
y2Y !

y� (3.2.11)

is uniquely maximised for the index set

Y = fj � 1; j; : : : ; j � 1 +R+ k � 1g:

By Condition 3.19 and Lemma B.8, �PDE (�) has a term given by that exponential multiplied

by a polynomial coe�cient given by the right hand side of equation (B.3.6) if k > 1 or equa-

tion (B.3.7) if k = 0, with � replaced by �j . These expressions are monomial multiples of

expressions (3.2.8) and (3.2.9) respectively. As � 2 Dj , � 6= 0 so the coe�cient is guaranteed to

be nonzero by Condition 3.22.

As Y uniquely maximises the exponential (3.2.11) this exponential dominates all other terms

in �PDE (�). But it also dominates all terms in �j(�), that is those of the form

Z(�)e�i�
P
p2P !

p
Z 1

0
e�i�!

p0xqT (x) dx

where P ( f0; 1; : : : ; n � 1g and p0 62 P . Hence the ratio (3.2.5) is bounded in eDj for each

j 2 f1; 2; : : : ; ng and decaying as �!1 from within eDj . �



3.2. WELL-POSED IBVP 64

3.2.1.4. Checking Assumption 3.2 for particular examples

We now give three examples of how Theorem 3.23 can be used to check that a particular set of

boundary conditions speci�es a problem in which Assumption 3.2 holds. The �rst, Example 3.24,

shows the necessity of checking Condition 3.22 by describing a class of pseudoperiodic boundary

conditions for which Condition 3.19 holds but Condition 3.22 does not. This is the only known

3rd order example.

Example 3.24. Let n = 3 and the boundary coe�cient matrix be given by

A =

0B@1 e�3 0 0 0 0

0 0 1 e�2 0 0

0 0 0 0 1 e�1

1CA ; (3.2.12)

for e�j 2 R n f0g so that the problem is pseudoperiodic. Indeed the boundary conditions are

qxx(0; t) + e�3qxx(1; t) = 0;

qx(0; t) + e�2qx(1; t) = 0 and

q(0; t) + e�1q(1; t) = 0:

We check for which values of e�j Assumption 3.2 holds, �rst if a = i and then if a = �i.
All three boundary conditions couple the ends of the space interval so L = R = 0 and C = 3.

This ensures that, for a = �i, Condition 3.19 holds.

We adopt the notation of Condition 3.22, with c0 the identity permutation on f1; 2; 3g and

c(m) = 4�m on the same domain, hence �jc(m) = m� j. We simplify expression (3.2.8) to

X
(�;�0)2Sk �j � 0

sgn(�)!�
P3
m=1 m�(4�m)

3Y
m=k+1

e��0(m) (3.2.13)

for each j.

Assume �rst a = i, hence k = 2 and expression (3.2.13) simpli�es further toX
(�;�0)2S2 �j �

0

sgn(�)!�
P3
m=1 m�(4�m)e��0(3) (3.2.14)

The de�nition (B.3.4) of S2 �j � 0 simpli�es here to (�; �0) 2 S2 �j � 0 if and only if

f�cc0�0(p) : p 2 f1; 2gg = f�jcc0� 0(p) : p 2 f1; 2gg

, f�(4� �0(p)) : p 2 f1; 2gg = f1� j; 2� jg

, �(4� �0(3)) = 3� j

, �0(3) = 4� ��1(3� j)

so the �2 equivalence class of (�j ; �
0) is shown in Table 1.

Using this characterisation of S2 �j � 0 we see that expression (3.2.14) does not evaluate to 0

provided e�1 + e�2 + e�3 6= 0: (3.2.15)
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� =

0BB@
1� j
2� j
3� j

1CCA
0BB@

2� j
3� j
1� j

1CCA
0BB@

3� j
1� j
2� j

1CCA
0BB@

2� j
1� j
3� j

1CCA
0BB@

1� j
3� j
2� j

1CCA
0BB@

3� j
2� j
1� j

1CCA
�0 2

8>><>>:
0BB@

3

2

1

1CCA ;

0BB@
2

3

1

1CCA
9>>=>>;

>>;C
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so that

A(�) =

0B@ �c2(�)(e�i� � 1) �c1(�)(e�i� � 1) �c0(�)(e�i� + 2)

�c2(�)(e�i!� � 1) �!c1(�)(e�i!� � 1) �!2c0(�)(e�i!� + 2)

�c2(�)(e�i!
2� � 1) �!2c1(�)(e�i!

2� � 1) �!c0(�)(e�i!
2� + 2)

1CA :

We calculate

�PDE (�) = (! � !2)c2(�)c1(�)c0(�)
h
9 + (2� 2)(ei� + ei!� + ei!

2�)

+(1� 4)(e�i� + e�i!� + e�i!
2�)
i
;

as expected, the failure of Condition 3.22 causes the coe�cients of ei!
j� to cancel one another

for each j,
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for each j, where

k =

8<:� a = i;

� � 1 a = �i:

As R is empty (�; �0) 2 Sk �j � 0 if and only if

f�cc0�0(p) : p 2 f1; 2; : : : ; kgg = f�jcc0� 0(p) : p 2 f1; 2; : : : ; kgg

, f�(n+ 1� �0(p)) : p 2 f1; 2; : : : ; kgg = f1� j; 2� j : : : ; k � jg (3.2.20)

but if (�; �0) 2 Sk �j � 0 then (�; �00) 2 Sk �j � 0 if and only if

8 q 2 f1; 2; : : : ; kg 9 p 2 f1; 2; : : : ; kg : �00(q) = �0(p)

, 8 q 2 fk + 1; k + 2; : : : ; ng 9 p 2 fk + 1; k + 2; : : : ; ng : �00(q) = �0(p):

Hence, for any given � 2 Sn there exists a �0 for which (�; �0) 2 Sk �j � 0 but the choice of such a

�0 does not a�ect the product
nY

m=k+1

e��0(m)

in expression (3.2.19) and there are k!(n�k)! = �!(��1)! choices of �0. So any particular choice

of �0 will su�ce, provided we multiply by �!(� � 1)!. Given � 2 Sn, de�ne �0 2 Sn such that

�(n+ 1� �0(p)) = p� j:

It is clear that (�; �0) satis�es condition (3.2.20) but as � is a bijection we may obtain an explicit

expression

�0(p) = n+ 1� ��1(p� j):

Expression (3.2.19) may now be simpli�ed to

�!(� � 1)!
X
�2Sn

sgn(�)!�
Pn
m=1 m�(n+1�m)

nY
m=k+1

e�n+1���1(m�j): (3.2.21)

Making the substitution �(m) = ��1(m� j), for which �(n+ 1�m) = ��1(n+ 1�m)� j and

sgn(�) = (�1)(n�1)j sgn(�) = sgn(�), expression (3.2.21) may be written

�!(� � 1)!
X
�2Sn

sgn(�)!�
Pn
m=1 m(��1(n+1�m)�j)

nY
m=k+1

e�n+1��(m): (3.2.22)

Expression (3.2.22) evaluates to zero if and only ifX
�2Sn

sgn(�)!�
Pn
m=1 m�

�1(n+1�m)
nY

m=k+1

e�n+1��(m) (3.2.23)

evaluates to zero. By Theorem 3.23, a su�cient condition for Assumption 3.2 to hold is that

expression (3.2.23) is nonzero for

k =

8<:� a = i;

� � 1 a = �i:
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Example 3.27. Let the boundary conditions be simple (hence uncoupled and non-Robin)

and such that

R =

8<:�;� � 1;
L =

8<:� � 1; a = i;

�; a = �i:
(3.2.24)

Note these conditions on R and L are precisely those proven to be necessary and su�cient for

well-posedness of the boundary value problem in [53].

Clearly Condition 3.19 holds. To show these boundary conditions satisfy Condition 3.22 we

must show that expression (3.2.9), that isX
�2Sn:

8 m2R 9 p2R:
�jr(m)=�r(p)

sgn(�)!�
P
m2R �r(m)m�

P
m2L �l(m)m (3.2.25)

does not evaluate to zero for any j.

By de�nition (3.2.7) of �j , the requirements on the � 2 Sn indexing the �rst sum in expres-

sion (3.2.25) are equivalent to

� 2 Sn : 8m 2 f1; 2; : : : ; Rg 9 p 2 R : m� j = �r(p):
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3.2.2.1. Assumption 3.2 implies well-posedness

Theorems 3.1 and 3.13 give an explicit representation of a unique solution to the initial-

boundary value problem in terms of only known data provided Assumptions 3.2 and 3.3 both

hold. It remains to be shown that Assumption 3.3 is not necesary.

Without Assumption 3.3 the expressions for I2 and I4 in equations (3.1.5) and (3.1.7) are

not valid hence we must replace their representations in equations (3.1.9) and (3.1.11) with

I2 =

8>><>>:
Z
�R

+

2664Z
@E+

�
Z

�E
+

0

�
X
k2

K+[KE
D

Z
�Ek

3775+

2664Z
�E

+
0

+
X
k2

K+[KE
D

Z
�Ek

3775
9>>=>>;P (�)

X
j2J+

�j(�)

�PDE (�)
d�;

I4 =

8>><>>:
Z
R

+

2664Z
@E�
�
Z

�E
�

0

�
X
k2

K�[KD
E

Z
�Ek

3775+

2664Z
�E
�

0

+
X
k2

K�[KD
E

Z
�Ek

3775
9>>=>>; bP (�)

X
j2J�

�j(�)

�PDE (�)
d�:

With this adjustment to the calculation in Section 3.1, we may derive an integral representation

of the solution in terms of the known data only.

Theorem 3.29. Let the initial-boudary value problem (2.1.1){(2.1.3) be well-posed and obey

Assumption 3.2. Then its solution may be expressed as follows:

If n is odd and a = i,

q(x; t) =
i

2

X
k2K+

[KD+

[KR[f0g

Res
�=�k

P (�)

�PDE (�)

X
j2J+

�j(�k) +
i

2

X
k2K�
[KD�

Res
�=�k

bP (�)

�PDE (�)

X
j2J�

�j(�k)

+
1

2�

8>><>>:
Z
@E+

�
Z

�E
+

0

�
X
k2

K+[KE
D

Z
�Ek

9>>=>>;P (�)
X
j2J+

�j(�)

�PDE (�)
d�

+
1

2�

8>><>>:
Z
@E�
�
Z

�E
�

0

�
X
k2

K�[KD
E

Z
�Ek

9>>=>>; bP (�)
X
j2J�

�j(�)

�PDE (�)
d�

� 1

2�

8<:X
k2KR

Z
�Ek

+

Z
��0

+

Z
R

9=;P (�)

�
1

�PDE (�)
� 1

�
H(�) d�; (3.2.26)
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If n is odd and a = �i,

q(x; t) =
i

2

X
k2K+

[KD+

Res
�=�k

P (�)

�PDE (�)

X
j2J+

�j(�k) +
i

2

X
k2K�
[KD�

[KR[f0g

Res
�=�k

bP (�)

�PDE (�)

X
j2J�

�j(�k)

+
1

2�

8>><>>:
Z
@E+

�
Z

�E
+

0

�
X
k2

K+[KE
D

Z
�Ek

9>>=>>;P (�)
X
j2J+

�j(�)

�PDE (�)
d�

+
1

2�

8>><>>:
Z
@E�
�
Z

�E
�

0

�
X
k2

K�[KD
E

Z
�Ek

9>>=>>; bP (�)
X
j2J�

�j(�)

�PDE (�)
d�

+
1

2�

8<:X
k2KR

Z
�Ek

+

Z
�+

0

�
Z
R

9=;P (�)

�
1

�PDE (�)
� 1

�
H(�) d�; (3.2.27)

If n is even and a = �i,

q(x; t) =
i

2

X
k2K+

[KD+

[KD
E

Res
�=�k

P (�)

�PDE (�)

X
j2J+

�j(�k) +
i

2

X
k2K�
[KD�

[KE
D

Res
�=�k

bP (�)

�PDE (�)

X
j2J�

�j(�k)

+
i

4

1

�PDE
0(0)

d�
X

j2J+[J�
�j(0)

+
1

2�

8>><>>:
Z
@E+

�
Z

�E
+

0

�
X
k2

K+[KE
D

Z
�Ek

9>>=>>;P (�)
X
j2J+

�j(�)

�PDE (�)
d�

+
1

2�

8>><>>:
Z
@E�
�
Z

�E
�

0

�
X
k2

K�[KD
E

Z
�Ek

9>>=>>; bP (�)
X
j2J�

�j(�)

�PDE (�)
d�

+
1

2�

8<: X
k2KD

E

Z
�Ek

+
1

2

Z
��0

�
Z �1

0
�
X
k2KE

D

Z
�Ek

�1

2

Z
�+

0

+

Z 1
0

9=;
P (�)

�
1

�PDE (�)
� 1

�
H(�) d�; (3.2.28)
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If n is even and a = ei�,

q(x; t) =
i

2

X
k2K+

[KD+

[KR[f0g

Res
�=�k

P (�)

�PDE (�)

X
j2J+

�j(�k) +
i

2

X
k2K�
[KD�

Res
�=�k

bP (�)

�PDE (�)

X
j2J�

�j(�k)

+
1

2�

8>><>>:
Z
@E+

�
Z

�E
+

0

�
X
k2

K+[KE
D

Z
�Ek

9>>=>>;P (�)
X
j2J+

�j(�)

�PDE (�)
d�

+
1

2�

8>><>>:
Z
@E�
�
Z

�E
�

0

�
X
k2

K�[KD
E

Z
�Ek

9>>=>>; bP (�)
X
j2J�

�j(�)

�PDE (�)
d�

� 1

2�

8<:X
k2KR

Z
��k

+

Z
��0

+

Z
R

9=;P (�)

�
1

�PDE (�)
� 1

�
H(�) d�: (3.2.29)

Note that if the boundary conditions are homogeneous then H(�) = 0 so the last integral

evaluates to 0 in each case.

As indicated above, the proof of Theorem 3.29 for well-posed problems is a simple derivation.

It remains to be shown that Assumption 3.2 implies well-posedness of the initial-boundary value

problem a priori. Using the following Lemma, we appeal to the arguments presented in [27]

and [53].

Lemma 3.30. Let n 2 N and let a 2 C be such that a = �i if n is odd and Re(a) > 0 if

n is even. Let D = f� 2 C such that Re(a�n) < 0g and let the polynomials cj be de�ned by

cj(�) = �a�n(i�)�(j+1). Let �j k; �j k 2 R be such that the matrix

A =

0BBBBB@
�1n�1 �1n�1 �1n�2 �1n�2 : : : �1 0 �1 0

�2n�1 �2n�1 �2n�2 �2n�2 : : : �2 0 �2 0

...
...

...
...

...
...

�nn�1 �nn�1 �nn�2 �nn�2 : : : �2�



3.2. WELL-POSED IBVP 72

Corollary 3.31. Let the initial-boundary value problem speci�ed by equations (2.1.1){

(2.1.3) obey Assumption 3.2. Then the problem is well-posed and its solution may be found

using Theorem 3.29.

Corollary 3.31 is a restatement of Theorems 1.1 and 1.2 of [27]. For this reason we refer the

reader to the proof presented in Section 4 of that paper. The only di�erence is that we make

use of the above Lemma 3.30 in place of Proposition 4.1. We have not yet shown the reverse,

that well-posedness of the initial-boundary value problem implies Assumption 3.2 holds.

3.2.2.2. Assumption 3.2 holds for a well-posed problem

We now present the converse of Corollary 3.31.

Theorem 3.32. If the initial-boundary value problem (2.1.1){(2.1.3) is well-posed, in the

sense that it admits a unique solution q 2 C1([0; 1]� [0; T ]), then Assumption 3.2 holds.

Proof.
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is bounded within eE1 and decaying as �!1 from within eE1. Indeed similar calculations may

be performed for each �k and for each eEj for a = �i to show that Assumption 3.3 holds.

Example 3.34. We present an example with the same partial di�erential equation and
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The ratio

c2(�)c1(�)
n
!2
�
e�i�q̂0(!�)� e�i!�q̂0(�)

�
+ !

�
e�i!

2�q̂0(�)� e�i�q̂0(!2�)
�o

(!2 � !)c �)!1(�)!�i�!i!0)�
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the boundary conditions are such that for each j 2 f1; 2; : : : ; ng the expressionX
(�;�0)2Sk �j � 0

sgn(�)!�
P
m2R �r(m)m�

P
m2C �c(m)m�

P
m2L �l(m)m

CY
m=k+1

e�c0�0(m) (3.3.3)

is nonzero if k > 1 or the expressionX
�2Sn:

8 m2R 9 p2R:
�jr(m)=�r(p)

sgn(�)!�
P
m2R �r(m)m�

P
m2C �c(m)m�

P
m2L �l(m)m (3.3.4)

is nonzero if k = 0.

Note that in the case e�j = � for all j 2 C expression (3.3.3) simpli�es toX
�2Sn: 9 �02SC :
(�;�0)2Sk �j � 0

sgn(�)!�
P
m2R �r(m)m�

P
m2C �c(m)m�

P
m2L �l(m)m: (3.3.5)

The set Sk � � 0 , the functions l, r and c and their domains L, R and C are given in De�ni-

tion B.7 and Lemma B.8.

Theorem 3.37. Suppose that a �nal-boundary value problem is speci�ed by equations (2.1.1)

and (2.1.3) and the �nal conditionm0T]TJ/F15 10.9091 Tf 6.625 T.638 Td [(09091 Tf 9.2034)]TJ/F21 02.915 -19091 T]TJ/F15 10.9091 Tf 6.635 238 0 Td801 Tf1487 (3.3.56051
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If n is odd and a = i,

q(x; t) =
i

2

X
k2K+

[KD+

[KR[f0g

Res
�=�k

P (�)

�PDE (�)

X
j2J+

ei�
n
kT �j(�k) +

i

2

X
k2K�
[KD�

Res
�=�k

bP (�)

�PDE (�)

X
j2J�

ei�
n
kT �j(�k)

+
1

2�

8>><>>:
Z
@E+

�
Z

�E
+

0

�
X
k2

K+[KE
D

Z
�Ek

9>>=>>;P (�)
X
j2J+

ei�
nT �j(�)

�PDE (�)
d�

+
1

2�

8>><>>:
Z
@E�
�
Z

�E
�

0

�
X
k2

K�[KD
E

Z
�Ek

9>>=>>; bP (�)
X
j2J�

ei�
nT �j(�)

�PDE (�)
d�

� 1

2�

8<:X
k2KR

Z
�Ek

+

Z
��0

+

Z
R

9=;P (�)

�T
22J
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If n is even and a = �i,

q(x; t) =
i

2

X
k2K+

[KD+

[KD
E

Res
�=�k

P (�)

�PDE (�)

X
j2J+

e�i�
n
kT �j(�k) +

i

2

X
k2K�
[KD�

[KE
D

Res
�=�k

bP (�)

�PDE (�)

X
j2J�

e�i�
n
kT �j(�k)

+
i

4

1

�PDE
0(0)

d�
X

j2J+[J�
�j(0)

+
1

2�

8>><>>:
Z
@E+

�
Z

�E
+

0

�
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Lemma 3.42. Let n 2 N and let a 2 C be such that a = �i if n is odd and Re(a) > 0 if

n is even. Let D = f� 2 C such that Re(a�n) < 0g and let the polynomials cj be de�ned by

cjj
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Find q 2 C1([0; 1]� [0; T ]) such that the partial di�erential equation

@tq(x; t)� a(�i@x)nq(x; t) = 0

holds on [0; 1]� [0; T ] with boundary conditions

A

0BBBBBBBBBBBB@

@n�1
x q(0; t)

@n�1
x q(1; t)

@n�2
x q(0; t)

@n�2
x q(1; t)

...

q(0; t)

q(1; t)

1CCCCCCCCCCCCA
=

0BBBBB@
H1(t)

H2(t)
...

Hn(t)

1CCCCCA

and initial condition

q(x; 0) = X(x):

The following are equivalent:

(1) The problems � and �0 are all well-posed in the sense that they have unique solutions.

(2) The problem � is well-posed and its solution admits a series representation with an

integral of the boundary data.

(3) The problem �0 is well-posed and its solution admits a series representation with an

integral of the boundary data.

(4) Assumption 3.2 and Assumption 3.3 both hold.

If a = �i then the following are equivalent to one another and to (1):

(5) The problems � and �00 are all well-posed in the sense that they have unique solutions.

(6) The problem �00 is well-posed and its solution admits a series representation with an

integral of the boundary data.

If n is even then the following are equivalent to one another and to (1):

(7) The problem � is well-posed.

(8) The problem �0 is well-posed.

(9) Assumption 3.2 holds.

(10) Assumption 3.3 holds.

Proof. Corollaries 3.31 and 3.43 and Theorems 3.32 and 3.44 show that (1) is equivalent

to (4).

If (4) holds then � is well-posed so Theorem 3.13 implies (2). If Assumption 3.2 is false

then, by Theorem 3.32, (2) is false. If Assumption 3.3 is not true then it is not possible to close

the contours of integration in I2 and I4, de�ned in equations (3.1.1), hence there exists no series

representation of the solution to �. Hence (2) implies (4). In the same way, (3) is equivalent to

(4).

If a = �i then Lemma 3.47 states that �0 and �00 are equivalent problems. Hence (1) and

(5) are equivalent and (3) and (6) are equivalent.
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Corollary 3.31 and Theorem 3.32 show that (7) is equivalent to (9). Corollary 3.43 and

Theorem 3.44 show that (8) is equivalent to (10).2 As n
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Find q 2 C1([0; 1]� [0; T ]) such that the partial di�erential equation

@tq(x; t) + a(�i@x)nq(x; t) = 0 (3.3.15)

holds on [0; 1]� [0; T ] with boundary conditions

A

0BBBBBBBBBBBB@

@n�1
x q(0; t)

@n�1
x q(1; t)

@n�2
x q(0; t)

@n�2
x q(1; t)

...

q(0; t)

q(1; t)

1CCCCCCCCCCCCA
=

0BBBBB@
H1(t)

H2(t)
...

Hn(t)

1CCCCCA (3.3.16)

and initial condition

q(x; 0) = X(x): (3.3.17)

Let �0 be the following �nal-boundary value problem:

Find q 2 C1([0; 1]� [0; T ]) such that the partial di�erential equation

@tq(x; t)� a(�i@x)nq(x; t) = 0 (3.3.18)

holds on [0; 1]� [0; T ] with boundary conditions

A

0BBBBBBBBBBBB@

@n�1
x q(0; t)

@n�1
x q(1; t)

@n�2
x q(0; t)

@n�2
x q(1; t)

...

q(0; t)

q(1; t)

1CCCCCCCCCCCCA
=

0BBBBB@
H1(T � t)
H2(T � t)

...

Hn(T � t)

1CCCCCA (3.3.19)



3.3. SERIES REPRESENTATION 85

Proof of Lemma 3.47. Assume � is well-posed, in the sense that it has a unique C1

smooth solution q. We apply the map t 7! T�t to the problem �0. Then @tq(x; t) 7! �@tq(x; T�
t) hence partial di�erential equation (3.3.18) becomes

@tq(x; T � t) + a(�i@x)n
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operator is equal to its principal part. This means we have no need to de�ne operators of the

form
nX
j=0

aj(t)

�
d

dt

�j
:

Locker studies the principal part of this operator to yield results about the full operator. He

uses perturbation methods to show that the properties of the full operator may be inferred from

the properties of the principal part but such deductions about Locker’s more general operator

are beyond the scope of this work. The partial di�erential equations studied in Chapters 2 and 3
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Definition 4.2 (Classi�cation of boundary conditions). The boundary conditions (2.1.3) of

the di�erential operator T may be written in the matrix form

A

0BBBBBBBBBBBB@

u(n�1)(0)

u(n�1)(1)

u(n�2)(0)

u(n�2)(1)
...

u(0)

u(1)

1CCCCCCCCCCCCA
=

0BBBBB@
0

0
...

0

1CCCCCA ;

where A is the boundary coe�cient matrix.

� If each boundary condition only involves derivatives of the same order then we call

the boundary conditions non-Robin. Otherwise we say that a boundary condition is of

Robin type.

�
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Proof. Formally self-adjoint : Let u 2 D(T ), v 2 Hn[0; 1]. Then the inner product may be

evaluated

hTu; vi =

Z 1

0
(�i)nu(n)(x)�v(x) dx

= (�i)n
nX
j=1

(�i)j�1
h
u(n�j)(1)�v(j�1)(1)� u(n�j)(0)�v(j�1)(0)

i
+ (�i)n(�1)n

Z 1

0
u(x)v(n)(x) dx

= (�i)n
nX
j=1

(�i)j�1
h
u(n�j)(1)�v(j�1)(1)� u(n�j)(0)�v(j�1)(0)

i
+ hu; �vi: (4.1.3)

As u 2 D(T ) and the boundary coe�cient matrix is rank n we have n linear equations in u(j).

Hence we may construct another n linear equations in v(j) to ensure that the sum in equa-

tion (4.1.3) evaluates to 0, so that an adjoint boundary coe�cient matrix may be constructed.

Indeed Chapter 3 of [10] gives a method for �nding the adjoint boundary coe�cients in terms

of the boundary coe�cients of T using Green’s functions. Then one may de�ne the operator
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Notation 4.9. For a di�erential operator T , we de�ne the polynomials �1 and �0 as follows.

2 6 k 6 � � + 1 6 k 6 n

�1(�) = det

0BB@
Q1(i�) P1(i�!k�1) Q1(i�!k�1)

...
...

...

Qn(i�) Pn(i�!k�1) Qn(i�!k�1)

1CCA ; (4.1.7)

�0(�) = det

0BB@
P1(i�) P1(i�!k�1) Q1(i�!k�1)

...
...

...

Pn(i�) Pn(i�!k�1) Qn(i�!k�1)

1CCA : (4.1.8)

As each of the polynomials Pk, Qk are of degree no greater than mk, the maximum degree

of the polynomials �1, �0 is
Pn

k=1mk. For this reason w68i�s9i9(
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� As stated above, we focus upon degenerate irregular di�erential operators. It is not

clear that Locker’s proof of Theorem 4.11 illuminates the study of these di�erential

operators.

4.2. Eigenvalues of T
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Find q 2 C1([0; 1] � [0; T ]) that satis�es the partial di�erential equation (4.2.1) on [0; 1] �
[0; T ], subject to the �nal condition

q(x; T ) = qT (x) for x 2 [0; 1] (4.2.4)

and the boundary conditions (4.2.3) where fj(t) = @jxq(0; t
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The boundary data do not a�ect A hence the inhomogeneous / homogeneous boundary value

problems associated with a have the same boundary coe�cient matrix. Finally, note that

Lemma 2.17 holds for �nal-boundary value problems as well as initial-boundary value prob-

lems. �

4.2.1. Non-Robin with a symmetry condition
In this section we assume that the boundary conditions of the di�erential operator are non-

Robin and obey Condition 4.14 below.

Condition 4.14. Let the boundary coe�cients of a di�erential operator, an initial-boundary

value problem or a �nal-boundary value problem be such that

r 2 bJ+ , n� 1� r 2 eJ� and

r 2 bJ� , n� 1� r 2 eJ+:
(4.2.5)

Also, for all j 2 eJ� \ bJ+,

� bJ+
j j

= � bJ+
n�1�j n�1�j :

We note that the index sets bJ�, eJ� are de�ned in Notation 2.12 and Notation 4.3 in terms

of the boundary coe�cients (and implicitly of n) only, not in terms of a or the data of the

initial- or �nal- boundary value problems. Hence, by Lemma 4.13, Condition 4.14 holds for

a particular di�erential operator T if and only if it holds for any particular boundary value

problem associated with T .

Although Condition 4.14 imposes a strong symmetry on the boundary conditions it turns out

to be quite a natural condition. Almost all of our earlier examples of initial- and �nal-boundary

value problems have boundary coe�cients that obey this condition, as do boundary coe�cient

matrices such as

0B@1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

1CA ;

0BBBB@
0 1 0 0 0 0 0 0

0 0 1 � 0 0 0 0

0 0 0 0 1 � 0 0



4.2. EIGENVALUES OF T 98

Theorem 4.15. Let T be a di�erential operator of the form described in De�nition 4.1 with

non-Robin boundary conditions obeying Condition 4.14. Then the determinant function � has

the same zeros as the determinant functions �PDE from each of the associated boundary value

problems.

It is known that Condition 4.14 is not sharp. It is an open and interesting question whether

it may be discarded entirely.

Proof. Fixing a particular, permissible value of a, and showing that the nonzero zeros of �

and of �PDE from the homogeneous initial-boundary value problem associated with (T; a) are

equal is su�cient proof as we may extend this to the full result using Lemma 4.13. We choose

a = i as it is one of the two values permissible for both odd and even n.

The function �PDE is de�ned by equation (2.3.3) as the determinant of the reduced global

relation matrix A, which is de�ned by equation (2.2.5) for homogeneous, non-Robin boundary

conditions. Indeed, for each j 2 eJ�, there is a column of A given by

!(n�1�j)(k�1)cj(�); k 2 f1; 2; : : : ; ng (4.2.6)

and for each j 2 eJ+, there is a column of A given by

�!(n�1�j)(k�1)cj(�)
�
e�i!

k�1� + � bJ+
j j

�
; k 2 f1; 2; : : : ; ng: (4.2.7)

The monomials are de�ned by

cj(�) = �i�n(i�)�(j+1):
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The exponential ei
P��1
k=1 !

k�1� is entire and nonzero on C so the zeros of � are the same as the

zeros of detM 0.

We now study the columns of M 0(�). Note �rst that, as the boundary conditions are non-

Robin, the polynomials Pj and Qj are each monomials of order mj , hence

M 0j k(�) = !mj(k�1)(i�)mj
�
�j mje

�i!k�1� + �j mj

�
:

By the de�nition of mj , for each j 2 f1; 2; : : : ; ng, mj lies in at least one of bJ+ and bJ
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of A
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Then

�(�)ei
P�
k=1 !

k�1� = detM 0(�)

= (i�)3 det

0B@ (e�i� + �1) (e�i� + �2) (e�i� + �3)

!2(e�i!� + �1) !(e�i!� + �2) (e�i!� + �3)

!(e�i!
2� + �1) !2(e�i!

2� + �2) (e�i!
2� + �3)

1CA

= (i�)3 det

0B@ (e�i� + �1) (e�i� + �2) (e�i� + �3)

(e�i!� + �1) !2(e�i!� + �2) !(e�i!� + �3) �i!2�) � 2)2(e�i!
2�
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From the partial di�erential equation, we obtain a relation between the left hand sides of

equations (4.3.9) and (4.3.11), indeed

�a
X
k2N

�nk�k(x) k(t) + a
X
k2N

T (�k)(x) k(t) = 0:

Hence X
k2N

(T � �nk )�k(x) k(t) = 0;

hence, by the minimality of the  k, each �k is an eigenfunction of T with eigenvalue �nk . �

Theorem 4.19. If the boundary conditions of an initial-boundary value problem are such

that the problem is well-posed, its solution has a series representation and all zeros of �PDE are

simple then the eigenfunctions of the associated ordinary di�erential operator T form a complete

system in L2[0; 1].

Proof. Choose some q0 2 C1[0; 1], to specify a particular initial-boundary value problem.

Solving that problem and expressing its solution as a discrete series, we know from Theorem 4.18

that the series expansion (3.0.6){(3.0.9) is in terms of the eigenfunctions of T . Evaluating both

sides of this equation at t = 0 we obtain an expansion of the initial datum in terms of the

eigenfunctions. Hence the eigenfunctions form a complete system in C1[0; 1]. As C1[0; 1] is

dense in L2[0; 1], the result is proven. �

Another immediate corollary to Theorem 4.18 is

Corollary 4.20. The PDE discrete spectrum of a well-posed initial-boundary value problem

that admits a series representation and for which all zeros of �PDE are simple is a subset of the

discrete spectrum of the ordinary di�erential operator with which it is associated.

4.4. The failure of the system of eigenfunc-

tions to be a basis
In this section we develop some of the theory of biorthogonal sequences as presented in

Section 3.3 of [15], giving expanded versions of the proofs Davies presents. These de�nitions

are also given in the survey [56]. Sedletskii’s survey and its references also give an extensive

treatment of the exponential systems we investigate. Biorthogonal sequences are essential to

the study of our di�erential operators as they are non-self-adjoint. This means that their eigen-

functions, together with the eigenfunctions of the adjoint operator, form a biorthogonal pair of

sequences. We use the following notational convention:

Notation 4.21. Let B be a Banach space with dual space B?, the space of linear functionals

de�ned on B. Let f 2 B and let � 2 B?. We de�ne the use of angled brackets,

hf; �i = �(f);

to mean the functional � acting upon the element f of the Banach space.





4.4. THE FAILURE OF THE SYSTEM OF EIGENFUNCTIONS TO BE A BASIS 106

Lemma 4.24. Let B be a Banach space with basis (fn)n2N. Then there exists a sequence

(�n)n2N in B? such that the Fourier coe�cients of f with respect to (fn)n2N are given by �n =

hf; �ni. Furthermore, ((fn)n2N; (�n)n2N) is a biorthogonal pair.

Proof. Equip N with the discrete topology and let K = N [ f1g be the Alexandrov

one-point compacti�cation of N. Let

C = fs : K ! B such that s is continuous, s(1) 2 Cf1 and 8 n > 2; (s(n)� s(n� 1)) 2 Cfng:

De�ne a norm on C by

kskC = sup
n2K
ks(n)kB = max

n2K
ks(n)kB;

the latter equality is justi�ed by the compactness of K and the continuity of s. Then (C; k�kC) is

a Banach space. Let the operator X : C ! B be de�ned by Xs = s(1). Then X is a bounded,

linear operator with norm 1. We show in the next two paragraphs that X is a bijection.

As B has a basis, for any g 2 B there exist Fourier coe�cients �r such that g =
P1

r=1 �rfr.

Let sg : K ! B denote the function de�ned by

sg(n) =
nX
r=1

�rfr:

Certainly sg(1) 2 Cf1 and (sg(n) � sg(n � 1)) 2 Cfn. Any open ball in B contains either no

sg(n), �nitely many sg(n) or �nitely many plus all sg(n) for n greater than some N . Each of

these are open sets in the topology on K so sg is continuous. This establishes sg 2 C, the domain

of X. But Xsg = g and g may be any point in B, so X is onto.

Let s; t 2 C be such that Xs = Xt, that is s(1) = t(1). By the de�nition of C, there

exist sequences (n)n2N and (
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In De�nition 4.23 it is not required that the sequence (fn)n2N be complete for the pair

of sequences ((fn)n2N; (�n)n2N) to be biorthogonal. Lemma 4.25 concerns the existence of a

biorthogonal pair in the case that one sequence is known to be complete.

Lemma 4.25. Let (fn)n2N be a complete sequence in a Banach space B. There exists a

sequence (�n)n2N in B?
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I, as n ! 1. If Pn are uniformly bounded in norm and (fn)n2N is complete then (fn)n2N is a

basis.

Remark 4.27. Before giving a formal proof of the above Lemma we give a heuristic idea of

the reason that these projection operators must be uniformly bounded in norm.

Let ((an)n2N; (bn)n2N) and ((cn)n2N; (dn)n2N) be pairs of sequences in a Banach space B such

that haj ; bki = 0 and hcj ; dki = 0 for all j 6= k and hak; bki 6= 0, hck; dki 6= 0 for all k. Then each

pair can be normalised into a biorthogonal pair in the following way.

De�ne new sequences (An)n2N, (Bn)n2N, (Cn)n2N, (Dn)n2N by

An =
anp
han; bni

; Bn =
bnp
han; bni

;

Cn =
cnp
hcn; dni

; Dn =
dnp
hcn; dni

:

Our pairs of systems, ((An)n2N; (Bn)n2N) and ((Cn)n2N; (Dn)n2N), are both biorthogonal sys-

tems; we have performed a biorthonormalisation on the original pairs. But this does not mean
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hence Pn is of �nite rank. This also shows Qn is �nite rank. We show that Pn satis�es the

de�nition of a projection operator:

P 2
nf =

nX
r=1

*
n=1
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exists a sequence (Nn)n2N such that Prgn = gn for all r > Nn. Then

lim
k!1

k(Pk � I)fk = lim
k!1

k(Pk � I) lim
n!1

gnk

= lim
k;n!1

k(Pk � I)gnk

= lim
k;n!1

kgk � gnk = 0;

as (gn)n2N is Cauchy. Hence (fn)n2N is a basis and the Fourier coe�cients are given by

�n = Pnf:

�

Lemma 4.28. Let ((fn)n2N; (�n)n2N)
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In this chapter we present the detailed analysis of two examples, both for qt = qxxx with

boundary conditions

qx(0; t) + �qx(1; t) = 0 or qx(0; t) = 0;

q(0; t) = 0;

q(1; t) = 0:

The second of these may be considered as the limit of the �rst as the coupling constant �

approaches 0. For each example we investigate both the homogeneous initial-boundary value

problem and the associated the di�erential operator.

For each example we break the analysis into major themes by section. In Section 5.1 we adapt

the standard notation used throughout the thesis to include a superscript � or 0 to distinguish

between the two examples. In Sections 5.2 and 5.3 each example has its own subsection so no

additional notational identi�cation is necessary. At the end of each section we present a third

subsection comparing and contrasting the two cases. In the �nal subsection we also indicate

how the arguments presented in that section may (or may not) be generalised to higher order

and to other kinds of boundary conditions.

We conclude the chapter by comparing and contrasting all four of the calculations pre-

sented, discussing their relative usefulness and complexity. In the next chapter we discuss some

directions for further work, informed by the results of this chapter.

5.1. The problems and regularity
In this section we set up the boundary conditions to be investigated in this chapter. We

de�ne the di�erential operators and the initial-boundary value problems we wish to discuss and

calculate some of the simple quantities associated with each. One set of boundary conditions is

coupled and the other uncoupled ; we use these words to distinguish between the two problems

in this chapter but this does not imply our conclusions are true for all coupled or uncoupled

boundary conditions.

5.1.1. The di�erential operator
Let T �, respectively T 0, be the di�erential operator of De�nition 4.1 speci�ed by n = 3 and

the boundary coe�cient matrix

A� =

0B@0 0 1 � 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1CA ; respectively A0 =

0B@0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1CA ; (5.1.1)

where � 2 R n f�1; 0; 1g.
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The corresponding values of �, ! de�ned by Notation 4.6 are

� = 2; (5.1.2)

! = e
2�i
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The polynomials ��1 ; �
�
0 associated with T �, respectively �
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Then there exists a minimal Y 2 N such that ((�k)
1
k=Y ; (	k)

1
k=Y ) is a biorthogonal sequence in

L2[0; 1]. Moreover

h k; �ki = 2 cos

 p
3

2
(�i�k)

!"
cosh

�
3

2
(�i�k)

�
+ 2 cos

 p
3

2
(�i�k)

!#
� 8 (5.2.7)

= (�1)k
p

3

2
e
p

3�(k+ 1
6 ) +O(1) as k !1: (5.2.8)

Lemma 5.6. Let �k, �k and  k be the eigenvalues and eigenfunctions from Lemma 5.4. Then

k kk2 = k�kk2 (5.2.9)

=
1

�i�k

�
sinh(�i�k)[cos(

p
3(�i�k))� 6] +

p
3 cosh(�i�k) sin(

p
3(�i�k))

+ 3 sinh(2(�i�k))� 3e
1
2

(�i�k)
h
cos
�p

3
2 (�i�k)

�
+
p

3 sin
�p

3
2 (�i�k)

�i
+3e

�1
2

(�i�k)
h
cos
�p

3
2 (�i�k)

�
�
p

3 sin
�p

3
2 (�i�k)

�i� (5.2.10)

=
3
p

3e
4�p

3
(k+ 1

6 )
�
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But if �(�) = 0 also then

0 = ei� + !ei!� + !2ei!
2�;

) 0 = (! � !2)
�
ei!� � ei!2�

�
) � = 2k�i 9 k 2 Z:

But

�(2k�i) =

8<:
p

3e�
p

3k� k even,

2 +
p

3e�
p

3k� k odd,

which is strictly positive, hence 2k�i is not a zero of � for any k 2 Z and every zero of � is

simple. �

Proof of Lemma 5.4. The adjoint boundary coe�cient matrix A? may be constructed

using the method presented in Section 3 of Chapter 11 of [10], particularly Theorem 3.1, but in

this case a direct calculation easily shows that T ? is adjoint to T .

The matrix A? is in reduced row echelon form so we may calculate �? using De�nition 4.7:

�?(�) = i�ei�(!2 � !)

2X
r=0

!re�i!
r�

= e2i��(��); (5.2.13)

where � is the characteristic determinant of T . The argument in the proof of Lemma 5.2 may

be applied to establish that the set of eigenvalues of T ? is f��3
k : k 2 Ng.

The �nal statement may be proved using the argument in the proof of Lemma 5.3. �

Proof of Lemma 5.5. For any j; k 2 N,

�3
kh�k;  ji = hT�k;  ji = h�k; T ? ji = �3

j h�k;  ji;

hence if j 6= k then h�k;  ji = 0. Hence, provided there does not exist k 2 N such that

h�k;  ki = 0, the eigenfunctions of T and T ? form a biorthogonal sequence. Indeed, by the

following asymptotic calculation there must exist some Y > 1 such that h�k;  ki 6= 0 for all

k > Y .

As �i�k 2 R+,

�k = ��k

 k = � k:
(5.2.14)
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Using equations (5.2.14), we calculate

h�k;  ki = �
Z 1

0
�k(x) k(x) dx

= �
Z 1

0

2X
r;l=0

ei(!
r�!l)�kx

�
ei(!

r+1�!l+1)�k + ei(!
r+2�!l+2)�k

�ei(!r+1!l+2)�k � ei(!r+2�!l+1)�k
�

dx

= �
2X
r=0

(2� ei!r(1�!)�k � e�i!r(1�!)�k)�

2X
r=0

Z 1

0
ei!

r(1�!)�kx dx
�
ei!

r+1(1�!)�k + ei!
r+2(1�!)�k � ei!r+1(1�!2)�k � 1

�
+

Z 1

0
ei!

r(1�!2)�kx dx
�
ei!

r+1(1�!2)�k + ei!
r+2(1�!2)�k � ei!r+2(1�!)�k � 1

�
:

(5.2.15)

The �rst sum in equation (5.2.15) evaluates to the right hand side of equation (5.2.7). The

second sum evaluates to 0.

The asymptotic expression (5.2.8) follows from

cos

 p
3

2
(�i�k)

!
= (�1)k

p
3

p
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5.2.3. The limit � ! 0

We may wish to consider the calculations in Subsection 5.2.2 as the limit � ! 0 of such

calculations for the coupled operator. For concreteness, we specify � 2 (�1; 0) and consider the

one-sided limit � ! 0�. Indeed, we may show that if �k is a zero of �PDE then !r�k is also a

zero of �PDE and ��k is a zero of �?
PDE . We may express the zeros of �PDE as the complex
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We consider one particular generalisation. Let n > 3 be an odd number with n = 2� � 1
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We also de�ne I1 to be the identity transformation on f1g, the only element of S1. For Condi-

tion 3.22, k = 1 so we must check thatX
�2S3:

(�;1)2S1 �j I1

sgn(�)!�2�(3) (5.3.1)

is nonzero. However (�; 1) 2 S1 �j I1 if and only if �(2) 2 f1 � j; 2 � jg so expression 5.3.1

evaluates to

!2j(!�6 � !�6 � !�1 + !�2) = !2j(! � !2) 6= 0:

For Condition 3.36, k = 0 so we checkX
�2S3:

�(2)=�j(2)

sgn(�)!�2�(3) = !2j(1� !2) 6= 0:

As n is odd, the boundary conditions are homogeneous and non-Robin, Conditions 3.19

and 3.22 hold and Conditions 3.35 and 3.36 hold, Theorem 3.50 guarantees the initial-boundary

value problem is well-posed and that its solution admits a series representation. �

5.3.2. Uncoupled
Theorem 5.8. The initial-boundary value problem associated with (T 0; i) is well-posed but

its solution does not admit a series representation.

Proof. Using Notation 3.18, L = 1, R = 2 and C = 0. Hence Condition 3.19 holds. To

check Condition 3.22 we write

R = f3; 2g; L = f3g;

r : 3 7! 2; l : 3
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hence its determinant,

�PDE (�) = i�(!2 � !)

2X
r=0

!rei!
r�;

and the functions

�1(�) = i�(!2 � !)
2X
r=0

!r q̂0(!r�)ei!
r�;

�2(�) = i�

2X
r=0

q̂0(!r�)
�
!r+1e�i!

r+1� � !r+2e�i!
r+2�

�
;

�3(�) = i�

2X
r=0

q̂0(!r�)
�
e�i!

r+2� � e�i!r+1�
�
;

�4(�) = �5(�) = �6(�) = 0:

As a = i, the regions of interest in Assumption 3.3 are

eEj � Ej =

�
� 2 C :

(2j � 1)�

3
< arg(�) <

2j�

3

�
:

We consider the particular ratio

�3(�)

�PDE (�)
; � 2 eE2: (5.3.2)

For � 2 eE2, Re(i!r�) < 0 if and only if r = 2 so we may approximate ratio (5.3.2) by its

dominant terms as �!1 from within eE2,

(q̂0(�)� q̂0(!�))e�i!
2� + q̂0(!2�)(e�i!� � e�i�) + o(1)

(!2 � !)ei� + (1� !2)ei!� + o(1)
:

We expand the integrals from the q̂0 in the numerator and multiply the numerator and denom-

inator by e�i!� to obtain

i
R 1

0

�
ei�(1�x) � ei�(1�!x) � ei�!2(1�x) + e�i�(2!�!2x)

�
q̂0(x) dx+ o

�
eIm(!�)

�
p

3(ei�(1�!) + !) + o
�
eIm(!�)

� : (5.3.3)

Let (Rj)j2N be a strictly increasing sequence of positive real numbers such that �j = Rje
i 7�

6 2eE2, Rj is bounded away from f 2�p
3
(k+ 1

6) : k 2 Ng4 and Rj !1 as j !1. Then �j !1 from

within eE2. We evaluate ratio (5.3.3) at � = �j ,

i
R 1

0

�
2ie

Rj
2

(1�x)�
p

3Rj
2

i sin
�p

3Rjx
2

�
� e�Rj(1�x)

�
1� e�

p
3Rji

��
q̂0(x) dx+ o

�
e�

Rj
2

�
p

3(e�
p

3Rji + !) + o

�
e�

Rj
2

� : (5.3.4)

The denominator of ratio (5.3.4) is bounded away from 0 by the de�nition of Rj and the nu-

merator tends to 1 for any nonzero initial datum. This establishes that Assumption 3.3 does

not hold which imples that there is no series representation of the solution. �

4Of course this is guaranteed by �j 2 fE2 and the asymptotic expression (5.2.2) for �k but by adding this

condition explicitly we avoid having to resort to Lemma 5.2
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Remark 5.9. In the proof of Theorem 5.8 we use the example of the ratio �3(�)
�PDE (�) being

unbounded as �!1 from within eE2. It may be shown using the same argument that �2(�)
�PDE (�)

is unbounded in the same region and that both these ratios are unbounded for � 2 eE3 using

�j = Rje
i 11�

6



CHAPTER 6

Conclusion and further work
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6.1. Conclusion
In this work, we have discussed the mutual interaction of two conceptually separate ap-

proaches to the study of linear di�erential operators and linear partial di�erential equations.
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Conjecture 6.1. Equation (6.2.1) holds for arbitrary boundary conditions of any order.

In the third order this conjecture has been established for all non-Robin boundary conditions

but it was necessary to investigate many sets of boundary conditions individually. A general

argument that does not require symmetry conditions has thus-far been elusive.

It has been shown that equation (6.2.1) holds for general Robin boundary conditions but

the symmetry condition has not been removed. For Robin boundary conditions, the symmetry

condition becomes very complex to express. Completely removing the symmetry condition is a

topic of current research. The zeros of the two characteristic determinants are of great interest

in their respective problems and to show that the zeros are the same and of the same orders in

general would be of great utility.

6.2.2. Regularity conditions for well-posedness
In Example 3.24 we derive necessary and su�cient conditions for well-posedness of the initial-

boundary value problems associated with (T; i) and (T;�i) where T is the third order operator

with pseudo-periodic boundary conditions. In the second row of Table 1 on page 134 we note

that these conditions correspond to the polynomials �1 and �0 from Notation 4.9 not being

identically zero. The same result holds for simple boundary conditions, as is shown in Table 1.

It would be interesting to know if this correspondence extends to arbitrary boundary conditions:

Conjecture 6.2. For any di�erential operator T , �1 = 0 only if the initial-boundary value

problem associated with (T; i) is ill-posed and �0 = 0 only if the initial-boundary value problem

associated with (T;�i) is ill-posed.

If this conjecture is true then it gives even simpler conditions for well-posedness of an initial-

boundary value problem. Even if it holds only for odd order initial-boundary value problems

with non-Robin boundary conditions, problems whose well-posedness may already be checked

by Conditions 3.19 and 3.22, it is still gives a much easier check for well-posedness than the

existing conditions. Indeed, a related conjecture is:

Conjecture 6.3. Let T be an odd order di�erential operator with non-Robin boundary

conditions. Then

� deg(�1) = p0 if and only if Conditions 3.19 and 3.22 hold for the initial-boundary value

problem associated with (T; i).

� deg(�0) = p0 if and only if Conditions 3.19 and 3.22 hold for the initial-boundary value

problem associated with (T;�i).

6.2.3. Rates of blow-up
There is a further suggestion of a link in the comparison of the two calculations for the

uncoupled case in Chapter 5. In the proof of Theorem 5.8 we require that the Rj are bounded

away from the set f 2�p
3
(k + 1

6) : k 2 Ng. Consider what happens in the limit where this bound
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The essential missing link in the proof of this Conjecture 6.6 is Conjecture 6.1. We assume

this is the case and proceed with a proof.

Proof of Conjecture 6.6 under an assumption. Under Conjecture 6.1, the nonzero

zeros of � are precisely the nonzero zeros of �PDE . Further, if � 6= 0 is a zero of �PDE , then �
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representation exists and Case 1 holds if and only if precisely one of the initial-boundary value

problems associated with (T; i) and (T;�i) is well-posed.

If both the initial-boundary value problems are ill-posed, for example all boundary conditions

at the same end, then it is possible that neither of these cases hold but we are not really interested

in that situation. Indeed, Examples 10.1 and 10.2 of [48] show that the discrete spectra of such

problems may be empty or the entirity of C.

Finally, we formally state our original conjecture.

Conjecture 6.9. The rate of blow-up depends upon the location of the eigenvalues.

Case 1: Let

�k(�; �
0) = (Xk + Y + �)ei�

0
+ z: (6.2.8)

Then there exists some W 2 C n f0g such that

lim
�!0

2666664
�
k�kkk kk
h�k; ki

�
sup

j2f1;2;:::;2ng
�02V

�
�j [�k(�; �

0)]

�PDE [�k(�; �0)]�k(�; �0)

�
3777775 = W + o(1) as �!1; (6.2.9)

where V is the interval [0; �n) or [�n ;
2�
n ) which contains �0 and �j = �j or �j = �j, whichever is

appropriate for the given V (this will depend upon a
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B.1. Standard theorems
Here we list some standard mathematical results. The �rst three are well-known and the

fourth is not obscure. They have in common that they do not �t into the areas of mathematics

covered by this thesis but are necessary fundamentals for those topics. We list them, without

proof, to remind the reader of the results.

Theorem B.1 (Green). Let 
 be a simply connected open set in R2 whose boundary, @
,

is a positively oriented piecewise smooth, simple closed curve. Let F;G : 
 ! C be continuous

functions with continuous partial derivatives. ThenZ
@


(F dx+Gdy) =

ZZ



�
@G

@x
� @F

@y

�
dx dy:

This theorem originally appears appears in [34]. It is used in Section 2.1 to obtain the

‘global relation’, an essential step in Fokas’ uni�ed transform method

Theorem B.2 (Cramer’s rule). If the square matrix A is full rank then the equation

Ax = y

has solution

xj =
detAj
detA

where Aj is the matrix A with the jth column replaced by the vector y.

A proof is given in [50] but it may be found either as a result or an exercise in any �rst

textbook on linear algebra. This theorem is used in Section 2.3 to solve a full rank system of

linear equations which is obtained in Section 2.2.

Lemma B.3 (Jordan). If the only singularities of f : C! C are poles then, for any a > 0,

lim
R!1

Z �

0
exp(iaRe
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sk > 0 such that all zeros of f outside B(0; r) lie in N semi-strips, Sk, perpendicular to Lk and

of width sk. Further, as R!1, the number of zeros of f within B(0; R)\Sk is asymptotically

given by

2�R

lk
:

This result appears as Theorem 8 of [42] and is proved in the preceeding Section 9 using
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as we integrate along the diameter that divides D� from E� once in each direction so the

contribution from this section of the contours �Dk and �Ek cancels out. We conclude for k 2 K�Z
�Ek

bP (�)

�PDE (�)

X
j2J�

�j(�) d�+

Z
�Dk

bP (�)ea�
nT

�PDE (�)

X
j2J�

�j(�) d� =

Z
�k

bP (�)

�PDE (�)

X
j2J�

�j(�) d�:

(B.2.2)

2. k 2 K+

A similar calculation may be performed in the upper half-plane; for k 2 K+Z
�Ek

P (�)

�PDE (�)

X
j2J+

�j(�) d�+

Z
�Dk

P (�)ea�
nT

�PDE (�)

X
j2J+

�j(�) d� =

Z
�k

P (�)

�PDE (�)

X
j2J+

�j(�) d�:

(B.2.3)

3. k 2 KD
E

We now turn our attention to the integrals whose contours touch the real axis but do not pass

through 0. Using fact (B.2.1) once again,Z
�Dk

P (�)ea�
nT

�PDE (�)

X
j2J+

�j(�) d� =

Z
�Dk

P (�)

�PDE (�)

X
j2J+

�j(�) d�;

but for the contours in the lower half-plane we must be more careful. We rewriteZ
�Ek

bP (�)

�PDE (�)

X
j2J�

�j(�) d� =

Z
�Ek

P (�)

�PDE (�)

X
j2J+

�j(�) d�

+

Z
�Ek

P (�)

�PDE (�)

24e�i� X
j2J�

�j(�)�
X
j2J+

�j(�)

35 d�:

Hence for k 2 KD
EZ

�Ek

bP (�)

�PDE (�)

X
j2J�

�j(�) d�+

Z
�Dk

P (�)ea�
nT

�PDE (�)

X
j2J+

�j(�) d�

=

Z
�k

P (�)
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�j(�) d�+

Z
�Ek

P (�)

�PDE (�)

24e�i� X
j2J�

�j(�)�
X
j2J+

�j(�)

35 d�; (B.2.4)

cancelling the integrals in each direction along the real interval (�k � "k; �k + "k).

4. k 2 KE
D

For the contours in the lower half-planeZ
�Dk

bP (�)ea�
nT

�PDE (�)

X
j2J�

�j(�) d� =

Z
�Dk

bP (�)

�PDE (�)

X
j2J�

�j(�) d�
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and for the contours in the upper half-planeZ
�Ek

P (�)

�PDE (�)

X
j2J+

�j(�) d� =

Z
�Ek

bP (�)

�PDE (�)

X
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�j(�) d�
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Z
�Ek

P (�)
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24X
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�j(�)� e�i�
X
j2J�

�j(�)

35 d�:

Hence for k 2 KE
DZ

�Ek

P (�)
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Z
�Dk

bP (�)ea�
nT
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35 d�: (B.2.5)

5. k 2 KE
E

Similarly to the above,Z
�+
k

P (�)

�PDE (�)

X
j2J+

�j(�) d�+

Z
��k

bP (�)ea�
nT

�PDE (�)

X
j2J�

�j(�) d�

=

Z
�k

P (�)
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1. n odd, a = i. ThenZ
�E
�

0
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�D
�
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35 d�:

(B.2.9)

From equations (B.2.7) and (B.2.9) we obtain

Z
�E

+
0

P (�)

�PDE (�)

X
j2J+

�j(�) d�+

Z
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+
0

P (�)ei�
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�PDE (�)

X
j2J�

�j(�) d�+

Z
�D
�

0

bP (�)ei�
nT

�PDE (�)

X
j2J�

�j(�) d�

=

Z
�0

P (�)

�PDE (�)

X
j2J+

�j(�) d�+

Z
��0

P (�)

�PDE (�)

24e�i� X
j2J�

�j(�)�
X
j2J+

�j(�)

35 d�: (B.2.10)

We now use equations (B.2.2), (B.2.3), (B.2.4) and (B.2.10) together with equations (3.1.9){

(3.1.12) to write

5X
l=2

Il =
X
k2K+

[KD+[KE+

[KR[f0g

Z
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+

Z
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P (�)
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Z
R
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We rewrite the last term asZ
R

P (�)
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Z
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hence equation (B.2.11) as
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35 d�: (B.2.12)
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2. n odd, a = �i. Then
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P (�)e�i�
nT

�PDE (�)

X
j2J+

�j(�) d�

+

Z
�E
�

0

bP (�)

�PDE (�)

X
j2J�

�j(�) d�+

Z
�D
�

0

bP (�)e�i�
nT

�PDE (�)

X
j2J�

�j(�) d�

=

Z
�0

bP (�)

�PDE (�)

X
j2J�

�j(�) d�+

Z
�+

0

P (�)

�PDE (�)

24X
j2J+

�j(�)� e�i�
X
j2J�

�j(�)

35 d�: (B.2.13)

Using a similar argument to that above we write

5X
l=2

Il =
X
k2K+

[KD+[KE+

Z
�k

P (�)

�PDE (�)

X
j2J+

�j(�) d�+
X
k2K�

[KD�[KE�

[KR[f0g

Z
�k

bP (�)

�PDE (�)

X
j2J�

�j(�) d�

+

8<:X
k2KR

Z
�Ek

+

Z
�+

0

�
Z
R

9=; P (�)

�PDE (�)

24X
j2J+

�j(�)� e�i�
X
j2J�

�j(�)

35 d�: (B.2.14)

3. n even, a = �i. Then

Z
�E

+
0

P (�)

�PDE (�)

X
j2J+

�j(�) d�+

Z
�D

+
0

P (�)ea�
nT

�PDE (�)

X
j2J+

�j(�) d�

+

Z
�E
�

0

bP (�)

�PDE (�)

X
j2J�

�j(�) d�+

Z
�D
�

0

bP (�)ea�
nT

�PDE (�)

X
j2J�

�j(�) d�

=
1

2

Z
�0

P (�)

�PDE (�)

X
j2J+

�j(�) d�+
1

2

Z
�0

bP (�)

2

Z
�T

�PDE (
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We may now write

5X
l=2

Il =

8>>>>>><>>>>>>:
X
k2K+

[KD+[KE+

[KD
E

Z
�k

+
1

2

Z
�0

9>>>>>>=>>>>>>;
P (�)

�PDE (�)

X
j2J+

�j(�) d�

+

8>>>>>><>>>>>>:
X
k2K�

[KD�[KE�

[KE
D

Z
�k

+
1

2

Z
�0

9>>>>>>=>>>>>>;
bP (�)

�PDE (�)

X
j2J�

�j(�) d�

+

8<: X
k2KD

E

Z
�Ek

+
1

2

Z
��0

�
Z �1

0
�
X
k2KE

D

Z
�Ek

�1

2

Z
�+

0

+

Z 1
0

9=;
P (�)

�PDE (�)

24e�i� X
j2J�

�j(�)�
X
j2J+

�j(�)

35 d�: (B.2.16)

4. n even, a = ei�, � 2 (��
2 ; �
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equation (2.2.18)) and rearrange the result. To this end we de�ne the matrix-valued function

X l j : C! C(n�1)�(n�1) entrywise by

(X l j)s r(�) = A(s+l) (r+j)(�);

where (s+ l) is taken to be the least positive integer equal to s+ l modulo n and (r+ j) is taken

to be the least positive integer equal to r+j modulo n. So the matrix X l j is the (n�1)�(n�1)

submatrix of  
A A
A A

!
whose (1; 1) entry is the (l + 1; r + j) entry. Then

b�j(�) =
nX
l=1

u(�; l) detX l j(�): (B.2.19)

Using equations (2.3.1) of De�nition 2.19,X
j2J+

�j(�)� e�i�
X
j2J�

�j(�)

=

0@ X
j:Jj odd

c(Jj�1)=2(�)b�j(�) +
X

j:J 0j odd

c(J 0j�1)=2(�)b�j+n(�)

1A
� e�i�

0@ X
j:Jj even

cJj=2(�)b�j(�) +
X

j:J 0j even

cJ 0j=2(�)b�j+n(�)

1A
=

0@ X
j:Jj odd

c(Jj�1)=2(�)b�j(�) +
X

j:J 0j odd

c(J 0j�1)=2(�)

"
~hj(�)�

nX
k=1

bAj kb�k(�)

#1A
� e�i�

0@ X
j:Jj even

cJj=2(�)b�j(�) +
X

j:J 0j even

cJ 0j=2(�)

"
~hj(�)�

nX
k=1

bAj kb�k(�)

#1A ; (B.2.20)

and, by equation (B.2.19), the right hand side of equation (B.2.20) equals

nX
l=1

u(�; l)

240@ X
j:Jj odd

c(Jj�1)=2(�) detX l j �
X

j:J 0j odd

c(J 0j�1)=2(�)

nX
k=1

bAj k detX l j

1A
�e�i�

0@ X
j:Jj even

cJj=2(�) detX l j �
X

j:J 0j 79 Td [(b)]TJ/F43 10.9091 Tf -0.667 -2.879 Td [(�)]TJ/F44 7.9701 Tf 4.772 -1.636 Td [(j)]TJ/F41 7.9701 Tf 3.884 0 Td [(+)]TJ/F44 7.9701 Tf 6.587 0 Td [(n)]TJ/F15 10.9091 Tf 5.636 1.6P]TJ/3.884 0 Td [(+)]TJ/F44 78T0772 -1.63Td [(jr62Ow34 0 Td [(2)]TJ/F15 10.909d [(6()]TJ/F43 10.9091 Tf 4.243 0 Td [(�)]TJ/F15 10.9091 Tf 5.64 0 Td [(051)]TJ/F44 7.9701 Tf 11.37 13.637 Td [7n)]TJ/F47 10.9091 Tf -5.309 -3.273 Td8[(X)]TJ/F44 7.9701 Tf 0.157 -23.717 Td [(k)]T8/F41 7.9701 Tf 4.622 0 Td [(=1)]TJ/F47 10.9091 Tf 15.372 16.111 Td [(b)]4J/F43 10.9091 Tf -2.576 -2.758 Td [(A)1TJ/F44 7.9701 Tf 8.182 -1.76nn�) d5t X30
j odd

j:J 0j
even(J

cJ 0
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equals

=

nX
l=1

u(�; l)

2664
0BB@ X
j:Jj odd

c(Jj�1)=2(�) detX l j �
X

j:J 0j odd

c(J 0j�1)=2(�)
X

k:Jk odd
k:Jk even

bAj k detX l j

1CCA

�e�i�

0BB@ X
j:Jj even

cJj=2(�) detX l j �
X

j:J 0j even

cJ 0j=2(�)
X

k:Jk odd
k:Jk even

bAj k detX l j

1CCA
3775+H(�):

In the line above we have split the index set f1; 2; : : : ; ng for the sums over k into two sets. We

now seperate the sums for these sets, in the process interchanging the dummy variables j and k

in the �nal two sums on each line, rewriting the square bracket as24 X
j:Jj odd

0@c(Jj�1)=2(�)�
X

k:J 0k odd

c(J 0k�1)=2(�) bAk j + e�i�
X

k:J 0k even

cJ 0k=2(�) bAk j
1AdetX l j

+
X

j:Jj even

0@�cJj=2(�)e�i� �
X

k:J 0k odd

c(J 0k�1)=2(�) bAk j + e�i�
X

k:J 0k even

cJ 0k=2(�) bAk j
1AdetX l j

35 :
(B.2.21)

We now change the dummy variable k in the sums of expression (B.2.21). For k such that

J 0k is odd we may de�ne r 2 bJ+ such that r = (J 0k � 1)=2 and k = bJ+
r . Then, by the de�nition

of the reduced boundary coe�cient matrix (2.2.20),

bAk j =

8<:� bJ+
r (Jj�1)=2

Jj odd,

� bJ+
r Jj=2

Jj even.

Similarly, for k such that J 0k is even we may de�ne r 2 bJ� such that r = J 0k=2 and k = bJ�r .

Then

bAk j =

8<:� bJ�r (Jj�1)=2
Jj odd,

� bJ�r Jj=2
Jj even.

This and the de�nition of the reduced global relation matrix (2.2.19) allow us to write

c(Jj�1)=2(�)�
X

k:J 0k odd

c(J 0k�1)=2(�) bAk j + e�i�
X

k:J 0k even

cJ 0k=2(�) bAk j
= c(Jj�1)=2(�)

0@1�
X
r2 bJ+

(i�)(Jj�1)=2�r� bJ+
r (Jj�1)=2

+ e�i�
X
r2 bJ�

(i�)(Jj�1)=2�r� bJ�r (Jj�1)=2

1A
= A1 j(�) (B.2.22)
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We de�ne the functions l, r and c that map the indices of each boundary datum to the

position of that boundary datum within V as follows:

l : 5 7! 1; l : 4 7! 3;

r : 5 7! 2; r : 4 7! 4;

c : 3 7! 5:

These functions are de�ned such that

Domain(l) = fj + 1 : ~fj(�) is an entry of V g

Domain(r) =
fj + 1 : ~gj(�) is an entry of V which corresponds to a BC

which does NOT couple the ends of the intervalg

Domain(c) =
fj + 1 : ~gj(�) is an entry of V which corresponds to a

BC which couples the ends of the intervalg:

They are also injective, and their ranges are all f1; 2; 3; 4; 5g but their codomains are disjoint.

This is guaranteed by de�ning the functions so that for j in the relevant domains

Ak l(j) = !k(n�j)cj�1(�)

Ak r(j) = �!k(n�j)e�i!
k�cj�1(�)

Ak c(j) = �!k(n�j)
�
e�i!

k� + �p j�1

�
cj�1(�)

where p is the index of the unique boundary condition that couples fj�1 and gj�1. We may now

write

�PDE (�) = c2
4(�)c2

3(�)c2(�)
X
�2S5

sgn(�)!
P
j2f4;5g �l(j)(n�j)

� (�1)2!
P
j2f4;5g �r(j)(n�j)e�i

P
j2f4;5g !

�r(j)�

� (�1)!
P
j2f3g �c(j)(n�j)

Y
j2f3g

�
e�i!

�c(j)� + �1 2

�
c2

4(�)c2
3(�)c2(�)

= �4�1 2

X
�2S5

sgn(�)!�(4[�(3)+�(4)]+3�(5))e�i(!
�(2)+!�(4))�

+ �4
X
�2S5

sgn(�)!�(4[�(3)+�(4)]+3�(5))e�i(!
�(2)+!�(4)+!�(5))�: (B.3.1)

For any given � 2 S5 we can now calculate coe�cients of e�i
P2
j=1 !

�(j)� and e�i
P3
j=1 !

�(j)� in

�PDE (�); the �rst coming from the �rst sum in the right hand side of equation (B.3.1) and the

second from the second sum.

We look �rst at e�i
P2
j=1 !

�(j)�. If we choose some � 2 S5 such that

X
j2f2;4g

!�(j) =

2X
j=1

!�(j)

, f�(j) : j 2 f2; 4gg = f�(j) : j 2 f1; 2gg
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then the coe�cient of e�i
P2
j=1 !

�(j)� in �PDE is given by

�4�1 2

X
�2S5:

f�(2);�(4)g
=f�(2);�(4)g

sgn(�)!�(4[�(3)+�(4)]+3�(5)): (B.3.2)

Similarly, we may choose some � 2 S5 such thatX
j2f4;5g

!�r(j) + !�(5) =
3X
j=1

!�(j)

, f�(j) : j 2 f2; 4; 5gg = f�(j) : j 2 f1; 2; 3gg

then the coe�cient of e�i
P3
j=1 !

�(j)� in �PDE is given by

�4
X
�2S5: 2 3

(;5gg = ;�(2)gg
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Definition B.7. Let us de�ne the index sets L, R and C and, as the boundary conditions

are non-Robin, simplify the notation for the coupling coe�cients so that only a single index is

used:

� L = fj + 1 : �r j = 0 8 rg so that L=jLj
� R = fj + 1 : �r j = 0 8 rg so that R=jRj
� C = fj + 1 : 9 r : �r j ; �r j 6= 0g so that C=jCj
� e�j = �p j�1, where p is the index of the (unique, as the boundary conditions are non-

Robin) boundary condition that couples fj�1 and gj�1.

Lemma B.8. Let c0 : f1; 2; : : : ; Cg ! C
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Proof. Note that for any valid choice of l, r and c their codomains have disjoint union

f1; 2; : : : ; ng. The uncertainty in the sign in equations (B.3.6), (B.3.7) and (B.3.8) comes from

di�erent choices of the functions l, r and c. For concreteness, we require that l, r and c
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�(j) = �cc0�0(s). This establishes that there is no �0 2 SC such that (�; �0) 2 Sk � � 0 . Hence

every � 2 Sn for which there exists some �0 2 SC such that (�; �0) 2 Sk � � 0 has the property

8 j 2 fr(p) : p 2 Rg [ fcc0� 0(p) : p 2 f1; 2; : : : ; kgg

9 q 2 fr(p) : p 2 Rg [ fcc0�0(p) : p 2 f1; 2; : : : ; kgg such that �(j) = �(q): (B.3.10)

We de�ne

X = jfj 2 R such that 8 p 2 R �r(j) 6= �r(p)gj and

Y = jfj 2 f1; 2; : : : ; kg such that 8 p 2 R �cc0� 0(j) 6= �r(p)gj:

It is immediate that, for any � 2 Sn
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This yields a complete characterisation of Sk � � 0 for k > 1.

If k = 0 the de�nition (B.3.4) of Sk � � 0 simpli�es to

S0 � � 0 =

8<:(�; �0) 2 Sn � SC :
X
j2R

!�r(j) =
X
j2R

!�r(j)

9=;
= f� 2 Sn : 8 j 2 R 9 p 2 R : �r(j) = �r(p)g � SC : (B.3.13)

In this paragraph we argue that each Sk � � 0 gives rise to a single unique exponential. The

relation �k de�ned by

(�; �0) �k (�; � 0), (�; �0) 2 Sk � � 0

is an equivalence. From the de�nition of Sk � � 0 it is clear that the �k-classes are of equal size.

Let (�; �0) 2 Sk � � 0 . Then, by the de�nition of Sk � � 0 ,

e�i
P
j2R !

�r(j)�e�i
Pk
j=1 !

�cc0�0(j)� = e�i
P
j2R !

�r(j)�e�i
Pk
j=1 !

�cc0� 0(j)�:

Hence the equivalence classes of �k each identify a unique sum of powers of ! in the exponent

and for each possible sum of R + k powers of ! there exists an equivalence class of �k. Hence

for a given exponential e�i
PR+k
r=1 !�(r)� we may �nd its coe�cient in equation (B.3.9) by choosing

some pair (�; � 0) 2 Sn � SC such that equation (B.3.5) holds and evaluating expression (B.3.6)

if k > 1 or expression (B.3.7) if k = 0.

If k > 1 and e�j = � for all j 2 C then expression (B.3.6) simpli�es to

Pk � = (�1)R+C(�a)n(i�)�(
P
j2R j+

P
j2C j+

P
j2L j)X

(�;�0)2Sk � � 0

sgn(�)!�
P
j2R �r(j)j�

P
j2C �c(j)j�

P
j2L �l(j)j�C�k:

If � 2 Sn is such that there exists �0 2 SC such that (�; �0) 2 Sk � � 0 then, as above, for �00 2 SC ,

(�; �00) 2 Sk � � 0 if and only if

8 j 2 f1; 2; : : : ; kg 9 p 2 f1; 2; : : : ; kg such that �00(j) = �0(p):

Hence, for a given �, provided there exists some �0 2 SC such that (�; �0) 2 Sk � � 0 there exist

k!(C � k)! such �0. Hence expression (B.3.6) simpli�es to expression (B.3.8). �

B.4. Admissible functions
This section gives the proof of Lemma 3.30. For convenience we reproduce De�nition 1.3

of [27
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be a set of 2n C1 functions on [0; T ] such that @jxq0(0) = fj(0) and @jxq0(1) = gj(0) for each

j 2 f0; 1; : : : ; n� 1g. Let

eF (�) =
n�1X
j=1

cj(�) efj(�); (B.4.1)

eG(�) =
n�1X
j=1

cj(�)egj(�); (B.4.2)

where efj ; egj are de�ned in Lemma 3.30.

The set of functions ffj ; gj : j 2 f0; 1; : : : ; n� 1gg is called admissible with respect to q0 if

and only if qT 2 C1[0; 1] and the functions eF ; eG satisfy the following relation:

eF (�)� e�i� eG(�) = �q̂0(�) + ea�
nT q̂T (�): (B.4.3)

Proof of Lemma 3.30. By the de�nition of efj ; egj in the statement of Lemma 3.30 and the

de�nition of the index sets J� in De�nition 2.19 we may write equations (B.4.1) and (B.4.2) as

eF (�) =
X
j2J+

�j(�)� ea�nT �j(�)

�PDE (�)
; (B.4.4)

eG(�) =
X
j2J�

�j(�)� ea�nT �j(�)

�PDE (�)
: (B.4.5)

Now by Cramer’s rule and the calculations in the proof of Lemma 2.17 equation (B.4.3) is

satis�ed. The following remains to be shown:

(1) qT 2 C1[0; 1].

(2) fj ; gj 2 C1[0; T ] for each j 2 f0; 1; : : : ; ng.
(3) @jxq0(0) = fj(0) and @jxq0(1) = gj(0) for each j 2 f0; 1; : : : ; n� 1g.

(1) By Assumption 3.2, �j is entire. Hence q̂T is entire so, by the standard results on the

inverse Fourier transform, qT : [0; 1]! C, de�ned by

qT (x) =
1

2050
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Hence, by equations (B.4.4) and (B.4.5), eF (�); eG(�)! 0 as �!1 within eD. By Lemma B.10

we have the direct de�nitions (B.4.6) and (B.4.7) of fj and gj in terms of eF and eG and, becauseeF (�); eG(�)! 0 as �!1 within eD, these de�nitions guarantee that fj and gj are C1 smooth.

(3) Equation (2.1.4) guarantees equations (B.4.4) and (B.4.6), imply that the compatibility

condition @jxq0(0) = fj(0) is satis�ed by construction. Equations (B.4.5) and (B.4.7), imply that

the compatibility condition @jxq0(1) = gj(0) is satis�ed. �

Lemma B.10. Let eF and eG be de�ned e
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Combining equations (B.4.8), (B.4.11) and (B.4.12) and equating coe�cients of �j we obtain

equations (B.4.6).

We have shown that the transforms (B.4.6) are the inverse of the transforms (3.2.30), hence

the pair (( efj)n�1
j=0 ; (fj)

n�1
j=0 ) satis�es (B.4.6) if and only if it satis�es (3.2.30). �
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