UNIVERSITY OF READING
DEPARTMENT OF MATHEMATICS

THE USE OF ROBUST OBSERVERS IN THE
SIMULATION OF GAS SUPPLY NETWORKS

by

SIMON M. STRINGER

This thesis is submitted for the degree of
Doctor of Philosophy

NOVEMBER 1993



For any gas network, it is desirable to have a reasonable estimate of the demand flows.
However, flow meters are much more expensive than pressure sensors to install, and so it
would be economical to be able to estimate the flow demands from pressure measurements
alone. In this thesis, both model and observer based methods for estimating unmeasured

flow demands in linear gas networks with sparse pressure telemetry are investigated.

Firstly, we introduce the basic gas network model in the form of a linear time invariant
descriptor system, which requires the upstream pressure and all flow demands as inputs.
Thus the basic model is useless for estimating the flow demands since these are needed
to drive the model. Hence, we proceed to derive rearranged and augmented gas network
models that contain the flow demands in their state vectors, and that are capable of flow

demand estimation.



Acknowledgements

I would like to thank my academic supervisor, Dr Nancy Nichols, for my introduction
to the mathematics of the real world; and thank British Gas for giving me the oppor-
tunity to work on such an interesting practical problem. I would also like to thank my
industrial supervisors, Dr John Piggott, Dr Alan Lowdon, Dr Jim Mallinson and Mr

Michael Gardiner, for their encouragement during my three years at Reading.

Finally, I would like to acknowledge both the Science and Engineering Research Coun-
cil and British Gas for their financial support for the period of my studies.

i1






6.1  Theorems
6.2  Weighted 3 Models
6.3 Lxperiments
6.3.1 Experiments with  weightings,
flow demand difference equations
6.3.2  Experiments with weightings,
flow demand difference equations

6.4  Discussion

6.4.1  Observer Design A : The Direct Observer

Y

, included in the trivial

included in the trivial

60
66
67

63

63

88
88



9.3

Discussion . . . . .. L 151

10 White Noise, Flow Integration Smoothing Techniques, M5 and M6

Models. 153
10.1 The Effects of White Noise on the State Estimation Techniques Presented
So Far . . . 154
10.1.1 Experiments . . . . . . . . Lo 154
10.1.2  Discussion . . . . . . ... 165
10.2 The M3 Flow Integration Smoothing Technique . . . .. ... .. ... 165
10.2.1 Experiments . . . . . ... Lo 166
10.2.2  Discussion . . . . . ..o 169
10.3 The M4 Flow Integration Smoothing Technique . . . .. ... .. ... 169
10.3.1 Experiments . . . . . ... Lo 170
10.3.2  Discussion . . . . . ... 172
10.4 The M5 Model . . . . . . . . 172
10.4.1 Theorems . . . . . . .. 176
10.4.2 Experiments . . . . . ... Lo 179
10.4.3  Discussion . . . . . ... 192
10.5 The M6 Model . . . . . . .. .. . 192
10.5.1 Theorems . . . . . . .. 195
10.5.2 Experiments . . . . . ... Lo 199
10.5.3  Discussion . . . . . ... 210
11 Final Conclusions and Proposals for Future Work 212
12 Appendix 214
12.1 Model Parameters for Experiments . . . . . . . . . .. ... ... .... 214
12.2 Theorems . . . . . . . . . 215

vi



Ch pter 1

Introduction

For any gas network, it is desirable to have a reasonable estimate of the demand flows.
However, flow meters are much more expensive than pressure sensors to install, and so it
would be economical to be able to estimate the flow demands from pressure measurements
alone. In this thesis, both model and observer based methods for estimating unmeasured
flow demands in linear gas networks with sparse pressure telemetry are investigated.
Two techniques for constructing robust observers are employed: robust eigenstructure
assignment [24], [25], and singular value assignment [34], [4].

The gas networks considered are linear and consist of a number of pipe sections with
a gas source at the upstream end and flow demands at pipe junctions and at the down-

stream end. For example, for a three pipe network we would have

Upstream Source — Pipe Section a — —— Pipe Section b — —— Pipe Section ¢ — Downstream Demand
Junction Junction

Demand Demand

We assume the only measurements of the real gas network available are discrete pres-
sure measurements at all sites of gas inflow (the upstream end) and outflow (the pipe
junctions and downstream end). These measurement sites are the natural ‘boundaries’
of the network, where some data (pressure or flow demand) need to be specified to drive

a network model.



In chapter 2 we introduce the basic gas network model from [34], based on two partial
differential equations for modelling natural gas flow in high pressure pipelines, derived
by mass and momentum balance arguments [19], [30]. Such a model, which we denote

by 0, is in the form of a linear time invariant descriptor system
~(+)= _0O)+ _(+Dh+ _()

which results from linearising the original differential equations about a steady state
and discretising the linearised equations using the -method [37]. All pressure and flow
variables are thus perturbations away from that steady state. An 0 model requires
the upstream pressure and all flow demands as inputs; thus an 0 model is useless

for estimating the flow demands since these are needed to drive the model. Hence, we



trivial difference equations of the form

Obviously, if such a model were run, the estimates of the flow demands would not change.
However, if the flow demands change slowly with time, then observers constructed upon
such models can track the flow demands fairly well; although the above difference equation
for the flows will contain some modelling error. Such trivial difference equations have
been used previously for both leak detection [3] and state estimation [32]. Experimental
and theoretical evidence is given to show how the two techniques, robust eigenstructure
assignment and singular value assignment, reduce the effects of the above modelling error
upon the observer state estimate. The 3 model is further developed by making use of
the known time profiles for the flow demands to remove the modelling error introduced
by the above trivial difference equations. The new trivial difference equations for the flow

demands become
= +

where the may be estimated from the telemetry from other demand

flows.



to perturbations in the pressures. In chapter 9 a standard approach from [34] is explored
but shown to be inadequate without a new approach to encoding information about the
flow demand time profiles. We investigate a further model variation, denoted by 4,
capable of estimating both flow demands and pressure measurement bias, but which uses

trivial difference equations for the flow demands of the form

k+1 —

where the are estimated from other measured flow demands. This new way
of incorporating information about the flow profiles allows the estimation of the mea-
surement biases, as well as the flow demands themselves. However, the 4 models have
time-varying system matrices and basic control theory for time-invariant systems does
not always extend to time-varying systems [41], [26], [6], [7]. Our observer designs must
also be modified [15].

In chapter 10 we examine the problem of measurement white noise. We avoid Kalman
filters due to their unexceptional performance in [17], [40], [35], and instead examine two
simple smoothing techniques, and derive two final model variations, 5and 6, to deal
with the problem of the sensitivity of the flow demand estimates. 5 and 6 models
have only a single total flow demand perturbation state variable that is the sum of all the
individual demand flow perturbation variables. Such models are less sensitive to pressure
measurement noise.

Finally, in chapter 11 we make some final conclusions and suggest some proposals for

future work.



Ch pter 2

he St nd rd System Model (M0)

In this chapter, the standard underlying model, based directly on [34], is constructed for
a simple linear network with demand flows. This initial model, which we denote as an
MO0 model, actually assumes that all flow demands are measured and used as inputs to
drive the model. Hence, obviously an M0 model, itself, cannot be used for flow demand

estimation.

2.1 The Linearised Differential Equations Govern-
ing Gas Pipe Dynamics

Firstly, we derive the linearised equations governing gas dynamics in a single section of

pipe. For each section, from [34], we have the following two equations
AP+ a(l=rP)QIQI" =0, (2.1)
the momentum balance equation ignoring time variations in (), and
{(P)+e(l—1P)° .(Q)=0, (2.2)
the mass balance equation, where:
P(x,t) is the gas pressure in bar
Q(x,1) is the mass flow rate in m.s.c.m.h. (millions of standard cubic metres per hour)

x is distance along pipe in metres



is time in hours

are constants, and | are partial derivatives with respect to x and t re-
spectively.  is used in the linear expression for compressibility, =1 , which is
always positive.
We begin by modelling a straight section of pipe of length | with constant cross-
sectional area.
For computational ease, we normalise the pipe section length, pressure and mass flow

rate:

(23)

where and are positive constants which are chosen such that 1 The

normalisation results in

() ( ) () C ) ) (24)

The normalised equations (2.1) and (2.2) are, therefore, to be solved for 0 1
and 0. The boundary and initial conditions are yet to be specified.

Our approach is to linearise about a mass flow rate and pressure profile in order to
obtain two linear equations which approximate equations (2.1) and (2.2). Our mass flow

rate and pressure profile are
()= (25)
()= 0) (26)
where  is a positive constant mass flow rate from = 0to =1, and ( ) is the

constant pressure profile.

Substituting (2.5) and (2.6) into equation (2.1) gives
(o4 0 ) =0

which is equivalent to









The following boundary data are required at the ends of the pipe section:
at x = 0 we require

p(0,1) = P(0,1) = P(0),

or

9(0,1) = =z 2(I'p) ;=0 = Q0,1) = Q,

and at * = 1, we require

p(1,1) = P(1,1) = P(1),

or

q(lvt) = —G x(rp) |x:1 = Q(lvt) - Q.

2.2 The Finite Difference Approximation

Each of the pipe sections have nodes at either end and a number of regularly spaced

internal nodes. For an arbitrary pipe section with s + 1 nodes, we have
Nodes: O—1—2—3. . 5
«———Pipe section———

Firstly, we introduce some notation. For any pipe section with s+ 1 nodes, we let our

numerical approximations be
pirp(téx, kot), ¢ rq(eéx, két), Iiml(P(idx)), QrQ(P(idx)),
where ¢ = 0,1,2.3,.....s, 0z is the spatial discretisation interval of the pipe and 6t is the

sample period with k=0,1,2,...

In our numerical model, we use a finite difference scheme based on the nodal pressure

perturbations only; the perturbations in inline flows can then be calculated separately



from the computed pressure perturbation profile using a difference approximation based



For boundary conditions given at node in a general pipe section, we use the
following theory.

Using equation (2.13) we derive the finite difference equation
(r r ) =2 (2 18)

for the boundary flow condition at the node = for any pipe section. From [37],

approximating the derivative  (I' ) by
) @ I ) 2

involves a leading error on the right hand side of order (). Eliminating I



particular pipe sections.

Regarding the initial linearisation procedure, we linearise about different inline flows
for all pipe sections. Hence, for our linear network, we linearise about a steady state
where the flow demands at the junctions are not zero. In practice, a value for the steady
flow, Q7, in each pipe section z may be suggested by, say, substituting the values of the
pressure measurements at the opposite ends of the pipe section into equation (2.8) and
solving for Q7. It may be the case that we have to make a best guess for a value for Q7.

Firstly, we use equation (2.8) to linearise for the upstream section (i.e. section
a for the example network) by substituting in an assumed steady value for the in-

Quepstream section - and a value for Purstream secton(()) - and generating a steady

line flow,
pressure profile using an iterative technique such as Newton’s. In practice, a value for
Ppupstream section (()) i5 suggested by the upstream pressure measurement of that section.

Next, the same procedure is carried out for neighbouring sections downstream in turn,
using different steady inline flows, Q7, for linearising each general pipe z, and using the
calculated value for P*7*(1) from the adjacent upstream section as the value for P*(0)
each time.

This means that at each pipe section junction we are linearising about a steady

demand flow

Qz/z-l—l — Qz . QZ-I-l

where Q7 is the steady flow we linearised about in the upstream section z, and Q**! is

the steady flow we linearised about in the downstream section z + 1.

Now we examine how to link up the separate finite difference schemes for two general
adjacent pipe sections, z and z + 1, in a linear network. Pipe sections z and z + 1 have,
say, s* + 1 and s*T' 4 1 nodes respectively (although one of these nodes is shared by both

pipe sections).

Nodes: 0"—1"—2"—3%.......... (s7)7 )07 17+l 2=l___ 3=+l . (s7t1)=H

————Section z Section z +1———— —
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For our ‘internal boundary node’ () 0 , we derive a finite difference equation that

links up the finite difference equations for the two pipe sections on either side, and +1.

We assume that at time level | we have a normalised flow demand, , out of
the pipe junction, + 1, where
= +
is the demand flow out of the pipe junction +1 chosen for the linearisation, and

is a perturbation away from that steady demand flow. Then to enforce continuity

of mass flow at node () 0 , we require

Rearranging both equation (2.19) for pipe and equation (2.21) for pipe +1, for
etc., and substituting into equation (2.22) gives us the following finite difference equation

for our internal boundary node () 0

where we have defined

) =

(2 Q + 2 Q )
and where, because and '  I' , at the junction we have denoted the pres-
sure perturbation by , and denoted I" by I' I' TI' . This equa-

tion is our ‘connectivity equation’, which is the actual finite difference equation we use






(A ]

where [E ] and [A ] are general tridiagonal square blocks containing the coefficients of
the inner pressures along pipe from difference equations (2.17). The blocks, [E ] and
[A ], are sandwiched between single rows corresponding to the 1 connectivity equa-
tions (2.23) and downstream flow boundary equation (2.19) for pipe , and single columns
containing the coefficients of the pressures at the pipe junctions and the downstream end.

These rows and columns maintain the tridiagonal structure of = and ; the non-zero



and in the matrix has the form

The row corresponding to the flow boundary equation (2.19) at the downstream end, in

the matrix has the form
and in the matrix has the form
In this section, we firstly prove that the matrix  of an 0 model is full rank if 0.
We next prove that the 0 system eigenvalues are real if 0. Lastly, we prove that
the 0 system eigenvalues are within the unit circle for 1 2 1.
All theorems rely on the following inequalities. I’ 0, I 0, 0,
0, 0, Q 0, 0 and @ 0 for all pipes, nodes and junctions.

We firstly define three new matrices.

We define the diagonal matrix, | where the  diagonal element of is equal to

the value of T’ at the  node along the linear gas network (starting at node 1 of the



Next, for 840, let the matrix M = —(1/0)(I — E ). Then it can be easily verified
that
E =1+0M (2.26)

and

A=T-(1-0)M. (2.27)

By inspection, M is real and tridiagonal, with all off-diagonal elements, m  with
li — j| = 1, non-zero and negative. Hence, from Theorem 12.3 in the appendix, all

the eigenvalues of M are real.

Lastly, let G =M . By inspection, ¢ has the following properties:
o tridiagonal

o diagonally dominant with strict inequality at ¢ = 1

e g >0,9g <O0foralliandj with ¢ —j|=1.

From Theorem 12.1 in the appendix, we have that G is full rank.

0>0 E MO
Let = . Assuming 0, we can derive = + , which, due to the
properties of and | must be strictly diagonally dominant. Hence, from Theorem
12.2 in the appendix,  is full rank, and hence = must be full rank also.
0 MO
Since, if 0, the matrix  is invertible, from equations (2.26), (2.27), we have

( - J)=0s= ((+ ) (-0=) )= )=0

Thus, for € ( Jand € (), for =1 ,
1-0-)
1+

17



where A\(Ag, Fy) denotes the spectrum of the matrix Ey 'Ay and A(M;) denotes the spec-
trum of the matrix My. Hence, since the eigenvalues, 7;, of M, are real then so are the

eigenvalues, y;, of (F,'Ao) real.

MO
(1/2)<0<1

From equations (2.26), (2.27), we have
det(Ag — pko) = det((1 — p)l 4+ (1 — )8 — 1) My). (2.28)

Since the determinant of the product of two matrices is equal to the product of the

determinants of the individual matrices, from equation (2.28) we can derive
det(Ag — pby) = det((1 —p) o'+ (1 — )0 — D)Go)det( o).

We show det(Ag — pFo)#0 for |p|>1 and (1/2)<0<I1.

The matrix ¢ is full rank, and hence det( ¢)7£0.

By inspection, if p>1, then (1 — y)<0 and ((1 — )6 — 1)< — 1. Also, if pu< — 1, then
(1 —p)>2 and ((1 — p)0 —1)>0.

So, for |p|>1, we have the following two cases.

If (1—p)0—1)=0then (1—p)>2and (1—p) o +((1—p)f—1)G )=
(1—p)  which is full rank. Then det((1 — )  + (1 — p)f — 1)G )F0.

If (1 — )8 — 1)#0 then, due to the properties of  and G, the matrix
(1 —p) + ((1 — )8 — 1)G ) has the following properties

o tridiagonal
o diagonally dominant with strict inequality for : = 1

e off-diagonal elements with |: — j| = 1 are non-zero and of opposite sign to diagonal

elements.

18



and, from Theorem 12.1 in the appendix, is full rank.

Then (1 ) +(1 ) 1) )=0.

Hence, for L )= ((1 ) +((1 ) 1) ) ( )=0.

Thus, if (1 2) 1, the eigenvalues of the 0 system matrices have modulus less

than 1, and the 0 model is asymptotically stable.

The [37] of the 0 model is defined in terms of the boundedness of the
solution to the finite difference equations at a fixed timestep, , as  and tend to
zerowith = () kept fixed. It is related via Lax’s Equivalence Theorem [37] to the

convergence of the solution of the 0 system to the solution of the governing differential
equations (2.16), as the computational mesh is refined. However, unlike the asymptotic,
or Liapunov, stability already investigated above, Lax stability is not directly dependent
on the eigenvalues of the system. Some attempt was made to provide proofs of both the
Lax stability of the 0 system and the convergence of the solution of the 0 system to
the solution of the governing differential equations (2.16), as the computational mesh was
refined. Unfortunately, this was not achieved, the difficulty being the space-varying na-
ture of the system coefficients. Two good references that deal with this specific problem

are [36] and [16]. Providing such stability and convergence proofs for 0 systems and



Chapter 3

Formulation of a New 1 Variant

Model

The gas networks we wish to estimate are linear with pressure measurement only; and
these measurements are only available at the upstream source and at sites of flow de-
mand. We now show how a new model variation, denoted by M1, which is capable of
estimating flow demands, may be constructed from a base M0 model. The M1 model
is simply a pressure driven model, and is derived from an M0 model by first removing
the ¢ — 1 connectivity equations and the downstream flow boundary equation from the
system, and then removing the ¢ flow demand variables. The M1 model is still in the
form of a discrete descriptor system, but where the state vector now contains the nodal
pressures except those pressures at sites of gas outflow. The M1 model is essentially a

disconnected set of equations for each pipe.

The base M0 model can be rearranged and partitioned as

&1 &z | | o (k£ 1) A A || p (k) N Bi, 0 py(k+1)
5271 5272 BZ(k —|— 1) AQJ ./4272 }_?z(k) 0 8%72 d(k —|— 1)

Bil 0 Bg(k)
0 Bi, || dk)

+ (3.1)

where }_72(k) is a ¢ dimensional vector containing measured pressure perturbation state
variables at the sites of flow demand, }_71(]6) is a n — ¢ dimensional vector containing the

remaining pressure perturbation state variables along the pipes, }_73(k) is the upstream

20



pressure input (assumed known), and d(k) is a ¢ dimensional vector containing the flow
demand perturbation input variables that we wish to estimate. The top n — ¢ rows cor-
respond to general difference equations (2.17), and the lower ¢ rows correspond to the

g — 1 connectivity equations and the single downstream flow boundary equation.

The new M1 system has the form

5171}_?1(]6 +1) = AM}_?l(k) — 5172}_?2(]6 +1)+ 8%71}_?3(]6 + 1)+ ./4172}_?2(16) + Bil}_??)(k) (3.2)

which can be expressed in the general descriptor system form
Eyzy(k+1) = Ajzy (k) + Bluy (k + 1) + Biu, (k) (3.3)
where
uy (k) = [p, ()", p, (k)]
It we arrange the pressure variables in the state vector in their order along the pipe
network, i.e. in the following way
Ty (k) = [Pk Do s voes Pt oo PR > D3 s woes P2 s wosessensvnsncs T SO P

where each pipe has s77¢ + 1 nodes, then the M1 system matrices, £y and A;, are

tridiagonal. F; and Ay take the form

[E]
(2]

[B51

[F7]

[A']
[A7]

Ay

21



where [E?] and [A?] are general tridiagonal square blocks containing the coefficients of the
inner pressures along pipe z from difference equations (2.17). The general square blocks

[E7] and [A*] are as previously described for the M0 model.

As an M



pipes, nodes and junctions.

We firstly define three new types of matrix.

We define the general diagonal matrix, D, corresponding to pipe z for z = 1



For a general pipe section z, let F* = E°D*. Assuming 6 > 0, we can derive
F? = D*' 4 0G*, which, due to the properties of D* and G, must be strictly diagonally
dominant. Hence, from Theorem 12.2 in the appendix, F* is full rank, and hence E* =

F#D? must be full rank also. O
Theorem 3.2 If § > 0, the eigenvalues of an M1 model are real.

Proof

To show the eigenvalues of an M1 model are real, we show the eigenvalues of the

blocks 7~ A are real.

For a general pipe section z, since the matrix E* is invertible if § > 0, from equations
(3.7), (3.8), we have

det(A” — pB”) = 0 <= det((I + OM*)" (I — (1 — O)M?) — pul) = 0.

Thus, for € A(A%, E?) and ;e A(M?), for ¢ =1,..., 8" — 1,

'_1—(1—(9)7'2'
Hi= 1—|—(9TZ '

Hence, since the eigenvalues, 7;, of M are real then so are the eigenvalues, u;, of (EZ_1 A7)

real. O

Theorem 3.3 An M1 model has system eigenvalues within the unit circle, and hence is

asymptotically stable, if (1/2)<0<1.

Proof

To show the eigenvalues of an M1 model are within the unit circle, we show the

eigenvalues of the blocks £~ A® are within the unit circle.

For a general pipe section z, from equations (3.7), (3.8), we have

det(A” — pB7) = det((1 — p)I + ((1 — 1)0 — 1)M?). (3.9)

24



Since the determinant of the product of two matrices is equal to the product of the

determinants of the individual matrices, from equation (3.9) we can derive
det(A* — pE?) = det((1 — p)D* + ((1 — p)0 — 1)G*)det(D?).

We show det(A” — pE?)#£0 for |p|>1 and (1/2)<6<1.
The matrix D? is full rank, and hence det(D?)#£0.

By inspection, if g>1, then (1 — x)<0 and ((1 — )0 — 1)< —1. Also, if u< —- ; Tme(-T.



3.2 Experiments

For all experiments in this thesis, a standard M0 model of the linear three pipe network
from chapter 1, was run to simulate a real gas network with the upstream pressure, junc-
tion demand flows, and downstream flow demand specified as boundary inputs to the
system. The parameters for this base M0 model, and all other models investigated in

this thesis, are given in the appendix. Except for a few experiments in chapter 10, the

flows at demand sites A/B, B/C and C were in the ratio 2:5:13.

When the M0 model had been running for a while, the pressures at the upstream
end and the sites of flow demand were recorded at each timestep and fed into an M1
model. The flow demands predicted by the M1 model were then compared with the
true flows used as inputs to the M0 model. For experiments 3.1 to 3.3, the M0 model
simulating a gas network was identical to the M0 model upon which the M1 model was
constructed. For experiments 3.4 and 3.5, the M0 model simulating a gas network had
a much finer discretisation (in both space and time) than the M1 model to give some
idea of the effects of the modelling error due to the finite difference approximation of the
original differential equations.

For each experiment, the true flow demand profiles for the demands, DkA/B, DkB/C and
DY are shown as thick lines in Figs. A, B and C respectively, and the state estimates for
DkA/B, DkB/C and D¢ are shown as thin lines. The percentage errors between the state
estimates of DkA/B, DkB/C and D¢ and their true values are shown in Figs. D, E and F

respectively.



Experiment 3.3) M1 Model with § = 0.5

Data taken from M0 model with much finer mesh - M1 model has 5 spatial
nodes along each pipe.

Experiment 3.4) M1 Model with § =1
Data taken from M0 model with much finer mesh - M1 model has 10 spatial

nodes along each pipe.

Experiment 3.5) M1 Model with § =1
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3.3 Discussion

In all experiments, there was some error due to the crude forwards and backwards differ-

ence appro



equation (2.13). In the next chapter we investigate a new model, which we term an M2
model, which uses a central difference approximation of equation (2.13). It is shown that

the flow estimates of such a model contain significantly less error.
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Chapter 4

Formulation of a New 2 Variant

Model

We now show how a new pressure driven model variation, denoted by M2, which is capa-
ble of estimating flow demands from the available pressure telemetry, may be constructed
from a base MO0 model using the same central difference discretisation of equation (2.13)
that the base M0 model uses. The M2 model is derived from an M0 model by swapping

over the flow variables from the input vector with the loclomelbT1



The new M2 system has the form

[ g ] p(k+1) | _ [ VB ] p, (k) . [ B g ] p,(k+1)
d(k+1) d(k) p,(k+1)
[o ] B 02

which can be expressed in the general descriptor system form

Eyzo(k + 1) = Agz,y(k) + Byus(k + 1) + Bius(k). (4.3)

4.1 Theorems

We are able to derive similar theoretical results as for M0 and M1 models; however, suf-
ficient conditions for asymptotic stability are slightly more restrictive. Firstly, we prove
that the matrix Iy of an M2 model is full rank if § > 0. It is then proved that the M2
system eigenvalues are real if # > 0. Next, it is proved that the M2 system eigenvalues
are within the unit circle for 1/2 < <1, and are within or on the unit circle for § = 1/2.
Lastly, we prove the following. When pressure data is fed from a base M0 model into
its corresponding M2 model, then, if the M2 model is asymptotically stable, the system
state of the M2 model tends with time to the state of the base M0 model and its flow
inputs.

As with MO0 models, all theorems rely on the following inequalities. reee s ),

node

Diunction - §gpiee > (0, pPire > 0, 6 > 0, QP20 > 0, &7 > 0 and ®7*mon > () for all

node

pipes, nodes and junctions.

If the base M0 model is rearranged and partitioned as equation (3.1), then the cor-
responding M2 model has the form

5171 0 }_?l(k + 1) _ A171 0 pl(k) B%,l —5172 }_?B(k + 1)
5271 —8%72 d(k —|— 1) AQJ B;Q d(k) 0 —5272 }_?2(]6 —|— 1)
B, A k
1,1 1,2 P ( ) ‘ (4 4)
0 ¢423 pZ(k)
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Proof

Above it was shown that the eigenvalues, u;, of an M2 system are given by the eigen-
values of the matrix blocks 51_711,4171 and (—8%72)_18372. By Theorem 3.3, the eigenvalues
of &1 A11 are within the unit circle for 1/2<0<1/2. The eigenvalues of (—B},)™'B3,
are its diagonal elements —(1 — 6)/0. For 6 = 1/2 these diagonal elements are equal to
—1, and hence the M2 system will have g eigenvalues equal to —1. For (1/2) < <1, we
have |(1 — 6)| < 1/2, and hence we have |(1 — 8)|/]|0] < 1. Thus, for (1/2) < <1, we
have | — (1 —0)/6] < 1 and the g eigenvalues of (—Bj,)~' B3, are within the unit circle.

a

The advantage of an M2 model over an M1 model is that an M2 model uses the
original ¢ — 1 ‘connectivity equations’ (2.23) and the single downstream flow bound-
ary equation (2.19) in the estimation of the flow demands. These flow equations are
based on central difference approximations of equation (2.13); whereas to estimate the
flow demands with an M1 model requires the use of less accurate forward or backward

differences of equation (2.13). For M2 models we have the following theorem.

Theorem 4.4 When pressure data is fed from a base MO model into its corresponding
M2 model, then for 1/2 < 0<1, the system state of the M2 model tends with time to the
state of the base MO model and its flow inputs.

Proof

We can rewrite the M0 model as
E'p,(k+1)+E"p(k+1) = B'p(k+1) - BYd(k +1) =

A'p, (k) + A"p, (k) + B p,(k) + B d(k) (4.5)

and we can rewrite the M



where the M2 state vector is

Subtracting equation (4.6) from equation (4.5) gives

E'(p, (k+1) = by (k+1) = B (d(k+1) —d(k+1)) = A'(p, (k) = p, (k) + B (d(k) — d(k)).

(4.7)
If we define the errors
(k) = p, (k) = p, (k)
es(k) = d(k) — d(k)
then equation (4.7) becomes
Elei(k4+1) = BYey(k+1) = Ale, (k) + B¥ ¢,(k). (4.8)

Equation (4.8) can be arranged as the system

where e(k) is n dimensional and has the form

and F, and A, are identical to the system matrices of the M2 model.

From Theorem 4.3, if 1/2 < #<1 then M2 system is asymptotically stable, and we
can see that the error, e(k), decays away. Then the system state of the M2 model tends
with time to the state of the base M0 model and its flow inputs. O

It a real gas network, from which pressure data was taken to drive the M2 model,
was accurately modelled by the base M0 model, then for §€(1/2,1] the M2 model state

should tend to the true state of the gas network.

4.2 Experiments

When the M0 model had been running for a while, the pressures at the upstream end and

the sites of flow demand were recorded at each timestep and fed into an M2 model. The

39



flow demands predicted by the M2 model were then compared with the true flows used
as inputs to the M0 model. For experiments 4.1 to 4.3, the M0 model simulating a gas
network was identical to the M0 model upon which the M2 model was constructed. For
experiment 4.4, the M0 model simulating a gas network had a much finer discretisation

(in both space and timeisation
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4.3 Discussion

It is immediately apparant that the central difference approximation of equation (2.13)
has very greatly reduced the error in the estimates of the flow demands. Indeed, it can
be seen that, for 1/2 < <1, with identical meshes the state of the M2 model tends with
time to the exact state of the base M0 model and its flow inputs. However, like the M1
models, we have not presented a theoretical guarantee of the convergence of the solution
to the M2 model to the solution of the governing differential equations (2.16), (2.13), as

the computational mesh is refined. The possibility of such a proof w



Ch pter 5

Observers

For a dynamical system, only a few measurements may be available; and the challenge of
state estimation is to determine the state of the whole system from these measurements
over time. If a dynamical system has measurements available corresponding to linear
combinations of state variables of its system model, then the system may be completely
observable, and an observer employed for state estimation [29], [2].

We consider the time-invariant linear descriptor system
Fx(k+1)= Az(k) + Blg(k + 1)+ BQQ(k) (5.1)

where F, A € R"™", B!, B ¢ R"*™, with discrete measurements of the real system given
by
y(k)=Ca(k) fork=0,1,2,...., (5.2)

where C' € R9*". We assume F is full rank, and C' is full row rank.

We firstly define complete observability and then discuss techniques, known collec-
tively as observers, capable of estimating the entire system state of discrete dynamical

systems (5.1), (5.2) that have the property of complete observability.

5.1 Observability

The system (5.1), (5.2) is completely observable if and only if knowledge of the inputs

and measurements over some timesteps is enough to determine uniquely an initial state

46



z(0).
The following theorem gives a necessary and sufficient condition for complete observ-

ability, known as the Hautus condition [42], [13], [25].

Theorem 5.1 A system of the form (5.1), where the matriz E is non-singular, with
measurements available of the form (5.2), is completely obseurtetele if rtetnd only if we have

the following condition.

For all peC

N
|
=
=
|
I
[
Q
|
I
f=)
|
I
f=)

(5.3)

where vER"™.

5.2 Design A : The Direct Observer

Assume the behaviour of a system is described by (5.1), (5.2). The method solves the

matrix equation

X = A, (5.4)
where @ is the matrix
_ G\ i
A —F
A -F
C )
C
C
C

and

Xt =1k ztk+ D)0 2(k+2)7, 2k +n —1)T]
where Z(k) is the observer estimate for z(k), and
AT = [ (Bu(k + 1)+ Bulk))T, —(Bu(k +2) + Bu(k + 1), ..
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(+1) = )-() (58)

We require () 0 as ; and for this we require the eigenvalues of the matrix



and is , upper triangular and non-singular. If equation (5.10) is rearranged and

factorisation (5.11) substituted in, then

from which
= ( ) (512)

and

0= ) (5 13)

Equation (5.13) implies

( ) () =1 (5 14)

or

where  represents the right null space. If the dimension, , of the measurement vector
is greater than one, then there is a certain amount of freedom in the choice of the .
This freedom may be utilised in selecting a set of  such that the observer eigenvalues

are as insensitive as possible to perturbations in the matrices and

A generalised eigenvalue of the matrix pencil ( ) can be described by the
pair ( ) x (where x is the cartesian product of the spaces of complex and

real numbers respectively) where the associated eigenvalue is = for =1



and z; and y, are assumed to be normalised such that
y; B, =6, (5.18)

y! (A= GO)z; = i, (5.19)

[39].

Now, since we are assuming £ is full rank, we may assume we have a set of eigenvec-
tor/eigenvalue pairs, (z;,y,), (1, 6;), for e =1, ...... ,n, where the eigenvectors are scaled
such that ||y ||, =1 and 6; = 1 forz = 1,...... ,n. Then to minimise the condition num-
bers (5.17), we need to minimise the ||z;||,. From equation (5.18) with all §; = 1, we

have

YTEX =1, (5.20)

from which we have

X =Y"'E)" (5.21)
So to minimise the |[z,][,, we can select the y. such that
_ 2
YT E) Ml = 11X = (Sillzll)
is minimised.
To select a set of left eigenvectors, y,, such that I(YTE)™| is minimised, we use
a simple method that, although it cannot be guaranteed to converge to the minimum

value of ||[(YTE) !|, attainable, has been found to significantly reduce the value of

H(YTE) IHF over a number of iterations.

The method begins by selecting a set of vectors which satisfy equation (5.13). For

each eigenvalue in the set A, we calculate the QR decomposition

QA= NE)Q. = Ry (5.22)
where
ST
Qf =
ST
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eneral Figenvalue Assignment Algorithm

1) Compute the QR decomposition of C'

¢ =QR,
where
Q
Q = ;
Q
and
C
R =
0
2) For each eigenvalue A for ¢ = 1,...,n in the set A, calculate the QR decomposition
QA AE)Q =R,
where
Q =
S
and
R
R —
0
and S isn p.
3) For each =1 , choose any vector,  from span as one of the columns of

the matrix

4) For =1 , let

and calculate the QR decomposition
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where

and

Let

5) Calculate ( )

reaches a local minimum.

6) Repeat steps (4) and (5) until ( )

7) Let



then subtracting equation (5.25) from equation (5.1) gives

( ) +1)=( )-() (5 27)

If  can be chosen such that ( ) is nonsingular, then its inverse can be calculated to
give an explicit expression for _( + 1) from equation (5.27). We notice that ( )
would multiply all the terms on the right hand side of equation (5.27). Therefore, if
( ) could be made small for a suitable norm, then the effects of certain forms
of modelling error, that will be described later, should be reduced. It would also be
advisable to ensure the condition number of ( ) is not too large since this matrix
has to be inverted implicitly in equation (5.25) to calculate _( 4+ 1).
We know that if
= X (528)

is the singular value decomposition of ( ), where ¥ = [ ] and the  are

arranged in nonincreasing order, then



We use a method from [34], [4] for determining the matrix ~ with of the singular values
of ( ) assigned arbitrarily.
Let the QR-decomposition of matrix be

= (5 29)

where

and

0

If equation (5.28) is transposed and the factorisation (5.29) applied to then we have

= ¥ ) (5 30)



and since rank( )= and rank( )= we have
My o=

Refering now to the matrices and  in equations (5.28) and (5.30), let

= [ ] (533)

where  and  are from equation (5.32) and let
=[] (5 34)
where s also from equation (5.32), and ~ and  are from equation (5.29). It can be

verified that the _ _  and satisfy the condition (5.31) for =1 , where



and
( )= )

For a more robust observer design, we ideally want

() ) &) ()

1) Compute the decomposition of
where
and

0
2) Form and calculate the SVD
[ =12 0
where
My o=

is a diagonal matrix with the singular values which cannot be modified.



Chapter 6

Formulation of a New 3 Variant
Model for Use in Direct and

Dynamic Observers

We now show how a new model variation, denoted by M3, which is capable of estimating
flow demands, may be constructed from a base M0 model using information about the
flow demands, such that these new M3 models are observable.

Since, in practice the flow demands change very slowly with time, the M3 models

assuime
flow demand®7 ™ *¢ = flow demand®™*"* *',
ie.
ddz:r_ullnd site _ ddzmand site fOT Cl” k (61)

The key feature of M3 models is that they contain difference equations of the form (6.1).

Then to form an M3 model, we start from a base M0 model and move the ¢ dimen-
sional vector, d(k), from the input vector to the state vector. We then introduce ¢ new

trivial difference equations of the form
(ks + 1) = d(k) (62)

into the new system. Assuming the base M0 model is arranged and partitioned as in
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equation (4.1), then the new n + g dimensional M3 system has the form

Ey —BY || 2ok +1) Ao BY || zo(k) BY 2
= + Py(k41)+ py(k)
0 I d(k+1) 0 I d(k) 0 0
(6.3)
which can be expressed in the general descriptor system form
Esza(k + 1) = Asza(k) + Byus(k +1) + Bius(k). (6.4)

For such an M3 model, the only input required is the upstream pressure (assumed
known). The g pressure measurements of the real gas network at the sites of flow demand
are not needed as inputs to the M3 model, and are in fact measurements of its state

variables
Y (k) = Caus(k) (6.5)

available for use in a direct or dynamic observer.

6.1 Theorems

In this section, we firstly prove that the matrix F3 of an M3 model is full rank if 6 > 0.
We next prove that if § > 0, then an M0 model with pressure measurements available at
the sites of flow demand is completely observable. This result is then used to prove that
for 1/2<6<1, M3 models are completely observable if there are pressure measurements
available at all the sites of flow demand. Lastly, it is proved that M3 models are not

completely observable if there are fewer measured pressures than flow demands.
Theorem 6.1 If 0 > 0, the matriz E3 of an M3 model is full rank.

Proof

FEsis (n 4 g¢)x(n + g) and takes the form

EO _Bl//
0 1

E3:

where [ is gxg.
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By construction, since we have already shown FEy is invertible for § > 0, E3*' is

(n+g)x(n + g) and takes the form

E;t E;'BY
0 I

B3t =

where [ is gxg.

Hence, the matrix E3 of an M3 model is full rank. O

Theorem 6.2 If § > 0, an MO model with pressure measurements available at the sites

of flow demand is completely observable.

Proof

The MO system (2.24) has g pressure measurements available at the sites of flow

demand, corresponding to the following ¢ dimensional vector of state variables

?Jo(k) = Cozy(k) (6.6)

where Cy is gxn and is the measurement matrix.

Since we have shown that the eigenvalues of an M0 system are real for § > 0, the

MO system with measurements (6.6), is observable if and only if for p€R

(Ao — plip)u =0 (6.7)

Cov =0 (6.8)
—

v=20 (6.9)

where veR".

Equation (6.9) = equations (6.7), (6.8) trivially.

We assume the pressure variables are arranged in the state v



where each pipe has s??° + 1 nodes. F



The M3 system is observable if and only if for all p



Hence, we have v, =0, v,

= 0; and so equations (6.10), (6.11) = (6.12).

We secondly consider the case p = 1.

Let the base M0 system be partitioned according to equation (4.1). Then equa-

tion (6.13) can be written as the following system of n equations for the n+ ¢ dimensional

vector v
v/
[(A/ _ /LE/) (A// _ /LEH) (BQI/ . /L(—Blu))] Q;; _ Q (619)
Yy
where
v/
v,=|
v//

—n

and v/ €R"77 and v//€RY.
Equation (6.15) zeros the elements of v/. Removing v from system (6.19) gives the

system
(A=) (B = (=B

v



Theorem 6.4 An M3 model will not be completely observable if there are fewer measured

pressures than flow demand state variables.

Proof

We assume we have g flow demand state variables, and less than ¢ pressure measure-

ments.

Necessary and sufficient conditions for the complete observability of an M3 system

are given by equations (6.10), (6.11) and (6.12).

It 4 = 1, then, since there are g flow demand state variables, the bottom ¢ rows of
the matrix (As — uFs) are zero vectors. Hence the maximum rank of (As — pFs) is n.
Also, since there are less than ¢ pressure measurements, the maximum rank of C5 is less
than g.

Hence, for y = 1, if we combine systems (6.10) and (6.11) into a single system to solve
for v, such a system would have rank less than n + g. Hence, equations (6.10) and (6.11)
would have non-zero solutions for v.

Thus, equations (6.10) and (6.11) do not imply equation (6.12), and hence the M3

system is not observable. O

For M3 models constructed with trivial difference equations of the form (6.1), it
was found direct observers did not work well. Thus to estimate the flow demands in
the gas network, a dynamic observer constructed upon an M3 model is run assuming
all the pressure and flow perturbations are initially zero. The pressure perturbation
measurements are fed in at each time level, and the observer state tends to the state of
the gas network with time. Perfect asymptotic convergence is not obtained unless the
flow demands do not vary with time, since equations (6.2) contain modelling error. If the
flow demands are changing, although not too rapidly, the observer still tracks the state of
the gas network fairly well. Indeed, typically, the flow demands in gas networks change
only slowly throughout the day.
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6.2 Weighted M3 odels

In fact, the profiles of the flow demands are fairly well known from other measured
demands that change thoughout the day with similar patterns of gas consumption. More
accurate M3 models may be constructed using such information available about the
shapes of the flow demand profiles with time. This corresponds to knowing the constants

flglemand site in

flOU) demanddzzfnd site _ flOU) demanddzmand site T flilemand site

where the fiemand site may he estimated from the telemetry from other measured demand

flows. After normalisation, we would have

normalised flow demanddzfﬁf”d it — pormalised flow demand™mem® st® 4 femand site

where fdemand site — fdemand site [N g i e we would have



convergence because we have lost the modelling error in the extra trivial difference equa-
tions (6.22) for the flow demand perturbations. However, now direct observers work well

](‘N]glemand site would

enough to be used as well. Obviously, in practice, the estimates of the

not be exact, and there would still be some error in the observer estimate.

6.3 Experiments

When the M0 model had been running for a while, the pressures at the upstream end
and the sites of flow demand were recorded at each timestep and fed into the various M3

model-based observers. The flow demands predicted by these techniques were compared



6.3.1 Experiments with no weightings, f{cmnd site



Experiment 6.16) Observer Design C (small eigenvalues) with § =1

Data taken from M0 model with much finer mesh - M3 model has 5 spatial
nodes along each pipe.

Experiment 6.17) Observer Design A with § =1

Experiment 6.18) Observer Design A with § = 0.5
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6.4 Discussion

6.4.1 Observer Design A : The Direct Observer

When the weightings, fgem“”d site were not included in the M3 model, the direct ob-

server gave poor results. However, when the fdemand site

were included, for all values of
6€[1/2,1], the state estimate of the direct observer contained no error when data was
taken from an M0 model with an identical mesh, and contained only a small amount of
error when data was taken from an MO0 model with a much finer mesh. Curiously, in
contrast to dynamic observer designs, the direct observer gave the most accurate state
estimates with § = 1/2 rather than with § = 1. The graphs presented begin at timestep
14 due to the need to build up enough timesteps to be able to solve equation (5.4) directly
for the state estimate.

The main disadvantage with the direct observer was the large amount of computa-

tional work involved.

6.4.2 Observer Design B : The Dynamic Observer Without
Feedback at the Current Time-Level

When the weightings, fgem“”d sitewere not included in the M3 model, after an initial
large error over the first few timesteps characteristic of observer designs, design B ob-
servers gave fair estimates of the demand flows when small eigenvalues were assigned.

However, these dynamic observers gav



However, if the demand flo






We show that an upper bound on the norm of the error in the state estimate of an

M3 model based dynamic observer, caused by modelling error presen



observer system helped to reduce the error in the state estimate.

When the weightings, fgem“”d sitewere included in the M3 model, the design B dy-
namic observer state estimates converged perfectly for § = 1, with both small and large
system eigenvalues. Assigning small system eigenvalues to the design B dynamic ob-
servers gave faster convergence. However, as § moved to 1/2; a very small amount of

error began to persist in the state estimate.

Lastly, when pressure data was taken from an M0 model constructed upon a much

finer mesh, only a small amoun



As with design B observers, [5(k) acts as a forcing term on the errors. However, the
matrix H was chosen to minimise the 2-norm of (E; — HC3)™', and this matrix is im-
plicitly multiplied into the forcing term, I5(k), thus reducing its effects. With § = 1, in
the experiments with dynamic observers the 2-norm of the matrix £5' was 1.50, while
the 2-norm of (F3 — HC3)™" was 0.56; this is believed to explain the improvement in the

accuracy of the state estimate when feedback is included at the current time-level.

In an equivalent manner to design B observers, it may be shown that the robust
eigenstructure assignment technique might help to reduce the error introduced into the

state estimate by the form of the modelling error presen



When the weightings, fgem“”d sitewere included in the M3 model, the design C dy-

namic observer state estimates converged pertectly for § = 1.

Lastly, as with design A and B observers, taking pressure data from an M0 model






where [ is g xg, and where the H matrix is zero for a design B dynamic observer. This

gives a new state estimate for £ = 0,1, ....
ith Cycle

This process can be repeated for a number of cycles, each time making use of the
discrete jumps in the demands estimated by the previous cycle. The ith cycle estimate,

z4(k) for k = 0,1, ..., is calculated from

(Es— HC3)Zh(k+1) = (As — GO3)Zh(k) + Blus(k + 1) + Bius(k) — Hy,(k+1) + Gy, (k)

00| . |
+ (25 (k + 1) — 257 (k) (7.2)
0 I

where [ is g xg, and where the H matrix is zero for a design B dynamic observer. This

gives a new state estimate for £ = 0,1, ....

Each further cycle is simply another dynamic observer travelling along the time axis,
incorporating information from the state estimate of the previous cycle (dynamic ob-
server). It is not immediately obvious how many cycles should be used; it may be that
only a second cycle is needed for a significant improvement in the state estimate. A
natural question to ask is what happens to the state estimate, Z5(k) for any timestep k&,
as 1—00. We have the following convergence theorem for cycling based upon a design

C observer only.

Theorem 7.1 When cycling is performed upon a design C observer, for each timestep,
k, 25(k) tends to a limit as more cycles are performed, i.e.
B(k)—Bo(k) as i—roo,

if and only if all the eigenvalues of (Ez — HC3)™'Y are within the unit circle.

Proof
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Consider a timestep T. We wish to investigate the convergence of z4(k) for k =

1,...,7, as the number of cycles increases. Define

z4(T)
(T — 1)

[22
Il

Then from the general cycle equation (7.2), it can be seen z



|

Bius(T) + Bius(T — 1) — Hy (T) + Gy (T — 1)
Biug (T — 1) + Bius(T —2) — Hy (T — 1) + Gy (T — 2)

Bius(2) + Bius(1) — Hy,(2) + Gy, (1)

| Bsus(1) + Bus(0) — Hy, (1) + Gy, (0) + (



Y

where I,(k) is a vector containing the fiemend site tarms.
The general ith cycle (for ¢ > 1) is given by equation (7.2). If we define the error
between the ith cycle observer estimate and the model (7.4) to be

e'(k) = z5(k) — 25(k) (7.5)
then subtracting equation (7.2) from equation (7.4) gives
(Bs — HCs)e'(k +1) = (A5 — GCy)e' (k) + Ly(k) — Yz (b + 1) + Y25 (k)
which, using equation (7.5), can be rewritten as

(Bam HCa)E (k1) = (A= GO (k) + (k)= Tlag(k+ 1) =~ (4 D]+ Y s (k) — ().

(7.6)
Inspection of the structure of the M3 model (7.4) shows
(k) = Yaq(k + 1) — Ty (k). (7.7)
Adding equation (7.7) to equation (7.6) gives
(B3 — HC3)e'(k+qu w Tt) Tm),Tj)T TD) Addin



where the matrices R and S are as previously defined,

SR
0
W = )
0
| f(e(0)) |
e(0) = ¢'(0) for all ¢, is the error in the observer initial conditions for all cycles, and

f(e(0)) = [(As — GC3) — Y]e(0). If system (7.9) has its system eigenvalues within the

unit circle and is convergent to a limit, £, then this limit satisfies
Re = Se +w,
ie.
(R—S5)e =w. (7.10)

Then we can see that

e (R—5)"w as i—o0,

where the matrix (R—.5) is invertible since system (7.9) does not have an eigenvalue equal
to 1. From the previous analysis, a sufficient condition for this is ||(Es — HC3)™!|, < 1.

We can see that if the observers are giv



as

[(Bs — HC3) = T] [-(As — GC3) + 7]

[(Bs —HC3) = T] [~(A4s — GC3) + 7]

where

e= D) e(T—1)", . e
By inspection of the above, we find

[(F5

[(B: - HC:) -] |

f(e(0)) ]



stepping through time. By inspection of the above system, it is immediately apparant
that the trivial difference equations for the flows, and thus the modelling error they
contain, have been removed. However, it can be shown that it is not now possible to find
feedback matrices GG and H to assign arbitrary eigenvalues to this new system. This is

further explored in the discussion of the experimental results.

7.1 Experiments

When the M0 model had been running for a while, the pressures at the upstream end and
the sites of flow demand were recorded at each timestep and fed into the M3 model-based
cycling observers. The flow demands predicted by these techniques were then compared
with the true flows used as inputs to the M0 model.

For each experiment, the true flow demand profiles for the demands, DkA/B, DkB/C and
D¢ are shown as thick lines in Figs. A, B and C respectively and the state estimates for
DkA/B, DkB/C and D¢ are shown as thin lines. The percentage errors between the state

A/B

estimates of D, ', DkB/C and D¢ and their true values are shown in Figs. D, E and F

respectively.

In all experiments, data was taken from an M0 model with an identical mesh - both

MO and M3 models have 10 Tf)ish  3ely leatibDikj¢dhinhem putsnputsrc.enputsh)Tj)TTT)eeoBcoT)’
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7.2 Discussion

The graphical results of these experiments should be compared to the graphical results

of the previous chapter.

Regarding the ‘2 cycle’ experiments, 7.1 to 7.3, only with the design C observer, was
the state estimate much improved over the entire flow profile. However, with the design
B observer, there was significant improvement in the state estimate of certain parts of
the flow profiles from the second cycle. The second cycles seemed to perform badly where
the gradient of the flow profile changed sharply, but significantly improved those parts

flemand site \were constant. This is not

of the flow profiles for which the demand jumps,
yet understood, but it may be that it would be possible to determine periods in the day

where those parts of the flow profiles would respond well to a second cycle.

Regarding the ‘many-cycle’ experiment, 7.4, the cycling technique was found to be
convergent only when a design C observer was being used. This behaviour can be ex-
plained by noting that with the design C observer, with = 1, we had ||(Es—HC5)7Y||, =
0.56 < 1, and hence, as the previous analysis showed, the cycling technique was con-
vergent. Without feedback at the current time-level being incorporated into the basic
dynamic observer design, this convergence was lost.

The error in the design C observer state estimates, was seen to be very significantly
reduced by cycling to convergence for # = 1. Indeed, the error was seen to decay com-

pletely away with time. This behaviour can be explained by the following.

When a cycling technique, based upon a design C observer with ||(EFs— HC3)™ ||, < 1,

converged, we showed that the error in the state estimate obeyed equation (7.11)
[(Fs — HCs) — Y]e(k 4+ 1) = [(As — GC3) — Tle(k).

If we assume the M3 model is arranged according to equation (6.3), and that the base
MO0 model is arranged according to equation (4.1), then the M3 model may be written
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need to be within the unit circle.

How best to use the cycling technique is still not understood. When the cycling
technique is not convergent, we can still get some improvement in the state estimate of
certain parts of the flow profiles from a second cycle. The second c