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Abstract

A moving-mesh �nite di�erence scheme based on local conservation
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1 Introduction

In a moving mesh approach the unknowns are the domain and the solution.
The velocity-based local conservation method proposed in [1] uses local con-
servation. Two key issues need to be addressed, the integrity of the mesh
(avoiding tangling) and the positivity of the solution on the mesh (essential
for local conservation). A subsidiary issue is smoothness of the solution,
avoiding spurious oscillations that might spark o� instability.
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The local conservation method can be summarised as follows: at each
time

1. obtain the Eulerian conservation velocity at each point of the domain,

2. integrate this velocity in time to deform the domain,

3. determine the solution on the new domain from Lagrangian conserva-
tion.

We call this method VMS (velocity, then mesh, then solution).
Previous work using this approach can be found in [8, 12, 1, 19, 2, 3, 15,

4, 14, 5, 6, 13, 10, 11, 17, 18]. However, using the above sequence numerically
it is di�cult to control mesh tangling and retain positivity and smoothness
in the solution without requiring small time steps. Here we interchange the
second and third steps, solving a PDE for the solution on the moving mesh
prior to using Lagrangian conservation to construct the mesh.

The modi�ed approach, called here VSM (velocity, then solution, then
mesh), can be stated as follows. At each time,

1. obtain the Eulerian conservation velocity at each point of a domain (as
for VMS),

2. integrate the rate of change of the solution following the motion to
generate the solution on the new domain (yet to be determined),

3. deduce the domain of the solution from Lagrangian conservation.

The moving PDE of step 2 can be solved numerically by a semi-implicit
scheme that satis�es a maximum/minimum principle (cf: [6]), admitting no
new extrema in the solution and preserving positivity of the solution between
extrema in a time step, thereby avoiding oscillations. The mesh is then
constructed a posteriori from the Lagrangian integral, preserving the node
ordering as a result of the positivity of the solution.

In this paper the VSM moving mesh method is �rst described for prob-
lems that conserve total mass, in section 2. Then, in section 3 the method
is generalised to non mass-conserving problems with prescribed boundary
uxes. For the latter the (variable) total mass is inconsistent with local mass
conservation but, as in [1, 4, 6, 13, 11], the local mass conservation can be
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replaced by a normalised local conservation principle (normalised by the to-
tal mass) at the expense of carrying the additional normalising variable. The
generalisation parallels the mass-conserving case, using a modi�ed velocity.

Numerical tests are carried out in section 4 which con�rm the predictions
of the theory.

2 PDEs and local conservation

Consider the generic �rst-order-in-time-scalar PDE

ut = Lu (1)

for the function u(x; t ), where Lu contains spatial derivatives ofu, and let
the total mass

� =
Z b(t )

a(t )
u(�; t ) d�

be constant in time.
A local form of conservation in a �xed frame is

ut + ( uv)x = 0 (2)

where v is the Eulerian velocity, whilst an equivalent conservation law (as
long asu is positive) is the Lagrangian form

Z
u(�; t ) d� = c; (3)

where c is independent of time, for arbitrary limits on the integral. (The
equivalence can be shown using Leibnitz' integral rule together with the
total mass conservation.)

Assuming an anchor point at which the ux uv vanishes (which we take



The rate of change ofu following the motion is

dbu
dt

= ut + vux = � (uv)x + vux = � uvx (5)

using (2).
Introducing a moving coordinatebx(x; t ), the Lagrangian conservation law

(3) can be written (in the �xed frame) as

Z
u(bx(�; t ); t)

@bx(�; t )
@�

d�;

independent of time for arbitrary (�xed) limits of integration. Hence

bu(x; t )
@bx
@x

= bc(x); (6)

say, is independent oft, where bu(x; t ) = u(bx(x; t ); t).
Let the moving coordinatebx(x; t ) be determined at any �xed time t0 by

the di�erential equation

@bx
@t

= v(bx; t ); bx(x; t 0) = x

wherev is given by (4). Then, putting @bx=@t= _x, from (4)

_x = v(bx; t ) = �
1

u(bx; t )

Z bx(t )

0
Lu(� ) d� = �

1
u

Z bx(t )

0
Lu(� ) d� (7)

sinceu(bx; t ) has the same values asu(x; t ).
The rate of change ofbu following the motion, from (5) and (7), is

_u = � u(bx; t )v(bx; t )x = u(bx; t )
@

@x

(
1

u(bx; t )

Z bx(t )

0
Lu(� ) d�

)

= u(bx; t )
@

@x

(
1

bu(bx; t )

Z bx(t )

0
Lu(� ) d�

)

(8)

Examples are
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� the mass conservation lawut + ( uq(u))x = 0, where Lu = � (uq(u))x ,
for which equations (6), (7) and (8) can be written

bu
@bx
@x

= bc(x); _x = q(u); _u = � u q(u)x

� the nonlinear di�usion equation (1) where Lu = ( upx )x , for which
equations (6), (7) and (8) can be written

bu
@bx
@x

= bc(x); _x = � px ; _u = u pxx

or, if p is a function of u only,

bu
@bx
@x

= bc(x); _x = � p0(u)ux ; _u = uf p0(u)uxgx (9)

� the more general nonlinear di�usion equation (1) withLu = ( D(u)ux )x ,
for which equations (6), (7) and (8) become

bu
@bx
@x

= bc(x); _x = �
D(u)

u
ux ; _u = u

 
D(u)

u
ux

!

x

(10)

In the VSM method equation (8) is solved together with (6) for the two
unknown parametric functionsbx(x; t ) and bu(x; t ).

In the next section we discuss numerical schemes for the PDE (5).

2.1 Numerical schemes for bu

The domain is discretised using nodesx i (i = 1; : : : ; N ) (not necessarily
equally spaced) with function valuesui . Initially, the ui are sampled from
the initial condition at the nodes.

The nodal velocitiesvi are obtained from a discretisation

vi = �
1
ui

Z bx i (t )

0
Lu(� ) d�

of (7), where the integral is evaluated using quadrature. A �rst-order-in-time
explicit scheme for the PDE (5) is then

bun
i = bui expf� � t (vx ) i g (11)
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where � x i = x i +1 =2 � x i � 1=2 and the super�x n indicates the next time level.
If the spatial approximation (vx ) i is positive 8i the ampli�cation factor in
(11) lies between 0 and 1 so thatbui remains positive and decreases withn.
Moreover, if the spatial approximation (vx ) i increases withi then bui decreases
without oscillations. In general (11) may not avoid oscillations, however.

A semi-implicit scheme that does control oscillations is as follows.

2.1.1 A semi-implicit scheme

On the moving mesh a �rst-order-in-time explicit scheme for the PDE (5) is

bun
i � bui

� t
= �

bui

� x i

�
vi +1 =2 � vi � 1=2

�
(12)

where � x i = x i +1 =2 � x i � 1=2 and vi is given by (7). The values at the half



Similarly, if the ratios vi � 1=2=� ui � 1=2 (or products vi � 1=2� ui � 1=2) are both
positive, the same extremum principle holds at each time step when the
terms (ui +1 � ui )n and (ui � ui � 1)n in (14) are interchanged (still maintaining
consistency with the PDE (5)). The scheme then becomes

un
i � ui = � R(un

i +1 � un
i ) � � L (un

i � un
i � 1

i) u

ui� 1=2



boundaries, between which the schemes (14) or (16) hold. A separate scheme
is required at the points such as the explicit scheme (11).

At a reection point xr , say, where thevr � 1=2 and � ur � 1=2 change sign
simultaneously (and hence the� L ; � R or the � L ; � R do not change sign),un

r
can be taken from (14) or (16). The values ofun

i calculated from the system
(14) or (16) then remain bounded but relinquish monotonicity atxr , risking
oscillations. Speci�cally, from (14) the calculated valuesun

r satisfy

un
r =

ur + � L un
r � 1 + � Run

r +1

1 + � L + � R

where the right hand side is a positive average of adjacentu values and
hence lies in their support. When �t is small (so that the � 's are small)un

r
is close tour and when � t is large it is close to a positive average ofun

r � 1
and un

r +1 , taking only values in between, so there is no oscillation. A similar
argument applies to (16). Where the derivative of the pro�le is very small,
perturbations of the ui might lead to oscillations that grow: these however
can be controlled by a mild regularisation in which the coe�cients� L ; � R or
� L ; � R are increased by a small positive number� , equivalent to an� change
in the di�usion coe�cient in (14) together with the addition of an � -sized
Laplacian viscosity term.

2.1.4 Recovering the mesh

Once theun
i have been found from (14) or (16), the mesh can be recovered

from the interval lengths � � xn
i derived from the Lagrangian conservation



the initial time, equation (19) carries that approximation forward to the new
time.

The full algorithm is as follows.

Algorithm 1

Given x i and ui at the initial time, evaluate the mass constantsci from
(19).

Then at each time step, provided that the� L ; � R or the � L ; � R are of the
same sign,

1. calculate thevi from a discretisation of (7)

2. determine the solutionun
i on the new mesh from (11) or from (14)/(16)

3. obtain the new interval lengths � xn
i from (19)

4. construct the new meshxn
i using the recurrence (20)

The schemes (14) and (16) are unconditionally stable and admit no new
oscillations in un

i in a time step. Moreover, provided that the boundary
conditions are non-negative, monotonicity of thexn

i is assured. The overall



be the total mass (varying with time) and introduce a normalised solution
u(x; t ) = u(x; t )=� (t). A normalised mass conservation principle (cf . (3)) is
then Z

u(�; t ) d� =
1

� (t)

Z
u(�; t ) d� = c(x); (22)

say, independent oft, which is consistent with the constant total relative mass
whose value is unity from (21) and (22). The constantsc(x) are determined
from the initial conditions.

The �xed-domain conservation law foru(x; t ) is

(u)t + ( u v)x = 0 (23)

wherev is the Eulerian velocity (cf: (2)). As in section 2, assuming an anchor
point at which the ux uv vanishes (which we may take as the origin of the
spatial coordinatex), it follows from (23) that the induced velocity v is

v(x; t ) = �
1
u

Z x

0
(u)t d� (24)

(cf . (4)). Since for the PDEut = Lu,

(u)t =
� u

�

�

t
=

1
�

 

ut �
_�
�

u

!

=
1
�

 

Lu �
_�
�

u

!

=
1
�

Lu �
_�
�

u;

the velocity (24) can be written

v(x; t ) = �
1
u

Z x

0

 
1
�

Lu(� ) �
_�
�

u

!

d� = �
1
u

Z x

0
Lu(� ) d� +

c(x)
u

_� (25)

using (22).
The rate of change_� of the total mass is given fromu and the prescribed

boundary uxes � by Leibnitz' integral rule in the form

_� =
d
dt

Z b(t )

0
u(�; t ) d� =

Z b(t )

0
ut d� + [ uv]b(t )

0 =
Z b(t )

0
Lu(� ) d� + [ � ]b(t )

0 (26)

The rate of change ofu following the motion is

dbu
dt

= ut + vux = � (uv)x + vux = � uvx (27)

using (23).

10





where, from (26),
_� = [ � f (u) + � ]b0 +

Z b

0
sd� (32)

Mass is not conserved but we are assuming that the boundary uxes� are
known, so _� depends only onu and s.

We now consider numerical schemes for (30).

3.1 Numerical schemes for bu

Approximate nodal velocitiesvi are �rst obtained from a discretisation

vi = �
1
ui

Z x i

0
Lu(� ) d� +

ci

ui

_� (33)

of (25), whereci are the mass constants determined from initial data using
(22), and where _� is given from (32) by

_� =
Z xN

0
Lu(� )d� + [ � ]xN

0 ; (34)

the integrals being evaluated by quadrature.
Numerical schemes for (27) and (28) are essentially the same as in sections

2.1 and 2.1.4, withu replaced byu and v replaced byv. Thus a �rst-order-
in-time explicit scheme for the PDE (27) that maintains the sign ofu is
(dropping the hats)

un
i = ui expf� � t (vx ) i g (35)

while a similar �rst-order-in-time explicit scheme for the ODE (26) is

� n = � exp
�
� t _�=�

�
(36)

If the spatial approximation (vx ) i is positive8i the ampli�cation factor in (35)
lies between 0 and 1, soui remains positive and decreases withn. Moreover, if
the spatial approximation to (vx ) i increases withi then ui remains monotonic,
although (35) will not avoid oscillations in general.

A semi-implicit scheme forui that does control oscillations is

un
i � ui

� �
= �

ui

� x i

(

vi +1 =2
(ui +1 � ui )

n

(ui +1 � ui )
� vi � 1=2

(ui � ui � 1)n

(ui � ui � 1)

)
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((ui � 1 � ui 6= 0)), which can be written

un
i � ui = � R(un

i +1 � un
i ) � � L (un

i � un
i � 1) (37)

where the coe�cients are

� R = �
ui � t
� x i

� v
� u

�

i +1 =2
; � L = �

ui � t
� x i

� v
� u

�

i � 1=2
(38)

Once un
i and � n have been determined, the approximate solution in the

moving frameun
i = � n un

i can be obtained and the interval lengths ��



The overall scheme is stable and consistent. If the initial and boundary
conditions are such that theun

i determined from (35) or (37) remain positive,
monotonicity of the x i is assured.

The scheme (37) is unconditionally stable and admits no new oscillations
in un

i in a time step.

4 Numerical tests

We illustrate the properties of Algorithms 1 and 2 applied to a standard
nonlinear di�usion problem (the porous medium equation.

4.1 A mass conserving problem

The nonlinear porous medium equation (PME) with a quadratic di�usion
coe�cient,

ut = ( u2ux )x (a(t) < x < b (t) (40)

where u = 0 on the boundaries is mass-conserving and has the exact self-
similar solution [9, 16]

u(x; t ) =
1

2t1=4

(

1 �
� x

t1=4

� 2
) 1=2

+

(41)

in the expanding region� t1=4 < x < t 1=4, where the su�x + indicates the
positive part of the argument. Note that the derivative of the solution is
unbounded at x = � t1=4, so the problem is numerically challenging. We
use this problem to demonstrate the stability and accuracy properties of
Algorithm 1.

At the initial time, t = 1 say, the initial condition is taken from the
function (41) as

u(x; 1) =
1
2

(1 � x2)1=2

Due to the reective symmetry x = 0 is the obvious anchor point. The mass
constants are therefore

ci =
1
2

Z x i

0
(1 � � 2)1=2d�
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The problem is of the formut = ( p(u)ux )x with p(u) = 1
2u2, so from (9)

the velocity is v = � 1
2(u2)x . The velocity is approximated as

vi = �
1
2

(u2
i +1 � u2

i � 1)
(x i +1 � x i � 1)

The explicit scheme forui for this problem is (11) and the semi-implicit
scheme is (18). Although theui are not monotonic at the origin, the� L ; � R

of (38) are always of the same sign, so the internal boundary condition can
be evaluated from the semi-implicit scheme (losing monotonicity at the max-
imum).

Once the approximateui
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Figure 1: Solutions using (a) the VMS and (b) the VSM methods for the
problem (40) at t = 16 taking time steps � t = 0:5 with initial conditions
sampled from (41).

4.2.1 An accumulating non mass-conserving problem

The non mass-conserving problem

ut = ( uux )x +
2
9

(� t < x < t ) (42)

with u = 0 and zero uxes on the boundary of the expanding interval has
the self-similar solution (see Appendix)

u(x; t ) =
1
6t

 

1 �
x2

t2

!

(43)

We use this problem to demonstrate the stability and accuracy properties
of Algorithm 2. Initial conditions are taken from the self-similar solution (43).

At the initial time, t = 1 say, the initial condition is

u(x; 1) =
�
1 � x2

�
=6; (44)

taken from (43). The initial total mass, by (21), is therefore

� (1) =
1
6

Z 1

� 1
(1 � � 2) d� =

2
9
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and henceu(x; 1) = u(x; 1)=� (1) = (3 =4) (1 � x2).
Due to the symmetry about the origin,x = 0 is taken as the anchor point.

The normalised mass constants, from (22), are thus

ci =
3
4

Z x i (1)

0

�
1 � � 2

�
d� =

3
4

x i (1) �
1
2

x i (1)3

The x i are initially equally spaced (although this is not essential).
The rate of change of the total mass, from (34) and the boundary condi-

tions, is
_� =

Z xN

0

2
9

d� =
2
9

xN (45)

and hence from (33) the velocity (relative to the anchor point) is

vi =
� ui (ux ) i �

Rx i
0 (2=9)d� + ci

_�
ui

= � (ux ) i �
2
9

x i

ui
+

2
9

ci xN

ui
(46)

The explicit scheme forui is (35) with vi given by (46).
The semi-implicit scheme forui is (37) with boundary conditionsu = 0

at the free boundaries. Although the values ofui are not monotonic at the
origin the � L ; � R of (38) are always of the same sign, so the internal boundary
condition can be obtained from the semi-implicit scheme (losing monotonicity
at the maximum).

The total mass � is advanced in time by the explicit scheme (36) with_�
given by (45). The mesh is then calculated from (20) with one-sided di�er-
ences.

Algorithm 2 of section 3 is run for 40 interior points. Four increasing �t's
are used, � t = 0:1; 0:5; 1; 5, in reaching the �xed time t = 51, progressively
forfeiting accuracy as � t increases, as monitored by the relative error in the
l2 norm of the solution and thel1 norm of the free boundary. (see Table 2).



� t Relative error in u Relative error in xN

0:1



u(x; 1), and mass constantsci , are the same as in section 4.2.1.
The x i are initially equally spaced (although this is not a requirement).
From (34) and the boundary conditions, the rate of change of the total

mass is
_� = �

Z xN

0

4
9

t � 4d� = �
4
9

t � 4xN (49)

and hence the velocity, from (31) and (32), is

vi =
� ui (ux ) i +

Rx i
0 (4=



x

Figure 3: VSM solutions (circles) and exact solutions (crosses) of the PME
problem (47) with a negative source term, with initial condition sampled
from (48), at time intervals � t = 0:1 (top to bottom) from t = 1 to t = 1:5.

5 Conclusions

In this paper we have studied a velocity-based moving mesh scheme based
on local conservation for scalar one-dimensional time-dependent PDEs with
moving boundaries. We showed �rst that for mass-conserving problems there
exists a semi-implicit moving mesh scheme (VSM) based on conservation
that preserves positivity and monotonicity of the solution and avoids mesh
tangling for arbitrarily large tme steps. The method was then generalised to
problems that do not conserve total mass but for which boundary uxes are
prescribed.

Analytically, a velocity was derived from local conservation and used to
obtain a PDE for the solution on the moving domain following the motion.
The deformation of the domain was then determineda posteriori from this
solution using the Lagrangian form of local conservation.

Numerically, given the mesh and solution at an initial time, the veloc-
ity was approximated and the PDE following the motion solved by a semi-
implicit scheme possessing an extremum principle. The mesh was then ob-
tained (algebraically) from a simple quadrature of the Lagrangian conserva-
tion principle.
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The sequence (VSM) of calculating the (V)-elocity, solving for the (S)-
olution, and then recovering the (M)-esh di�ers from the conservation method
published in the literature (see [13] and references therein), giving improved
stability through the positivity and monotonicity-preservation properties for
arbitrarily large time steps.

In section 2, devoted to problems conserving total mass, a local conser-
vation principle was used to obtain a generalised Eulerian velocity (4) which
was then used to derive the time-dependent PDE (5) for the solution on the
moving domain. The semi-implicit schemes (14) and (16) were then con-
structed which preserved positivity and monotonicity of the solution and,
when substituted into an (approximate) form of conservation law (19), pre-
served monotonicity of the nodes for any time step (see Algorithm 1).

In section 3 the method was generalised to non mass-conserving prob-
lems using a normalised local conservation principle. A generalised Eulerian
velocity (31) was used to derive the time-dependent PDE (30) following the
motion for the normalised solution on the moving domain, while the to-
tal mass was computed through its time rate of change (26). Semi-implicit
schemes (38) and (37) were derived for the normalised solution which pre-
served positivity and monotonicity of the normalised solution for any time
step. (The normalised solution di�uses as in the mass-conserving case but
the solution itself is capable of additional variation.) When used with the
approximate normalised Lagrangian conservation law, monotonicity of the
nodes was preserved (see Algorithm 2.)

Numerical tests on the two algorithms were carried out in section 4 on
simple nonlinear di�usion problems with prescribed uxes having analytic
solutions, �rst for a non-trivial mass-conserving nonlinear di�usion problem
(a porous medium equation with a quadratic di�usion coe�cient), and then
for two non mass-conserving nonlinear di�usion problem with growing or
shrinking solutions. The solution was always positivity preserving and the
mesh remained untangled.

The velocity-based moving mesh VSM algorithms in this paper represent
an advance on the VMS methods used previously [8, 14, 5, 6, 13, 10, 7, 11, 17]
in that they preserve positivity of the solution and monotonicity of the mesh
for arbitrary time steps. However, they are only �rst-order accurate in tine,
so care is required in their use.

The extension to multidimensions is planned. The calculation of the
velocity v in multidimensions has been considered elsewhere (see e.g. [1, 4])



motion (5) generalises to
ut = � ur � v

In a �nite di�erence approach the r � v term may be approximated at any
point in a mesh of triangles by a linear sum of values of a velocity potential
� at adjacent nodes. By introducing quotients of di�erences inu into this
equation a second order parabolic PDE foru can be created which admits
a semi-implicit system with a solution that possesses a positive averaging
property. Positive triangle areas can be then be determined from the dis-
crete Lagrangian form of the conservation principle. Although these areas
do not de�ne the mesh uniquely (as they do in the one-dimensional case) an
approximate mesh can be constructed that avoids mesh tangling by main-
taining the signs of the triangle areas.

Appendix: Similarity solutions for the PME with source terms

Let the function u(x; t ) have the form (ansatz)

u(x; t ) =
1
6

t  (1 � � 2); � =
x
t �

(51)

Di�erentiation gives

ut =
1
6

t 



and hence (51) is a self-similar solution of the inhomogeneous scale-invariant
partial di�erential equation

ut � (uux )x =
1
6

t  � 1
�

 +
1
3

�

for general , where� = 1
2(1 +  ).

If  = 1 then � = 1, so � = x=t and

u(x; t ) =
1
6

 

t �
x2

t

!

is a self-similar solution of the partial di�erential equation

ut = ( uux )x +
2
9

in the expanding interval (� t < x < t ).
If  = � 3 then � = � 1, so� = x=t� 1 and

u(x; t ) =
1
6

 

t � 3 �
x2

t

!

is a self-similar solution of the partial di�erential equation

ut = ( uux )x �
4=9
t4

in the contracting interval (� t � 1 < x < t � 1).
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