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ABSTRACT

For the very first time, a 3D fractal cirrus cloud model is developed which is able

to successfully represent the vertical as well as horizontal inhomogeneity of ice clouds

observed by 94 GHz radar. Unique to the model are a 3D fall streak structure, an

anisotropic grid spacing necessary to resolve the fall streak structure, a characteristic

power-law break of scale indicative of the maximum scale of variability and anisotropic

mixing in the horizontal plane. A constant effective radius, ice crystal fall speed, and

generating level are assumed and a lognormal distribution function for ice water

content (IWC).

Initially a spectrally isotropic fractal field is created in Fourier space. Manipula-

tions of the Fourier amplitudes and phases allow the observed 1D spectral slope and

wind shear at each height to be reproduced. The fractal is scaled in real space such

that the mean IWC and standard deviation of ln(IWC) match those of the radar

data. A threshold IWC defines the cloud edge.

An intriguing dependence of spectral slope on height is observed whereby the slope

is constant at cloud top but steepens below the generating level, reaching values of

around -3 at cloud base. This effect is attributed to mixing at small scales due to the

intersection of fall streaks, which could result from variable fall speeds in the presence

of wind shear.

The effect of wind shear and scaling exponent on shortwave and longwave top-of-

atmosphere fluxes are investigated for a thin idealised winter cirrus cloud using the

Edwards-Slingo radiative scheme. It is found that as the wind shear increases, the

cloud radiative properties become closer to their plane-parallel values. Flattening the

spectral slope increases the shortwave albedo and decreases the upwelling longwave

radiation, increasing the tendency towards plane-parallel behaviour.



Contents

1 Introduction 1

1.1 Importance of clouds in the earth’s radiation budget . . . . . . . . . . 1

1.2 Representation of clouds in GCMs . . . . . . . . . . . . . . . . . . . . 2

1.3 The GCM Albedo problem . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Cloud inhomogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Fractal models of stratocumulus . . . . . . . . . . . . . . . . . . . . . 6

1.6 GCMs and vertical structure of cirrus . . . . . . . . . . . . . . . . . . 8

1.7 Observations of cirrus . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.8 Development of a 3D fractal cirrus model . . . . . . . . . . . . . . . . 10

1.9 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Cirrus cloud geometry 13

2.1 Definition of cirrus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Cirrus morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Analysis of Observations 17

3.1 The Galileo Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Using time as a horizontal dimension . . . . . . . . . . . . . . . . . . 18

3.3 Z-IWC relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iii



CONTENTS iv



CONTENTS v



List of Figures

1.1 Albedo bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 A photograph of cirrus uncinus . . . . . . . . . . . . . . . . . . . . . 15

2.2 A conceptual model of cirrus uncinus. . . . . . . . . . . . . . . . . . . 15

3.1 Radar reflectivity time-height section for 27 December 1999 . . . . . . 18

3.2 UM wind profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 UM temperature profile . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 1D power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Determination of the outer scale . . . . . . . . . . . . . . . . . . . . . 24

3.6 Spectral slope as a function of height . . . . . . . . . . . . . . . . . . 26

4.1 k-space geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Cross-sections in the kx

xx



LIST OF FIGURES vii

4.9 Changing the spectral slope . . . . . . . . . . . . . . . . . . . . . . . 42

4.10 Steepening the spectral slope for anisotropic mixing . . . . . . . . . . 43

4.11 Effect of anisotropic mixing . . . . . . . . . . . . . . . . . . . . . . . 44

4.12 Progression from a spectrally isotropic fractal to the 3D cirrus model 45

4.13 The full 3D field, with a section cut away . . . . . . . . . . . . . . . . 46

4.14 Verification of the generating level and fall streak geometry . . . . . . 47

4.15 Fall streak structures for various generating levels . . . . . . . . . . . 49

4.16 A sample 1D power spectrum for the model . . . . . . . . . . . . . . 50

4.17 Comparison of the requested spectral slope to those produced by the

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.18 Testing the anisotropic mixing . . . . . . . . . . . . . . . . . . . . . . 52

4.19 A three dimensional view of the fall streaks . . . . . . . . . . . . . . . 53

5.1 Sensitivity test for the upwelling LW flux . . . . . . . . . . . . . . . . 58

5.2 Verification of the empirical formula for SW albedo . . . . . . . . . . 59

5.3 Comparison of SW albedo calculation methods. . . . . . . . . . . . . 60



Chapter 1

Introduction

1.1 Importance of clouds in the earth’s radiation

budget

The change and stability of the climate are intimately connected to the earth’s radi-

ation budget, in which clouds play a fundamental role (e.g. Sassen, 2001). Clouds, in

turn, are believed to be regulated by climate. The cloud-climate feedback is of great

potential importance. For example, clouds are the main controller of global albedo,

the fraction of solar radiation which is reflected back into space (Salby, 1996). Ca-

halan et al. (1994) calculated that a 10% decrease in this reflectance could increase

the earth’s surface temperature by 5◦C, producing a warming similar to that since

the last ice age, or that expected from a doubling of CO2. At present, the predicted

change in global albedo for a future climate varies greatly between different General
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Research has mainly focussed on the most spatially frequent cloud type, stratocu-

mulus, which being low and optically thick, primarily cools the climate by reflecting

solar radiation back out to space. In the last few decades (Sassen and Mace, 2001),
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However, many theoretical studies have shown that significant errors can occur in ra-
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Figure 1.1: Dependence of albedo on mean liquid water path. The albedo for the frac-

tal (inhomogeneous) case is computed from Cahalan’s ‘bounded cascade model’ using the

independent column approximation. When the liquid water path is 100 gm−2, the bias is

15% of the plane-parallel albedo, and the mean reflectance equals that of a plane-parallel

cloud with a water content reduced by 30% (after Cahalan, 1994).

portant to treat cloud radiation and hydrology consistently, as emphasised by Hogan

and Illingworth, (2003). The longwave emissivity, which determines the outgoing

longwave radiation is, similarly to albedo, a non-linear function of water path and is

affected by inhomogeneous structure of opically thin cloud (Pomroy and Illingworth,

2000). Other microphysical and macrophysical cloud processes are also affected by
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sub-grid scale structure (Larson et al., 2001), but will have a different dependence

on water path. Therefore, cloud parametrisations must take account of the sub-grid

scale structure of clouds (Cahalan, 1994).

1.4 Cloud inhomogeneity

Much research has been done in investigating radiative transfer for 2D horizontally

inhomogeneous clouds (e.g. Cahalan, 1994). Most GCMs now incorporate cloud
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horizontal photon transport between columns (Cahalan, 1994). However, in the case

of broken stratocumulus clouds, the ICA bias can be large (up to 30% due to side

illumination, intercloud interaction and shadowing effects) and even the sign of the

bias is uncertain (Di Guiseppe and Tompkins, 2003).

1.5 Fractal models of stratocumulus

Efforts to develop cloud resolving numerical models that resemble cloud observa-



1.5 Fractal models of stratocumulus 7

presented supportive findings based on data from the FIRE (First ISCCP1 Regional

Experiment) programme. They showed that vertically integrated liquid water follows

a k−5=3 power-law, where k, the wavenumber, is the reciprocal of the length scale.

An abrupt transition to smoother scaling behaviour occurs at scales less than a few

100 m. According to Davis et al. (1997), this break of scale is due to the mean

photon path length between scattering events being approximately 100 m, and so

below this scale, statistics derived from satellite radiance measurements are affected.

These smaller scales are reported not to have a significant effect on large-scale albedo

(Cahalan and Joseph, 1989).

Cahalan (1994) developed a very simple fractal model, known as the bounded

fractal cascade, to obtain a linear log-log power spectrum of LWC with a spectral

exponent of -5/3. Much has been brought to light from such models, such as the

problem of albedo bias, but due to their unrealistic, inherently ‘square’ geometry, they

are only really appropriate for overcast situations in which the ICA bias is minimal.

The geometry also renders it difficult to introduce realistic vertical structure, which

often varies considerably from cloud-base to top (Di Guiseppe and Tompkins, 2003).

For realistic geometrical structure, we must turn to alternative techniques of gen-

erating fractal structure. One such approach is to specify scale invariance over a

range of scales in Fourier space, and use inverse Fast Fourier Transforms (FFT) to

produce the cloud field in physical space (e.g. Davis et al. (1997), Evans and Wis-

combe (2003), Di Guiseppe and Tompkins (2003), Hogan and Illingworth (1999)).

Incorporating wavenumber spectra into a fractal model is simple, at least when an

isotropic grid spacing is used, and also carries additional properties, thought to be

important e.g. a continuous size distribution and continuous scale invariance over a

wide range of scales.

1The ‘International Satellite Cloud Climatology Project’.
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Barker and Davies (1992) and Evans and Wiscombe (2003) presented stochastic

models with horizontal spectral isotropy for boundary-layer clouds. In both cases,

Fourier-filtering techniques were used to produce a spectral slope of cloud LWC based

on observed values. In their 2D model of cumuloform clouds, Barker and Davies

observed that as they steepened the scaling exponent, the distribution of cloud size

in the field narrowed, the mean area of individual clouds increased, variability across

individual clouds decreased and the albedo decreased. However no specific comment

was made concerning the dependence and variability of parameters with height. This

issue was raised by Cahalan and Joseph (1989). They went part-way to producing

an answer for different boundary layer clouds by using Landsat satellite observations
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scribed in chapter 2). Most cirrus clouds will span several vertical GCM grid boxes,

which typically have vertical resolutions of 0.5 - 0.75 km at cirrus altitudes (Hogan

and Illingworth, 2000). By good fortune, GCMs can go part-way in prescribing verti-

cal structure when changes in the cloud fraction with height are translated by ‘cloud

overlap rules’ into effective horizontal variability of integrated cloud quantities, such

as water path (Di Guiseppe and Tompkins, 2003). However, GCMs usually make

the simplest assumption of maximum overlap between neighbouring cloudy layers

(Hogan and Illingworth, 2000), resulting in moderately few possible cloud configu-

rations (Pincus et al., 2002). In nature, the same sized domains have substantially

more horizontal variability and complicated vertical structure (e.g. Hogan and Illing-

worth, 2000). GCMs will therefore have to add some kind of representation of cloud

inhomogeneity and its vertical correlation in future.

1.7 Observations of cirrus

Millimetre-wave radar is currently the sole remote sensing instrument that allows

high-resolution observations of the vertical structure and properties of clouds in all

types of conditions. Hogan and Illingworth (1999) simulated a 2D cirrus cloud field,

using 1D spectral information obtained from radar observations at a specified height.

They generated fields by performing the inverse Fourier transform of a 2D array

containing ‘wave amplitudes consistent with the energy at the various scales indicated

by the 1D spectrum’. The spectral slope of their field was -2.16. Like all models

mentioned here so far, their 2D fields were spectrally isotropic. Real cirrus clouds

with fall streaks are, however, spectrally anisotropic in the horizontal, as fall streaks

tend to be aligned parallel to the vertical wind shear. Previous models of cirrus

containing fall streaks are limited. Danne et al. (1996) modelled the fall streaks of
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cirrus as a series of idealised, sinusoidal ‘cloud cells’ in the x ¡ z plane, assuming the

pattern to be constant in the y direction. The model served a purpose of validating

a particular theory rather than advancing cirrus research. The spectra plotted in

figure 4 of their paper suggest spectral slopes of -3.5 and -2.4. They acknowledged

that further aspects should be accounted for in 2- or 3- dimensions, such as the

tilting structure of the fall streaks due to vertical wind shear, or temporal and spatial

changes of the wind direction. Whilst it is not possible to model the spatial changes

in the wind profile using the Fourier technique, implementing the tilting of the fall

streaks should be fairly straight forward.

1.8 Development of a 3D fractal cirrus model

No attempt has yet been made to create a 3D stochastic model of cirrus, and as

of yet no suitable observations in 3D exist. In this study we develop a 3D fractal

cirrus cloud model, which has realistic horizontal and vertical structure based on 2D

(height-time) radar observations. The model will produce a 3D field of IWC which can

be presented to radiation schemes in order to assess the effect of the inhomogeneity

and characterise the vertical structure of cirrus on radiative transfer. In addition,

the model could be used as a tool in the interpretation of cirrus measurements in a

2D plane, for example, plan-view images from satellite or vertical cross-sections from

ground based or spaceborne (following the launch of CloudSat in 2005 (Stephens et al.,

2002)) radar. Implemented in our model are the new aspects of three-dimensionally

resolved fall streak geometry for any wind shear situation, anisotropic horizontal

scaling and variation of power-law slope with height. The power-law for each height

is wavenumber-dependent, with a cut-off applied at the wavenumber corresponding

to the largest observed scale length. It is also possible to include a change in slope at
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a characteristic wavenumber. The IWC for each height is scaled such that the mean

IWC and standard deviation of ln(IWC) are matched to the radar observations.

The grid resolution is equal for the two horizontal dimensions but is greater in

the vertical. The adaptations of the Fourier method made to achieve this anisotropic

spacing are specific to this study and different to that considered (but not applied
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The Edwards-Slingo 1D radiative transfer code (Edwards and Slingo, 1996) is

employed to assess the effect of different scenarios (e.g. different wind shears) on

the long-wave and short-wave radiative fluxes. For this we assume the ICA. The

ICA is a strong assumption, justified by Cahalan (1994) for stratocumulus mesoscale

domain-averaged fluxes, by the finding that flux increase and decrease due to hor-

izontal transport tend to approximately cancel each other over the total area. To

investigate the validity of the ICA for cirrus it would be necessary to perform a full

3D radiative transfer calculation. It would be interesting to observe how horizontal

photon transport is affected by fall streak orientation, but the required code is not

yet ready for use. If significant results are obtained from the full-3D calculation, they

will be reported elsewhere.

1.9 Outline

The next section provides a description of cirrus with particular reference to the

fall streak geometry. Sections 3 and 4 describe the analysis of the radar data and

the generation of the 3D fractal cirrus model respectively. Together they comprise



Chapter 2

Cirrus cloud geometry

Here we give a brief description of cirrus, for the purpose of introducing some of the

concepts and terminology which will feature in later sections.

2.1 Definition of cirrus

Clouds are officially classified by morphology. The internationally agreed definition

of cirrus clouds, given by the World Meteorological Organisation (WMO), is:

Cirrus (Ci): Detached clouds in the form of white, delicate filaments

or white or mostly white patches or narrow bands. These clouds have a

fibrous (hair-like) appearance, or a silky sheen or both.

Cirrocumulus (Cc): Thin, white patch, sheet or layer of cloud without

shading, composed of very small elements in the form of grains, ripples,

etc., merged or separate, and more or less regularly arranged; most of the

elements have an apparent width of less than one degree.

Cirrostratus (Cs): Transparent, whitish cloud veil of fibrous (hair-like)

13
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or smooth appearance, totally or partially covering the sky, and generally

producing halo phenomena.

Cirrus forms in the upper troposphere and most frequently occurs in layers or

sheets with horizontal dimensions up to thousands of kilometres (Heymsfield and

Mcfarquhar, 2001). Lynch (2001) suggested that perhaps the most significant physical

property of cirrus (to which some of the qualities listed above are attributed) is that

they are made mostly or completely of ice, which means that the cloud temperature

is likely to be well below freezing. Homogeneous nucleation of ice crystals will occur

if the temperature is less than ¡41◦C. Ice crystals are normally larger in size than

water droplets and therefore they have greater fall speeds. This is the one of the

main factors determining cirrus cloud geometry.

2.2 Cirrus morphology

Heymsfield (1975) developed concepts to explain the form of cirrus uncinus, a partic-

ular species of cirrus which exists almost exclusively in regions of wind shear. Cirrus

uncinus are usually observed to be composed of a compact growth region, which we

will refer to as the ‘generating cell’, and a trail of precipitating ice crystals, which we

will refer to as the ‘fall streak’ (Starr and Quante, 2001). Heymsfield (1975) noted

that trails without heads are quite frequently observed, and it can then be assumed

that the cloud is in a decaying stage. Typically, the generating cell has a width of

order 1km, and a thickness between 0.3 - 1.0 km (see figure 2.2 and also figure 2.1).

Its appearance is similar to a lower cumuliform cloud. Individual cells can consist

of groups of smaller updrafts and they have also been observed in mesoscale uncinus

complexes with dimensions of up to thousands of kilometres.

Heymsfield (1975) reported that for development to begin, some slight instability



2.2 Cirrus morphology 15

Figure 2.1: A photograph of cirrus uncinus. c©Pekka Parviainen (used with permission.)

Figure 2.2: Conceptual model of the cirrus uncinus cloud for positive wind shear, showing

the characteristic shape, dimension, and dynamical processes (after Heymsfield (1975)).
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is necessary in order to initiate convection and updrafts. In addition, the relative hu-

midity must be high enough for nucleation to occur (figure 2.2 level A). Once formed,

the crystals grow rapidly and continue moving with the updraft (figure 2.2 level B).

As the crystals grow, their fall speed will increase and at some point they will start

to fall down through the updraft and become part of the fall streak.

Cirrus fall streaks may curve irregularly or slant sometimes with a comma shape

as a result of the changes in horizontal wind velocity with height and variations in



Chapter 3

Analysis of Observations

This section describes how radar data on which the model is based is analysed. The

radar data are used to characterise all the relevant properties of cirrus that we wish

to capture in our model. The characteristics considered are spectral properties and

their height dependence, the mean and spread of IWC at each height, and the fall

streak structure. The simulations will use a 128£128£32 point grid. The horizontal

dimensions of the domain, x and y, are both chosen to be 200 km, whilst the vertical

dimension, z, is 5 km. This gives a resolution of 1562.5 m in the horizontal and

156.25 m in the vertical. These dimensions and resolutions apply to all figures, in

this section and the next, unless otherwise stated.

3.1 The Galileo Radar

The observations from which the cloud model statistics are derived are obtained from

Galileo, a 94 GHz, 0.45 m diameter cloud radar located at Chilbolton in the South of

the UK. The radar is vertically pointing and operates with a pulse width of 0.5 „s.

The radar reflectivity factor Z is averaged over 30 second periods and is recorded for

17



3.2 Using time as a horizontal dimension 18

Figure 3.1: The time-height section of radar reflectivity recorded by Galileo on 27 December

1999.

a range of heights with a vertical resolution of 60 m. As clouds are advected across

the radar, two-dimensional time-height fields of Z are built up. The units of Z are

mm6m−3 but in this study, and normally in the literature, Z is referred to in dBZ,

i.e. 10 log10(Z[mm6m−3]).

The data on which this model is developed were recorded on 27 December 1999.

The time-height reflectivities, for 09:00 UTC to 14:00 UTC, are illustrated in figure

3.1. This particular case of cirrus was chosen because the wind shear was ideally

aligned with the direction of advection over the radar, resulting in complete fall

streaks lying entirely within the time-height plane of the radar.

3.2 Using time as a horizontal dimension

The cloud structure depicted in radar imagery is not strictly equivalent to snapshots

of the entire cirrus cloud field because of temporal alterations that occur in the clouds

as they advect over the radar. However, the resultant changes are probably not ma-

jor. Generally speaking, cirrus cloud elements develop more slowly than they advect

in the relatively rapid transport of the upper troposphere (Sassen, 2001). The time
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dimension is converted to horizontal distance using the assumption that the cloud

moves with speed equal to the wind speed at the generating level (Marshall, 1953).

Evans et al. (2001) also used this approach. The height of the generating level can

be directly but subjectively determined if generating cells can be seen in the Z cross-

section. Otherwise, an informed guess can be made from the temperature profile.

Temperature soundings of cirrus generating cells by Heymsfield (1975) indicated sta-

ble layers above and below the cell, whilst the cell itself was in a region with a dry

adiabatic lapse rate. Typically generating cells are about 1 km thick (see figure 2.2),

so if the temperature profile were unavailable, a crude approximation of 1 km below

the cloud top for the generating level height could be made. The estimation can be

refined in the simulation phase, by comparing the model’s fall streak pattern with

the observed pattern (see section 4.8.1).

In this study, wind component and temperature profiles are supplied by the

mesoscale version of the Met Office Unified Model (UM) forecasts for the relevant

hour and date. If the time dimension of the cloud spans several hours, averaged pro-

files can be used. The data are interpolated appropriately for the vertical dimensions

of the cloud. The u and v components (i.e. the components in the West-East and

South-North directions respectively) of the wind profile for the cloud in figure 3.1 at

11:00 UTC are shown in figure 3.2. The wind shear is approximately 0.04 s−1, in the

region of the fall streaks.

Inspection of figure 3.1 and the temperature profile (figure 3.3) suggest that the

generating level is at about 8 km, which is verified to be acceptable. The wind speed

at 8 km is about 61.9 ms−1, hence the 5-hour time span of the cloud shown translates

to a horizontal distance of about 1100 km. The blue box encases the 200 km stretch of

cloud chosen for analysis. The corresponding time period is about 54 minutes. This
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Figure 3.3: The UM temperature profile at 11:00 UTC on 27 December 1999.
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particular section was chosen because the cloud base is relatively flat. The horizontal

domain size of 200 km encompasses the largest horizontal scale of variation (which

we will see later is about 60 km).

3.3 Z-IWC relation

In order to compare the output of the model with those from other models, and

also to be able to run a radiation scheme over the cloud, the cloud field should be

defined using universal physical units (LWC or IWC), rather than units such as radar

reflectivity, which are specific to the observation method used.

A 2D time-height field of Ice Water Content (IWC) is computed from the radar

reflectivity factor (Z
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certain wavenumber, which we will designate kouter, the spectral slope tends to zero.

The wavenumber kouter, or rather its inverse, indicates an upper limit to the scale

of structure within the cloud. We refer to this limit as the ‘outer-scale’. A line of

best-fit (black trace), obtained by section averaging, is plotted through the spectrum.

In figure 3.5 we plot the lines of best-fit obtained from every third height range-gate.

It can be seen that the change in slope occurs approximately at k = 1:7 £ 10−5 m−1

for all heights, so we assign this value to kouter, which corresponds to a horizontal

‘outer scale’ of about 60 km.

Figure 18 (b) in Hogan and Illingworth (1999) shows a cirrus power spectrum from
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Figure 3.4: The 1D power spectrum (red trace) of the logarithm of IWC at a height of

5.91 km. A smoothed spectrum (black line) is obtained by averaging over equal sections of

log k. A least squares regression (blue dashed line) is used to determine the spectral slope,

which for this case is ¡2:9.

the method of obtaining a fit to the linear section of the power spectra (it can be

seen in figure 3.4 that the slope is slightly underestimated, which is generally the

case for all the observed spectra). Spectral exponents are well known to be difficult

to estimate, and often require many (or large-sized) samples (Tessier, 1993). This

is why we use a large domain length to estimate the spectral characteristics of the

cloud. Moving vertically downwards, the slope generally steepens, indicating that

horizontal inhomogeneity is preferentially suppressed at smaller scales. In the figure

we see that the slope starts to decrease at a height of about 8 km, which is the
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3.5 Removal of white noise

Towards the cloud-top and cloud-base, the slope appears to flatten towards zero. This

is a consequence of the system noise becoming comparable or greater than the radar

reflectivity from the very low ice crystal concentrations in these regions. This led to

gaps in the data which were dealt with by removing them and compressing the data.

Consequently, towards the cloud base and cloud top, the spectral slope is shallower

than we expected it to be. This effect needs to be eliminated from the model as it

has no physical significance. We assume that the slope remains at its minimum value

towards the cloud base, and tails off at cloud top (to around ¡3=2) as indicated in

figure 3.6 by the dashed red line.

3.6 Calculation of mean and standard deviation of

IWC for each layer

In order to estimate the true statistics of the cloud, the underlying probability density

function (PDF) of IWC needs to be modelled. In this study we assume a lognormal

distribution for IWC. The use of a lognormal PDF for water content has been sug-

gested and used by Cahalan et al. (1994), Evans and Wiscombe (2003), and Hogan

and Illingworth (2003). Cahalan et al. (1994) graphed the one-point PDF of Liquid

Water path for stratocumulus and overplotted a lognormal with the same mean and

variance, finding it to be a good fit. Evans and Wiscombe (2003) also stated that the

PDF of LWC is usually close to being lognormal. Research by Hogan and Illingworth

(2003) on ice clouds has shown that a lognormal PDF is a good fit for many IWC

observations. The PDF for IWC is a flexible feature of this model and so a different

function, even the exact PDF could be used. This was the approach taken by Evans
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Figure 3.6: Spectral slope as a function of height of power spectra derived from

the cirrus cloud observed in figure 3.1. The blue line shows the original analysis of

ln(IWC) obtained from the radar reflectivity. Fluctuations are smoothed by averaging

over every 7 points of height (black line). The red-dashed line is the fit used in the

model to give the spectral slope at each height.

and Wiscombe (2003). They transformed a Gaussian field to one having the observed

LWC PDF using a lookup table.

In this study, the specific lognormal applied to a particular layer is defined by the

mean IWC and the standard deviation of ln(IWC). These are the statistics which we

extract from the radar data at each vertical discretisation and use to scale the fractal

lognormal IWC field produced by the model.

The limited sensitivity of the radar imposes a range dependent lower limit Zc on





Chapter 4

Generation of the 3D model

This section outlines how the 3D fractal cloud field of IWC is generated using the

radar analysis. The principle is that, for a particular height, a 1D Fourier analysis

of the data yields a power spectrum with information about the structure at various

scales at that same height. Then this information is used to simulate a 3D power

spectrum. An inverse 3D FFT is applied to produce a 3D fractal with the same 1D

power spectral properties as the radar data (if a power spectrum is taken across it).

The 3D model is partly based on adaptations from an existing but much sim-

pler 2D fractal ‘Fourier’ model for cirrus cloud fields. The 2D model uses equal grid

spacing in the x and y directions and produces a spectrally isotropic square field

with fractal characteristics and zero mean. Each component of the Fourier matrix

is a random complex number with a Gaussian distribution and a mean amplitude

proportional to the square-root of the mean spectral energy. The spatial field is

obtained by performing the inverse Fourier transform of the Fourier matrix and se-
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4.1 The 3D wavenumber array

We require a 3D fractal field, f(x; y; z), consisting of Nx £ Ny £ Nz points, with

grid spacing ∆x, ∆y and ∆z in the x, y and z directions respectively. We begin

by creating the 3D wavenumber array k, which has the same dimensions as the

fractal field. The maximum wave number in in the
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structures at cloud top, for example. In the scope of this work such complexities are

neglected.

The one-dimensional energy spectrum is of the form

E1(k) = Ê1k„; (4.1)

where k is the wavenumber, E1 is the 1D spectral energy density, Ê1 is a constant

related to the y-axis intercept on a log-log E(k) plot, and „ is a constant equal to

the gradient of the log-log E(k) plot.

Let us firstly consider the case for isotropic grid spacing (∆x = ∆y = ∆z). The

continuous 3D spectral energy density, E3, may then be defined in terms of k, using

the constraint that, at a particular wavenumber, E1 is equal to the integral of E3

over all directions for the same wavenumber:

E1(k) =
Z `=2…

`=0

Z µ=…

µ=0
E3(k)k2 sin µ dµ d`; (4.2)

where µ is the zenith angle and ` is the azimuthal angle (see figure 4.1). In going

from 1D to 3D space, the dependence on k becomes much steeper, but this ensures

that the 1D power spectrum through resulting 3D field will have the correct slope.

Equation 4.2 is evaluated and rearranged to give

E3(k) =
E1(k)

4…k2
=

Ê1 k„−2

4…
: (4.3)

Now, the k which defines the model cloud field is discrete. To a first approx-

imation, the continuous energy density, E3(k), holds for the discrete wavenumber

range k ¡ ∆k=2 < k < k + ∆k=2. In taking equation (4.3) to hold for all k we

implicitly assume that the locus of the largest wavenumber in the k-space domain is

a spherical shell. In reality, this domain is a cube. When we integrate E3 for large k

(i.e. k > max(kx)) over the entire k-shell, parts of the shell will lie outside the cubic
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Figure 4.1: The geometry employed in k-space. Here µ is the zenith angle and ` is the

azimuth. We define r to be the horizontal component of k when the k-vector just contacts

the boundary of the domain. The dashed line marks the upper limit of ` at …=4, which is

applied when using anisotropic grid spacing.

k-space domain. So, E3 is larger than it should be. This applies to large k only and

here is assumed not to have a significant effect.

If, however, the grid spacing is not isotropic, i.e. ∆x = ∆y À ∆z, equation
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Figure 4.2: Cross-sections in the kx-kz plane at ky=0.. The plotted range of kx is ¡ max(kx)

to + max(kx), while the range of kz is ¡ max(kz)=2 to + max(kz)=2. The grid points have

a large separation, ∆kz, in the kz direction, but in the kx direction they are so closely

spaced that they have merged into (blue) solid lines (a): Intersection of k-shells with the

kx-kz plane. Complete shells exist only when k < max(kx). (b): Intersection of the shells

k = max(kx) (black), k = ∆kz (green) and k = ∆kz=2 (red) with the kx-kz plane.

When k > max(kx), significant portions of the k-shell fall outside of k-space

domain (see figure 4.2). To obtain the ‘correct’ spectral energy density relation

equation for this range of k, we therefore need to change the limits on the integral

over µ in equation (4.2). This analysis ensures that vertical power spectra of the

simulated fractal have the correct spectral slope for scales smaller than ∆x.
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Figure 4.3: Schematic illustrating the different regimes of the 3D power spectrum. The

spectral slope in region (i) remains unchanged. In region (ii) we apply the new equa-

tion (4.8). This reverts back to give the spectral slope in (i) at boundary (1) so a boundary

condition does not have to be determined. In region (iii) we apply the 2D inner spectral

slope and a constant of proportionality, A, is required to satisfy continuity at boundary (2).

In region (iv) we apply the 2D outer spectral slope and a second constant of proportionality,

B, is required to meet the boundary conditions at (3).

We use µ′ = µ′(k; `) to represent the upper limit of µ, which is attained when the

k-vector makes contact with the surface of the cuboid. The µ′ will be dependent on

both wavenumber and the azimuthal angle, ` (see figures 4.1 and 4.4). Due to the

symmetry of the geometry, only one sixteenth of the k-sphere need be considered. We

consider the upper hemisphere with azimuthal range of 0 < ` < …=4. We integrate

equation 4.2 over the new limits of 0 < ` < …=4 and 0 < µ < µ′(k; `) and then

multiply the result by a factor of 16.
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Figure 4.4: The µ dependence of the integration surface. Diagram (a) illustrates the k-shell

within the domain of integration when k < max(kx), in (b) is the relevant shell shape for

max(kx) < k <
p

2 max(kx), and (c) applies to all k >
p

2 max(kx).

E1(k) = 16
Z …=4

0

Z µ′

0
E3(k)k2 sin µ dµ d` (4.4)

= 16k2E3

Z …=4

0

‡
1 ¡ cos µ′

·
d`: (4.5)

Now, we can calculate cos µ′ using the geometry shown in figure 4.1:

cos µ′ =

p
k2 ¡ r2

k
;

where r = max(kx)= cos `. Substituting for r, we insert this relation into equation

(4.4) and obtain

E1(k) = 16k2E3

Z …=4

0

‡
1 ¡

q
1 ¡ (max(kx)=k cos `)2

·
d`: (4.6)

Rearranging (4.6), we find the 3D spectral energy density as a function of the 1D
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spectral energy density,

E3(k) =
E1(k)

16k2
R …=4

0

‡
1 ¡

q
1 ¡ (max(kx)=k cos `)2

·
d`

(4.7)

=
Ê1k„−2

4…

0
@ 1

1 ¡ 4
…
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Figure 4.5: The smooth integrand of equation 4.8. The three different lines show the

behaviour of the integrand for three different values of ` as indicated by the key.

points are contained within the k
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Figure 4.6: Limits of the two spectral energy equations, 4.3 and 4.7, for large k. Equa-

tion 4.3 tends to the limit of 2…(max(kx))2 and the new equation 4.7 tends to the limit of

8(max(kx))2

constant of proportionality contains the factor E1

4…
). Equating these two expressions

at k = ∆kz=2 and rearranging, we find,

A =

ˆ
∆kz

2

!−„3D
i +„2D

i

: (4.10)

In the radar analysis, a change of slope of the 1D power spectrum from „ to 0 was

seen to occur at k = kouter. To implement this observation, we set the 3D spectral

slope to „2D
o = ¡1, which is equivalent to setting the 1D spectral slope to 0, for all

k < kouter. To ensure continuity, we again apply a boundary condition, this time at
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kouter. Now, for k > kouter, we have E3 / A (kouter)
−„2D

i , and for k < kouter we have

that E3 / B (kouter)
−„2D

o , where B is a second constant of proportionality. Equating

these at k = kouter we find,

B = A (kouter)
−„2D

i +„2D
o : (4.11)

To summarise, the spectral energy density matrix is described in four parts (see

figure 4.3), according to the magnitude of the wavevector:

E3 =
E1

4…
£

8
>>>>>>>>><
>>>>>>>>>:

B k−„2D
o k < kouter

A k−„2D
i kouter < k < ∆kz=2

k−„3D
i ∆kz=2 < k < max(kx)

1
I

k−„3D
i k > max(kx);

where A =

ˆ
∆kz

2

!−„3D
i +„2D

i

; B = A (kouter)
−„2D

i +„2D
o

and I = 1 ¡ 4

…

Z …=4

0

q
1 ¡ (max(kx)=k cos `)2d`:
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Figure 4.8: Illustration of the wind shear simulation for a vertical cross-section of the 3D

cloud field of length 200 km and a vertical dimension of 5 km.

fall streaks in this way, due to periodicity of the field. Above the generating level

–x = –y = 0; i.e. we make the simplifying assumption that there is no shear in the

generating cell, which is not always the case (Heymsfield, 1975).

4.5 Perturbation of Fourier amplitudes: Isotropic

mixing

From the analysis of the radar data, we saw that the spectral slope was a function of

height. To simulate the same variation with height, we need to perturb the Fourier

amplitudes.

The fractal field is divided into Nz horizontal slices, each of depth ∆z. Each slice

is transformed back into the Fourier domain for manipulation, using the 2D Fourier

transform. The Fourier components are multiplied by the square root of the required

change in energy density, since we are in amplitude space, i.e. k(new slope−old slope)=2,

where k =
q

k2
x + k2

y defines the 2D wavenumber. If the slope becomes more shal-

low, this will have the effect of amplifying the small-scale structure and suppressing

the large (figure 4.9). Similarly if the slope becomes steeper, the converse applies.

Finally, a 2D inverse Fourier transform is performed on each slice to obtain the new

translated and spectrally filtered fractal field.
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Figure 4.9:
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Figure 4.10: Steepening the spectral slope to achieve the required scaling exponent. If fi

is the original slope and we request a slope of fi + fl, then the Fourier amplitudes are raised

to the power of fl=2. A scale factor of (1=kouter)fl=2 enforces continuity at k = kouter.

parallel to the direction ˆ:

kˆ = kx sin ˆ + ky cos ˆ: (4.13)

To steepen the spectral slope from k−(fi) to k−(fi+fl) (illustrated in figure 4.10), the

complex Fourier coefficients are multiplied by a factor f where

f =

8
><
>:

(jkˆj=kouter)
fl=2 for jkˆj > kouter

1 for jkˆj < kouter:

In this way, the spectrum is continuous at kouter and no mixing is applied to scales

larger than the outer scale. Anisotropic mixing is applied only to layers below the

generating level, assuming that it is the fall streaks which generate the anisotropy.

Above the generating level, isotropic mixing is required, as before, in order to obtain

the observed spectral slope. Figure 4.11 illustrates the effect for two different wind

shear direction scenarios on a single layer.
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Figure 4.11: Effect of anisotropic mixing. Image (a) shows a slice of the original fractal

field with a spectral slope of ¡5=3. In (b), the spectral slope has been decreased by 1 in

the E-W direction. In (c), the spectral slope has been decreased by 1 with respect to the

spectral slope in (a) but in the SW-NE direction.

4.7 Scaling the fractal

The fractal field is treated as a field of ln(IWC) and is scaled to obtain the required

standard deviation of ln(IWC) observed by the radar at each level. It is then expo-

nentiated, to obtain a field of IWC, and scaled to achieve the required mean IWC

at each level. This ensures that the IWC field has a lognormal distribution with the

required mean and spread, see figure 4.12.
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Figure 4.12:
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Figure 4.13: The full 3D field of ln(IWC), with a section cut away. The effect of anisotropic

mixing can be seen in the lower horizontal layer, fall streaks are observed on the vertical

surfaces and the top layer has a convective appearance.

4.8.1 Validation of the fall streak structure

The fall streak pattern predicted using the UM winds is visualised in the vertical plane

of motion of the generating cell over the radar. For the cloud of 27 December 1999,

little difference is seen between the projection onto the direction of advection and the

cross-section along the x-axis, because the wind was almost directly from the west

and the fall streaks are ideally aligned. The projection would be important if there

was significant change in the wind direction with height. The projected fall streak

line is superimposed on the radar image of the height-time Z field for comparison. An

example of such a plot is shown in figure 4.14. If the projected fall streak is clearly

out of line with those in the radar image, either the model generating level height is
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Figure 4.14: Verifying the height of the generating level and fall streak geometry. The

yellow lines, superimposed onto the radar-derived IWC field, are the geometry predicted by

the model using the UM wind profiles and a generating level of 8 km. Good agreement is

obtained in the lower 2 km of the cloud. Above the generating level, the match is reasonable

but not as close, due to the assumption of constant fall speed and inaccuracies in the UM

wind profile.

not close to its true level or the fall speed profile needs to be adjusted. If a constant

fall speed is assumed, altering the magnitude will simply stretch the section of the

fall streak beneath the generating level horizontally by factor (old speed/new speed).

As the wind shear is more or less constant and we have assumed a constant fall

speed, the form of the fall streaks below the generating level is near-parabolic. If
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the true variable fall speed profile were to be used (this information can now be

obtained from the Galileo ‘Doppler velocity’ facility which was not available at the

time relevant to the data sets investigated here), there would be a departure from

parabolic behaviour, and would increase chances of a closer agreement between the

modelled and observed fall streak structures. Changing the generating level height

however, may lead to a different fall streak structure, see figure 4.15. Note that it

might not be possible to achieve a perfect match between the model and radar plots

because the wind component vertical profiles come from the UM forecast data, which

although are remarkably accurate (Mittermaier et al., 2003), will not be completely

reliable, in the vicinity of fronts, for example. Also, only one generating level can be

assumed, whereas in reality the generating level may well be a function of horizontal

position due to local turbulence and/or development of the weather system.

4.8.2 Verification of the spectral slopes

Power spectra of the model ln(IWC) field are plotted to verify that the 1D spectral

behaviour is reproduced. For each vertical level, 1D spectra are calculated for each

row parallel to the x-axis (ideally the x-axis will be aligned with the wind direction of

the generating level) and are then averaged in the y-direction. The averaged spectrum

is taken to be representative for that particular height. In this way, noise is reduced

and the spectral slope can be more precisely determined.

The slope of each spectrum is calculated as before. The lines of best fit are

superimposed to check that the range for the fit is suitable. An example is shown

in figure 4.16. Plots of the spectral slope as a function of height using (a) the

model and (b) the radar observations are shown in figure 4.17 for comparison. Very

close agreement is evident. The same figure also illustrates the curves obtained using
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Figure 4.15: Computed fall streak structure for various generating levels between 6.5 and

9.5 km. The generating level height for each fall streak is specified by the key.

various approximations of the mean spectral energy density discussed in section 4.2.

4.8.3 Verification of the effect of anisotropic mixing

The spectral slope as a function of height will be affected by the anisotropic mixing.

To verify that the correct slope is attained, the 1D spectrum for each height must be

analysed in the direction of the wind shear at the same height. The simplest way to

check the functioning of the code is to create a wind profile with v = 0, where v is

the component of the wind in the y direction, and compare the spectral slope given

by the model and the slope given by the observations as before. For the observed

cloud, the wind lies mainly in the E-W direction and the anisotropic mixing is seen
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Figure 4.16: A sample power spectrum (red) of ln(IWC) produced by the model for the

height 6:02 km. A smoothed spectrum obtained by averaging over equal sections of log(k)

is shown in black. A least squares regression (dashed blue line) is used to determine the

spectral slope. The smoothed spectrum obtained from the radar observations at 5.91 km

(the closest observed height to 6.02 km) is overplotted (dotted black line).

to have the correct effect in figure 4.18. We obtain close to the requested slope in

the direction of mixing, and there is also a ‘bleed-though’ effect in the perpendicular

direction.
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Figure 4.17: The spectral slope obtained from the radar data analysis (black) is

compared to the spectral slopes produced by the model for the height range of the

cloud. Shown in blue is the slope obtained using the isotropic assumptions. The

improvement obtained by considering the adjustment to E3 when k < ∆kz=2 is

plotted in purple. The green line shows further improvement in using the analytic

solution of equation 4.8 for k > max kx. The red line is the slope obtained by applying

the full numerical solution in place of the analytic solution, and is the slope that we

finally chose.

4.9 3D visualisation

To summarise, a stochastic model has been created that is able to simulate realistic

3D cirrus clouds, for the first time. The flexibility to specify alternative input values
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Figure 4.18: Testing the anisotropic mixing. In the direction of mixing the requested

slope is obtained. Perpendicular to the direction of mixing (in the horizontal plane),

the change in slope is about half of the requested change.

means that the model can decouple from the radar data analysis and be used for

idealised studies.

A three dimensional model allows the full fall streak to be resolved, if the wind

shear profiles are known, whereas the observations from Galileo are limited to two

dimensions. The 3D structure is visualised in figure 4.19 by plotting a surface defined

by Z = ¡5 dBZ. Height is colour graded for clarity.
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Figure 4.19: A three dimensional view of the fall streaks, using the Z = ¡5 dBZ surface.

The colour-grading of the field represents height, and is just for clarity.



Chapter 5

Radiative properties of fractal

cirrus

In this chapter, we consider and investigate how domain-averaged radiative fluxes

are related to particular inputs to the fractal model which exert influence over cloud

inhomogeneity. We introduce the radiation scheme used and then describe the various

cloud fields presented to the scheme.

5.1 The radiative transfer code

As discussed in the introduction, the effects of cloud inhomogeneity may be divided

into two parts:

1. The effect of inhomogeneity due to variations in optical depth.

2. The effect of horizontal photon transport.

Investigations of the second effect, which would require use of a 3D Monte Carlo

radiative transfer scheme, will be the focus of future studies. For now, we turn our

54
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attention to the first effect, which may be quantified using the plane-parallel bias.

The plane-parallel bias is the difference between a domain-averaged radiative property

calculated using the independent column approximation (ICA) and that calculated

using the plane-parallel (PP) approximation. We use the Edwards-Slingo radiative

transfer scheme (Edwards and Slingo, 1996) to calculate the radiative fluxes for both

the PP and the ICA assumptions and, in addition, we simulate a GCM calculation.

5.1.1 The Edwards-Slingo radiation scheme

The Edwards-Slingo (ES96) scheme is used operationally in the Met Office Unified

Model to calculate longwave (LW) and shortwave (SW) fluxes and heating rates for

1D atmospheric profiles. In this study, it is used to calculate domain averaged fluxes

assuming the independent column approximation (ICA). The code is run over each
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9. solar zenith angle

10. surface emissivity

11. surface albedo.

Inputs 1-4 are obtained from the latest UM forecast for the relevant date and

time. The IWC profile is given entirely by the fractal cloud model. Above and below

the cloud boundaries, the IWC is zero. UM inputs 1-4 are interpolated to the grid

of the fractal cloud model over the vertical range of the cloud. Above and below the

cloud, the UM grid remains in use. We assume a constant effective radius, of 50 „m

for simplicity, although it would be possible to introduce a more realistic effective

radius profile into the 3D fractal cloud model. Effective radius can be related to

temperature (Kristjánsson et al., 2000), and to IWC (Evans and Wiscombe, 2003).

The cloud fraction is taken as unity for all the heights in a profile for which IWC> 0,

and the solar zenith angle is set 60◦. The surface emissivity is assumed to be 1 and

the surface albedo is assumed to be 0.2. The code is run twice for each profile. The

first run is for the LW spectral region, and the second is for the SW.

5.1.2 Approximations

Although the code takes only 1.2 seconds to compute a single profile on a Sun work-

station, a 128 £ 128 grid will take approximately 51
2

hours to produce results. To

reduce the run-time, we can present the radiation code with a reduced IWC field by

doing some horizontal averaging of the high resolution IWC fractal field. The field is

averaged over every 4£4 grid cells in a horizontal plane, generating a 32 £ 32 grid. A

sensitivity test is carried out to see if there is structure at scales smaller than the new

grid spacing which is significantly influencing the radiative transfer. Unfortunately,
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Figure 5.1: Sensitivity test to determine whether small scale variations, which are smoothed

out in the reduced resolution grid, have a significant effect on radiation. The upwelling LW

radiation of one row (1£32 cells) of the 32 £ 32 reduced field is shown in red. This row size

corresponds to a 4£128 strip of cells at the high resolution. The blue dotted line shows

the upwelling LW flux which has been averaged over the width of the strip. A good deal

of smaller scale variability can be seen along the length. When this is averaged over every

4 cells along the length of the strip (green line), we see that the LW flux produced by the

higher resolution grid is consistently larger than that produced by the low resolution grid.

5.2 Cloud fields

Since wind shear is very much responsible for the fall streaks which characterise

cirrus cloud geometry, we chose to investigate the effect of shear on domain-averaged

radiative properties of cirrus. We also investigate the effect of different isotropic
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Figure 5.2: A scatter plot of reflectance (i.e. SW albedo) against optical depth for a

typical radiation calculation. The SW albedo given by the empirical formula is overplotted:

albedo = 0:232 + 0:5¿
¿+3 .

spectral slopes. Initially we will carry out all tests using the same set of random

numbers to generate the initial fractal, to be sure that any changes in radiative

properties result from the wind shear or spectral slope and nothing else. The radar

observed cloud of 27 December 1999 is not used for these investigations as it is

physically and optically thick and the LW and SW fluxes reach their saturation

levels. In addition, the generating level for this cloud was found to be 2 km below the

cloud top and most of the solar radiation is attenuated in these top layers before the

effect of shear, which occurs predominantly in the lower 2 km of the cloud, has chance
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Figure 5.3: Comparison of the SW albedo given by the Edwards-Slingo (1996) radiation

scheme and the empirical formula.

to show. It is the physically and optically thinner clouds that should demonstrate

the effect of inhomogeneity on radiative transfer in the mid-latitudes (Del Genio,

2001), because their optical depth range is mainly in the region of curvature of the

albedo-optical depth relationship. We can see this from examining figure 5.2. Above

a certain range of optical depths (¿ > 10), the albedo or OLR is near reaching a

saturation level. We therefore experiment with a thinner cloud. For simplification

we choose to use idealised profiles of IWC and wind shear, but other parameters are

based on the cloud of 27 December 1999.

The profile of mean IWC, which takes a constant value of 0.05 gm−3 except at

the cloud edge where it is reduced smoothly to zero, and the effective radius, re, are





5.2 Cloud fields 62



5.2 Cloud fields 63

5.2.1 GCM resolution simulation

To demonstrate the inadequacy of the representation of cirrus cloud inhomogeneity

in a GCM, we simulate a GCM representation of the cloud fields created by the 3D

model, and compare the results of the experiments. A GCM grid box will contain a

cloud fraction and, in the cloudy part of the box, each horizontal layer of the cloud is

assumed to be uniform. An overlap assumption is required to determine how a layer

is placed with respect to its neighbours. The simplest approach, the one employed

by most GCMs, is to assume ‘maximum random’ overlap (Hogan and Illingworth,

2000). Maximum overlap is assumed between adjacent GCM cloud layers if the cloud

is vertically continuous, and random overlap is applied to clouds at different heights

if they are separated by a completely cloud-free layer. In this study, the cirrus cloud

fields created are vertically continuous and so random overlap would not have been

employed by a GCM. Maximum overlap alone is therefore assumed. In each layer,

the cloudy grid cells are shifted to the same side of the GCM grid box (figure 5.5).

Most GCMs use atmospheric pressure as their vertical coordinate, so their vertical
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Figure 5.5: Schematic illustration of the ‘maximum overlap’ assumption used for vertically

continuous clouds in a GCM. The cloud filled fractions for each layer are piled up at the

same end of the grid box.
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Figure 5.6: The SW albedo fields for wind shears of (a) 0 s−1 and (b) 0.006 s−1 looking

down from above. The domain size is 200 km by 200 km. The colour key scale of SW

albedo applies to both fields.

5.3.1 The top-of-the-atmosphere domain-averaged SW albedo

The SW albedo referred to in this section is the ratio of the domain-averaged SW

upwelling flux to the domain-averaged SW downwelling flux at the top of the atmo-

sphere. The SW albedo is displayed in figure 5.7 as a function of the wind shear

for the three spectral slopes investigated. The results from the GCM simulation are

shown in the same figure.

The SW downward flux is constant for all the experiments, as the solar zenith

angle, date and time are held constant, and takes a value of 684.8 Wm−2. Multiplying

the SW albedo by the SW downward flux gives SW upwelling fluxes of 273.4 Wm−2,

277.2 Wm−2 and 282.5 Wm−2 at the maximum wind shear of 0.048 s−1 for the spectral

slopes of ¡8=3 ¡5=3 and ¡1 respectively. The minimum albedo of 0.33 (zero shear,

slope = -8/3) corresponds to SW flux of 226.7 Wm−2.

The plane-parallel SW albedo found by inserting the domain averaged optical
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Figure 5.7: Dependence of SW albedo on magnitude of wind shear (constant with height).

Results are shown in blue for the full 128£128 column cloud field with a spectral slope of

-5/3, in red for a spectral slope of -8/3 and in green line for a slope of -1. The same colour

coding applies to the dashed lines which give the results from the GCM simulation. The

black line shows the limiting plane-parallel SW albedo.

depth, ¿ = 3:164, into the empirical formula for albedo, and given in equation 5.1 is

0.4887. This is equivalent to an upwelling flux of 334.7 Wm2. The albedo estimated

using the plane-parallel approximation is indicated by the horizontal black line in

figure 5.7. The plane-parallel bias, ( i.e. the PP albedo minus the ICA albedo)

is largest for the case of no shear, indicating that this is the cloud configuration

furthest removed from the PP approximation. For the three different slopes it takes

the values of 0.158 (slope = -1), 0.157 (slope = -5/3) and 0.128 (slope = -8/3), which
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are very similar to the biases of 10-15% found by Cahalan (1994) and Barker and

Davies (1992). This can be expected as there is little or no shear in stratocumulus

and the cloud altitude has little effect on the SW fluxes. The PP bias is about 8%

(slope = -5/3) for the largest shear. Carlin et al. (2002) reported a range of cirrus

solar albedo biases of up to 25% which were dependent on solar zenith angle (SZA)

and underlying surface albedo. For an SZA of zero (which should be similar to our

ICA approximation) they calculated albedo biases of a few percent, which compares

favourably with our results.

We can see that GCMs capture some of the vertical inhomogeneity and can im-

prove their estimate of domain averaged-albedo with respect to the PP albedo as a

consequence of including a cloud fraction for each of their vertical levels.

The SW albedo increases as the cloud configuration becomes more sheared and

consequently more similar to the PP form. This is a consequence of the non-linearity

of the albedo-optical depth relationship, (see figure 1.1). For each wind shear exper-

iment we see that as the spectral slope steepens, the SW albedo is reduced. Barker

and Davies (1992) observed the same trends when they carried out a similar experi-

ment for stratocumulus clouds. Their data were obtained using 2D isotropic, scaling,

broken cloud fields. They investigated the relationship between spectral slope and

reflectance (SW albedo) testing slopes between 0 and 4, for a solar zenith angle of

about 78◦. They held constant the cloud fraction (equivalent in this study to con-

stant wind shear) and the domain-averaged optical depth. Their cloud fields, however

were input to a Monte Carlo photon transport code, rather than a 1D ICA radiative

transfer scheme. They showed that as the spectral slope steepens, the SW albedo

tends to a ‘plane-parallel’ limit which they defined as Rpp £ Ac, where Rpp is the

plane-parallel reflectance (SW albedo) and Ac is the cloud fraction.
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5.3.2 The top-of-the-atmosphere domain-averaged upwelling

LW radiation

The results for the upwelling LW fluxes are shown in figure 5.8. The colour coding

used in figure 5.7 also applies here. The general trend is that the upwelling LW

radiation decreases as wind shear increases and as the spectral slope becomes more

shallow. The upwelling LW flux is greatest when there is no wind shear. This flux

magnitude is enhanced due to the broken cloud field which allows more LW flux to

reach the top of the atmosphere without being intercepted by the cloud. The gradient

of both the SW and LW radiative properties tends to flatten with increasing wind

shear. This is because the wind shear causes the fall streaks to become more horizontal

and therefore the cloud optical depth must become more horizontally homogeneous.

The PP upwelling LW flux estimate is 149.0 Wm−2. The maximum PP biases of

upwelling LW flux range from 23 to 36 Wm−2 (slope = -1), and 36 to 53 Wm−2

(slope = -8/3). Fu et al. (2000) reported cirrus PP biases, for the LW upwelling flux,

which spanned a greater range.

The height of cloud base and depth of cloud will influence the upwelling LW flux

as the flux emitted by a radiating body (which in the case of clouds is in the LW

part of the spectrum) has a T4
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Figure 5.8: Dependence of upwelling LW radiation on magnitude of wind shear (constant

with height). The blue line shows results for a cloud field with a spectral slope of -5/3.

The red line is for a spectral slope of -8/3 and the green line is for a spectral slope of -1.

The same colour coding applies to the dashed lines which give the results from the GCM

simulation. The black line shows the limiting plane-parallel LW Upwelling flux.

there will be little or no contribution from the SW fluxes and the LW warming effect

will dominate. To gain an understanding of the net effect of cirrus inhomogeneity on

warming or cooling, many more cases would need to be investigated. The radiative

fluxes will be dependent on numerous variables, such as the domain-average optical
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tral mixing in the horizontal plane. Height dependent statistics such as the mean

IWC, and the standard deviation of ln(IWC) are based on vertically pointing 94 GHz

radar observations of one particular mid-latitude cirrus cloud, chosen because the

fall streaks were ideally aligned with the direction of motion of the cloud across the

radar. The Unified Model vertical profiles of wind and temperature were also impor-

tant input parameters in determining the IWC from radar reflectivities and the fall

streak structure.

Observations of the dependence on the 1D spectral slope on height were partic-

ularly intriguing. At cloud top, the spectral slope is constant with height (about

-4/3), until the generating level is reached. The slope below this height gradually

steepened, reaching values of around -3. Various spectral slopes over a similar range

have previously been reported but without mention of the dependence of the scaling

exponent on height, or any other parameter. In this study we assume that the change

can be attributed to mixing due to fall streaks intersecting and/or varying ice crystal

fall speeds.

Limitations of the model have already been discussed at various points of this

report. They include reliability on the accuracy of UM wind profiles. This would

be required if the model were to be used in the interpretation of 2D satellite images

to estimate the third dimension of the cloud field. It would not be so important

in the application of the model to radiative transfer investigations where it is often

more instructive to use a generalised or idealised shear. Three main assumptions

were outlined in the introduction, that of a constant effective radius (50 „m), a

lognormal PDF for the IWC and a constant generating level. The Galileo radar

has now been Dopplerised, allowing fall speeds and sizes of precipitation particles

to be determined. The next stage of development could include the implementation
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of a height dependent fall speed profile and a height dependent PDF for ice crystal

effective radius. There has already been some research into the later, for example,

Evans (2001) produces a stochastic field for the particle effective radius by using a

height (which is related to temperature) and LWC dependent lookup table operating

on a Gaussian field. This ensures that appropriate values of re are produced for each

LWC value, so that for example, re = 0 does not occur inside of clouds.

Many further radar observations should be examined in order to verify trends

which have been observed for the 27 December 1999. For example, in Hogan and

Illingworth (1999) we noted an outer scale of 25 km for cirrus, but our cirrus cloud

data from 27 December 1999, indicated an outer scale of about 60 km. If anisotropic

mixing truly occurs in the direction of the fall streak orientation then, the measure-

ment of outer scale will be dependent on the alignment of the fall streaks with the





Appendix A

Ice Fall Streak Geometry

Consider the top of a cirrus fall streak as a ‘generating cell’ which moves with the

wind at that height and releases crystals. The 3D shape of the fallstreak is found by

considering the trajectory of a single crystal as it falls, in the frame of reference of

the generating cell.

Marshall (1953) derives the trajectory of the ice crystals as follows: If x repre-

sents distance in a particular horizontal direction, z is the depth (vertical distance

increasing downwards), u(z) = dx
dt

is the component of the wind in the x direction

and the fall speed w(z) = dz
dt

then the equation of the ice particle trajectory can be

described as

x ¡ x0 =
Z z

0

u(z)

w(z)
dz; (A.1)

where x0 is the x coordinate of the generating element. Marshall (1953) examines

the case when wind shear and fall speed are both constant. With u = Sz and w = b,

where S and b are both constants (and S is the shear), equation A.1 simplifies to
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x ¡ x0 =
S

2b
z2; (A.2)

which describes a parabola.

The pattern formed by ice particles precipitating from the generating cell is the

trajectory of the particles, in the frame of reference of the generating cell. In any

other frame of reference, the pattern and trajectory become two different things.

We would like to find the fall streak geometry for any wind shear scenario. To

work in the reference frame of the generating cell we replace u(z) in equation A.1 by

u(z)¡u(zt) where zt is the generating level height and u(zt) is the velocity component

in the x direction at that height. Let x0 = 0 and allow x to represent the horizontal

displacement between a crystal and the generating cell, such that

x(z) =
Z z′=zt

z′=z
dx =

Z z′=zt

z′=z

u(z′) ¡ u(zt)

w(z′)
dz′: (A.3)

Similarly, if y represents horizontal displacement relative to the generating cell

and perpendicular to x, and v(z) = dy
dt

, then

y(z) =
Z z′=zt

z′=z
dy =

Z z′=zt

z′=z

v(z′) ¡ v(zt)

w(z′)
dz′: (A.4)

If we know the profiles of ui, vi and wi, at heights zi from levels i = 0 to i = t

at the generating level, which must also be known, then equations A.3 and A.4 can

be solved iteratively using finite differences. We set xt=0 and yt = 0 and work

downwards from the generating level using the following iterations,

xi = xi+1 +
µ

ui+1 + ui

2
¡ ut

¶
(zi+1 ¡ zi)

2

wi+1 + wi

(A.5)

yi = yi+1 +
µ

vi+1 + vi

2
¡ vt

¶
(zi+1 ¡ zi)

2

wi+1 + wi

: (A.6)
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If the fall speed wi is unknown, a constant value could be assumed. Typical fall

speed is about 1 ms−1 (e.g. Mittermaier et al. (2003), Marshall (1953), Heymsfield

(1975)).

The fall streak geometry can then be approximated in the model by shifting each

horizontal slice with respect to the slice at generating level height by (–x, –y), where

for slice i,

–xi = xi ¡ x0 = xi; and

–yi = yi ¡ y0 = yi:



Appendix B

Treatment of incomplete data sets

This appendix describes how to find the mean and standard deviation for broken

data sets assumed to have a Normal PDF. It is credited entirely to Robin Hogan but

is included here for the sake of completeness.

Suppose we have a series of data values x, which in the context of this study

could represent radar reflectivity in dBZ, or ln(IWC) for which we would like to

estimate the mean and standard deviation. Due to the sensitivity of the radar, there

are missing values in the series where all we know is that x < xc, where xc is the

minimum detectable signal. We suppose that the underlying probability density

function (PDF) is a Normal, with mean xm and standard deviation ¾x. We know

the fraction f of the data series for which a valid value has been recorded (i.e. the

fraction of the underlying PDF for which x > xc) and the mean of these measured

values x′m.

If we know xc, x′m, and f we can derive xm and ¾x. The probability density

function, P (x), is a Normal distribution:
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Figure B.1: The underlying Normal PDF of a broken data set x.

P (x) =
1p

2…¾x

exp

"
¡1

2

µ
x ¡ xm

¾x

¶2
#

(B.1)

Therefore, the detected fraction f is

f =
Z ∞

xc

P (x)dx: (B.2)

The standard integral of a Normal distribution, Φ(x), is defined as

Φ(x) =
1p
2…

Z x

−∞
exp

ˆ
¡t2

2

!
dt: (B.3)

Thus f is given by

f = Φ
µ

xm ¡ xc

¾x

¶
: (B.4)

Consider now the mean of the detected values of x, which we designated x′m,
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x′m =

R∞
xc

xP (x)dxR∞
xc

P (x)dx

=
1

f

1p
2…¾x

Z ∞

xc

x exp

ˆ
¡1

2

•
x ¡ xm

¾x

‚2
!

dx: (B.5)

Now, let t =
‡

x−xm

¾x

·2
. Then dt = 2

¾x

‡
x−xm

¾x
dx

·
and xdx = ¾ 2

x

2
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