
Blow-up in a Chemotaxis Model
Using a Moving Mesh Method

Sarah Lianne Cole

Supervisor: Professor Michael J. Baines





Abstract

In this dissertation we look at a system of partial di�erential equations

(PDEs) used to model chemotaxis. This model is called the Keller-Segel

model. The solution to this model exhibits interesting properties. In par-

ticular the solution becomes in�nite in a �nite time, T. Firstly we look at a

simpler equation, the Fishers equation, to see if blow-up exists. The aim of

this project is to look at numerical methods that will capture the solution

as it blows up. We see in the paper by Budd et al, [
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Chapter 1

Introduction

1.1 What is Chemotaxis?

Chemotaxis describes the movement of single or multicellular organisms when

they move up or down a chemical gradient. The su�x ‘taxis’ is Greek for

‘arrange, turning’, [1]. This movement allows the organism to explore its

extracellular environment. Organisms move randomly, away from repellents

and towards attractants. Questions have arisen on how organisms can detect

small changes in their extracellular environment. Usually the organism will

undergo a random walk, consisting of smooth swimming and brief direction

changes (tumbles). By increasing the attractant, the tumbling is suppressed,

which leads to a biased random walk. The organism will then accumulate in

areas of high attractant concentration. This type of movement is referred to

as runs. A combination of tumbles and runs allows the organism to explore

and respond to changes in its extracellular environment, as explained in [9]

There is much interest in the study of chemotaxis for many reasons.

Chemotaxis is important in multicellular organisms, as it is critical in certain

phases of development e.g. during fertilisation, as the sperm moves towards

1



2 CHAPTER 1. INTRODUCTION

the egg, from [4] and explained further in [10]. Chemotaxis may also under-

pin the pigmentation patterning in snakes and �sh. Whilst modelling certain

phases of tumour growth, chemotaxis has been incorporated into these mod-

els, explained further in [10].

1.2 Keller-Segel Model
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� k4(u; v) and k5(u; v) describes the production and degradation of the

chemical substrate

� D is the di�usion coe�cient of the attractant

There has been a large amount of work on the conditions which form either

�nite-time blow-up or have globally existing solutions. This has resulted in

the model which is referred to as the ‘minimal model’, where it is assumed

that the functions kj have linear form (see [4], for further information). We

shall be concerned with this minimal model due to its �nite-time blow-up

property.

The minimal model (which is non-dimensional) is

ut = r2u� �r:(urv)

vt = r2v + u� v (1.1)

where

� r 2 
 = fr : jrj � Rg, the region is suggested to be [0,1]

� u(r; t) is the evolution of cell density

� v(r; t) is the chemical substrate

� � chemotactic coe�cient, whose suggested value is � = 8

� Neumann boundary conditions are enforced for u and v on @


see[1].

We restrict our attention to radially symmetric versions of (1.1).
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1.3 Initial Conditions

Following Budd et al [1], we take Gaussian functions for our initial data.

They will be of the form

u(r; 0) = 1000e−500r2

v(r; 0) = 10e−500r2

over the domain [0,1], with data taken from [1].

Numerical models have been developed so that model predictions can be

compared with experimental data. We wish to develop a numerical method

to successfully capture the blow-up of the solution to the Keller-Segel model.

We begin by studying the existence of blow-up for a simpler equation, the

nonlinear Fisher’s equation in the next two chapters, before using the same

technique to study Chemotaxis.



Chapter 2

Blow-up and the Fisher

equation

We begin our study on blow-up in chemotaxis by considering the Fisher’s

equation, on a �xed 1D cartesian mesh.

2.1 Fisher’s Equation

Fisher’s equation is a di�usion equation with an added source term, i.e.

ut = uxx + up; (p > 1) (2.1)

Equation (2.1) represents the temperature of a reacting or combusting medium.

This equation is of particular interest since its solution is simpler than the

Keller-Segel model and also becomes infnite in a �nite time, i.e. blow-up

exists. Usually a problem that exhibits blow-up will become in�nite at a

single blow-up point. The blow-up point x∗, is described in [2] and occurs at

5



6 CHAPTER 2. BLOW-UP AND THE FISHER EQUATION

a �nite blow up time, T , where T <1, so as t! T

u(x∗; t)!1 and u(x; t
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2.3 Explicit Method

To study the blow-up behaviour of Fisher’s equation we will �rstly approx-

imate the solution on a �xed mesh, using a standard explicit and implicit

scheme. We �rst look at an explicit method on a �xed mesh, to obtain a

solution.

By using the method of �nite di�erences we can discretise (2.1) in space

and time to obtain;

(un+1
j � unj )

�t
=

(unj+1 � 2unj + unj−1)

�x2
+ (unj )2

) un+1
j = unj +

�t

�x2

[
unj+1 � 2unj + unj−1

]
+ �t(unj )2

Note that �t
�x2 is restricted for reasons of numerical stability. From this we

obtain the solution shown in Figure (2.1).

Figure 2.1: Solution to the Fisher’s equation using an explicit method, where
�t = 0:0005, nt = 165 and �x = 0:05
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Although the solution is not very re�ned due to the small number of

nodes along the x-axis, we can begin to see the blow-up at x∗ = 0:5. With

the explicit method we need to take a small �t and many timesteps, to see

the solution blow-up.

Clearly, as blow-up continues the �xed mesh will not be able to resolve

the peak, since the width of the peak may become less than the distance

between the nodes.

2.4 Implicit Method

Since �t is rather restricted in Section (2.3) we now use an implicit method

on a �xed mesh to solve the equation. This is done by discretising the second

order derivative uxx at the forward time. This leads to

(un+1
j � unj )

�t
=

(un+1
j+1 � 2un+1

j + un+1
j−1 )

�x2
+ (unj )2

) un+1
j � �t

�x2

[
un+1
j+1 � 2un+1

j + un+1
j−1

]
= unj + �t(unj )2

which leads to a tridiagonal matrix which can be solved for un+1
j

Aun+1
j = unj + �t(unj )2

where

A =



1 + 2�t
�x2 � �t

�x2 0 � � � � � � 0

� �t
�x2 1 + 2�t

�x2 � �t
�x2 0 � � � 0

. . . . . . . . . . . . . . . . . .

. . . . . . � �t
�x2 1 + 2�t

�x2 � �t
�x2

. . .
. . . . . . . . . . . . . . . . . .

0
. . . . . . . . . � �t

�x2 1 + 2�t
�x2
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This method is more stable. We obtain the solution shown in Figure (2.2),

with larger values of �t.

Figure 2.2: Solution to the Fisher’s equation using an implicit method, where
�t = 0:1, nt = 5 and �x = 0:025

Once again we can observe the solution blow-up at the point x∗ = 0:5. Since

the implicit method is more stable than the explicit one, we can take bigger

�t and fewer timesteps. This makes it less computationally expensive. Even

so, the peak will eventually not be resolved with a �xed mesh.



Chapter 3

Method of Conservation for

Fisher’s Equation

Previously in Sections (2.3) and (2.4) we have seen how a �xed mesh can

be used to investigate the solution to (2.1). From Figure (2.1) and Figure

(2.2), as t ! T we can see a single spike forming around x∗ = 0:5. The

spike is increasing in height and decreasing in width. The width of the spike

will become smaller and smaller as t! T . This means that on a �xed mesh

the width of the spike will eventually be smaller than the size of the mesh.

In this case the numerical method will not be able to resolve the blow-up,

which is why it is essential to use an adaptive method. In this way nodes

can be moved in towards the spike, which can resolve the blow-up solution

more accurately.

For blow-up problems it is natural to use an adaptive mesh procedure,

where mesh points are clustered close to to the region where blow-up oc-

curs, to be able to resolve the solution. Various adaptive procedures have

previously been used, including:

(1) h-re�nement- this is on a static mesh. The mesh is re�ned by adding

10
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nodes to the area where the singularity occurs. This becomes compu-

tationally expensive as the blow-up develops, and its width decreases.

(2) p-re�nement- this is also static. It uses higher order polynomials to

get an accurate representation of the solution. It is more accurate in

each cell than h-re�nement. However, a polynomial will not be able to

model blow-up if it falls between nodes.

(3) r -re�nement- this is a moving mesh method where a �xed number of

nodes are moved into the region where the singularity occurs. The

advantage of this type of re�nement is that it can keep track of the

singularity all the way up to blow-up time. This re�nement is not

expensive to compute, but the solution away from the blow-up can be

poorly tracked as there are fewer nodes in these regions.

To track the solution as it blows up, we will use a moving mesh, aiming to

conserve the relative or fractional area under the curve, as time goes on.

We will use a velocity based method to move the individual nodes at

each timestep, which will track the solution as it blows up. We obtain the

velocities by conserving the mass of each element under the solution curve,

for each timestep.

3.1 Generating Velocities

By dividing the x domain [0; 1] into N regions (xj−1(t); xj(t)); j = 1; 2; ::; N ,

we can obtain the areas in these regions underneath the solution curve by∫ xj(t)

xj�1(t)

u(x; t)dx = areaj (3.1)
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3.3 Recovering new values of u

Since from (3.4) we can deduce that

1

�(t)

∫ xj+1( j +1



Chapter 4

Results for Fisher’s Equation

To investigate the behaviour of the Fisher’s equation using a moving mesh

method, we look at various combinations of �t0 and �x. We use a variable

timestep for reasons of numerical stability. We will have �t varying as t! T .

We take,

�t =
�t0
T � t

however, the downfall with this is that we need an estimation of T. In this

case we will use T � 0:082372 from [2
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Table 4.1: Changing �t0, nr and nt for the Fisher’s Equation

nx �t0 nt T
11 1.71�10−5 200 0.0774
11 8.55�10−6 399 0.0797
11 4.275�10−6 796 0.0806
11 2.1375�10−6 1591 0.0836
21 1�10−5 341 0.0786
21 4.9�10−6 694 0.0793
21 2.45�10−6 1387 0.0807
21 1.225�10−6 2773 0.0824
41 1�10−5 342 0.0812
41 5�10−6 682 0.0835
41 2.5�10−6 1361 0.0847
41 1.24�10−6 2740 0.0836

From (4.1) we can see that when nx = 11 and we decrease �t0 and

increase the number of timesteps nt
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(a) �x = 0:1 (b) �x = 0:05

(c) �x = 0:025

Figure 4.3: Nodes moving in towards the singularity

The images in Figure(4.3) represent the entire domain, x 2 [0; 1]. We

can see how the nodes are moving in towards the singularity which occurs at

x∗ = 0:5. In Figure (4.3,c), we can see how the nodes begin to move extremely

fast towards x∗ = 0:5 on the last iteration, just before T approaches 0:082372.
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Since we have been able to approach the blow-up time T � 0:082372

stated in [2], it would appear that our numerical method is less computa-

tionally expensive than the method in [2].

We now turn our attention to investigations carried out on the chemotaxis

model.



Chapter 5

A Previous Numerical

Investigation of Chemotaxis

We have studied the chemotaxis paper by Budd et al, [1] where they wish to

achieve numerical cmputation of the blow-up time. Budd et al, use a method

of equidistribution to re-space the nodes. this is achieved by using a moving

mesh PDE (MMPDE) and a monitor function.

One of the features of Budd’s paper is the scale invariance of the chemo-

taxis equations, and Budd et al use this idea in relation to the local behaviour

of the blow-up.

5.1 Self-Similarity

We �rst describe the notion of similarity, which will play a part in later

theory. For any PDE connecting the variables u,x and t, if we take a scaling

of these values,

u! u′ = �u

21
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x! x′ = ��x

t! t′ = �t

and if for certain �,  the PDE is invariant, then it is said to be scale-

invariant. The variables x
t�

and u
t

are independent of � and are called simi-

larity variables. Also there may be special ‘self-similar’ solutions of the form

u

t
= f

( x
t�

)
see (5.1).

Figure 5.1: Self-Similarity, from [5]

In [1] it is stated that \In the case of true self-similar blow-up (where the

solution is invariant under the scaling laws which apply to the di�erential

equation) we expect to see the simpler power law relation

u(0; t) (T � t)−1, L(t) (T � t)0:5". Hence in our case we will take  = �1 and

� = 0:5.

Budd et al [1], also state that for the one spatial dimension case of a set of

the chemotaxis equations with no chemical decay and no chemical di�usion,

the blow-up pro�le can be shown to be self-similar, \with the cell concentra-

tion tending to a Dirac-delta function with ‘height’ inversely proportional to
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the time to blow-up"[1].

However, for the two spatial dimension radial case solutions have only

approximate self-similar behaviour, where the solution does not obey the

scaling laws of the PDE. For the three spatial dimension radial case the

blow-up occurs in a self-similar way, therefore obeying a strict power law.

5.2 Moving mesh PDE

Budd et al use a remeshing method. The mesh points are re-allocated by

solving a moving mesh PDE (MMPDE), which is based on the ideas in [7].

Spatial mesh movement is done based upon equidistribution of a monitor

function. The monitor function is chosen so that it is suitable for the nu-
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5.3 Choosing a suitable Monitor Function

According to [1], when choosing a suitable monitor function, several elements

need to be taken into consideration. When updating the mesh points close

to blow-up time, T, it is essential the nodes do not move too fast, otherwise

the resulting system of equations is very sti�. The nodes must not move too

slowly, otherwise the blow-up will not be tracked. They should evolve at the

same rate as the underlying solution. In order to evolve the mesh points at

the correct time-scale a compromise between the above points need to be

made. It is stated in the paper that the monitor function needs to satisfy

M(u) / (T � t)−1

asymptotically, which for the chemotaxis problem can be achieved by using

a monitor function of the form

M(u) = u�

For the 2D Chemotaxis case Budd et al in [1] use

M(u) = u
1
2

and for the 3D case

M(u) = u



5.4. BLOW-UP TIME 25

5.4 Blow-up Time

Budd et al [1] investigate the Keller-Segel model with initial conditions stated

in Chapter 1. It is shown that the solution becomes singular when T �
5:15 � 10−5. Figure (5.2) is taken from [1] and based on [6]. It shows the

Figure 5.2: The behaviour of u in the core region for varying , from [1]

general form of the solution u in the chemotaxis problem as it blows up.

Although Budd et al use the method of equidistribution in [1], for the

chemotaxis problem, we will use a velocity based method as mentioned in

Chapter 3. The mass of each element under the solution curve will be con-

served.



Chapter 6

Method of conservation for the

Chemotaxis Model

For the chemotaxis equations, we will be looking only at the 2D and 3D

radial cases.

6.1 Chemotaxis 2D

For the 2D case the radially symmetric Keller-Segel system of equations (1.1)

in cylindrical polar co-ordinates becomes

ut =
1

r

@

@r

(
r
@u

@r

)
� �1

r

@

@r

(
ru
@v

@r

)

vt =
1

r

@

@r

(
r
@v

@r

)
+ u� v

in (0,R). As in [1] the initial conditions are taken to be

u(r; 0) = 1000e−500r2

26
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v(r; 0) = 10e−500r2

We note from [1] that ∫ R

0

urdr = constant (6.1)

From (
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The singularity occurs close to r = 0, when moving the nodes we want them

to approach this area, so that the singularity can be re�ned. Therefore the

nodes will be moving in from the right boundary into r = 0. This means

that we require the velocity of the nodes to be negative. So we want

s(0) < 0

so we have

s(0) = 1000r
[
1� 10�e−500r2

]
< 0

) 1 < 10�e−500r2

since � = 8 we have

e−500r2

>
1

80

If we take r 2 [0; 0:08], this inequality is satis�ed.

6.1.3 Recovering New r,u and v Values

Now that we know the velocity of the nodes we can calculate their new

position. The change in r
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integrals) ∫ rj+1

rj�1

urdr

is constant in time, equal to its initial value which means∫ rj+1(t)

rj�1(t)

u(t)r(t)dr =

∫ rj+1(0)

rj�1(0)

u(0)r(0)

so by a mid-point rule

rj(t) [rj+1(t)� rj−1(t)]uj(t) = rj(0) [rj+1(0)� rj−1(0)]uj(0)

) uj(t) =
rj(0) [rj+1(0)� rj−1(0)]uj(0)

rj(t) [rj+1(t)� rj−1(t)]

We can also calculate the new values of v. We have that

vt =
1

r

@

@r

(
r
@v

@r

)
+ u� v

in cylindrical polar co-ordinates, but on the moving mesh the new values of

v will have an extra term added due to the movement of the mesh, by the

chain rule. The modi�ed equation is

dv

dt
=

1

r
(rvr)r + u� v + svr (6.2)

(6.3)

= vrr +
1

r
vr + u� v + svr

where dv
dt

is the rate of change of v in the moving frame, which can be dis-

cretised in space and time to give

vn+1
j � vnj

�t
=

(vnj−1
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) vn+1
j = vnj +�t

[
(vnj−1 � 2vnj + vnj+1)

�r2
+

(
1

r
+ snj

)(
vnj+1 � vn
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=

∫ ri

ri�1

r2utdr +
[
r2us

]ri
ri�1

(6.9)

=

∫ ri

ri�1

[
1

r2

@

@r

(
r2@u

@r

)
� 1

r2
�
@

@r

(
r2u

@v

@r

)]
r2dr +

[
r2us

]ri
ri�1

=

[
r2@u

@r
� �r2u
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The new values of v will have an extra term added due to the movement of

the mesh by the chain rule. This is given by

dv

dt
=

1

r2

(
r2vr

)
r

+ u� v + svr

= vrr +
2

r
vr + u� v + svr

which can be discretised in space and time to give

vn+1
j � vnj

�t
=

(vnj−1 � 2vnj + vnj+1)

�r2
+

(
2

r
+ snj

)(
vnj+1 � vnj−1

2�r

)
+ unj � vnj

) vn+1
j = vnj +�t

[
(vnj−1 � 2vnj + vnj+1)

�r2
+

(
2

r
+ snj

)(
vnj+1 � vnj−1

2�r

)
+ unj � vnj

]
(6.10)

We can use (6.10) for interior nodes, but on the left and right boundaries

(6.10) needs to be modi�ed.

Left boundary, j = 1

Since we have Neumann boundary conditions, vr = 0, we introduce a ghost

point r−1 and apply (6.7) at r = 0 with

v1 � v−1

2�r
= 0

) v−1 = v1

However, di�culties arise in applying (6.10) at r = 0. Instead we use the

approximation
1

r2

@

@r

(
r2@v

@r

)
= 3

@2v

@r2

see [3].
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Now we have the following equation at the left hand boundary

vt = 3vrr + u� v + svr

and, after discretisation in time and space we obtain

vn



Chapter 7

Chemotaxis Results

7.1 Chemotaxis 2D

We considered the 2D chemotaxis problem and looked at how the solution

was a�ected by

� an increase in spatial nodal values, (nr)

� decreasing the timestep, (�t)

� increasing the number of timesteps,(nt), as the size of �t decreases

7.1.1 Changing �t, nr and nt

We looked at the results for u(r; t), v(r; t) and the change in r to see how

they were a�ected by taking di�erent combinations of �t, nr and nt.

38
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Table 7.1: Changing �t, nr and nt for the 2D chemotaxis problem

nr �t nt T
11 4�10−7 106 4.24�10−5

11 2�10−7 212 4.24�10−5

11 1�10−7 425 4.25�10−5

11 5�10−8 852 4.26�10−5

21 4�10−7 75 3�10−5

21 2�10−7 165 3.3�10−5

21 1�10−7 362 3.62�10−5

21 5�10−8 785 3.925�10−5

41 4�10−7 52 2.08�10−5

41 2�10−7 112 2.24�10−5

41 1�10−7 253 2.53�10−5

41 5�10−8 588 2.94�10−5

From Table (7.1) we can see that by �xing �r and decreasing �t we can

take more timesteps. With this the blow up time increases.

By increasing nr and keeping �t we need fewer timesteps for blow-up.

However, the blow-up time is decreasing.
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7.1.2 Solution of u(r; t)

To begin with we are interested in the evolution of the cell density,u(r; t),

throughout the time period. Although the numerical calculations were car-

ried out on r 2 [0; 0:08], we have only plotted for a smaller region as to see

a re�ned version of the solution. This is shown in Figure(7.1)

(a) nr = 11 (b) nr = 21

(c) nr = 41

Figure 7.1: Blow-up of u(r; t), for a 2D Chemotaxis System

From Figure(7.1) we can see in all �gures that as we approach r = 0 the
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solution begins to blow-up. As the size of the timestep �t is decreased and

the number of timesteps nt is increased, the solution will blow-up more. This

is true for all cases in Figure(7.1).

As we increase the number of spatial nodes nr, the overall blow-up be-

comes less. We can see in Figure(7.1.a) where nr = 11 that the solution

blows-up to 4 � 106. In Figure(7.1.b) where nr = 21 the solution blows-up

to 2:5� 104.

An advantage of using more nodes is the re�nement away from the blow-

up. Although the nodes are moving in towards the singularity, when the

number of nodes is increased we can obtain more information away from the

blow-up, than when the number of spatial nodes is decreased.
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7.1.3 Solution of v(r; t)

As the cell density u(r; t) blows up over time, we are interested to see what

role the the concentration of chemical substrate v(r; t) has in the blow-up of

the solution. We look at the solution of v(r; t) when there are 21 nodes.

(a) �t = 2x10−7, nt = 168 (b) �
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they are in Figure(7.3.c). However, we can see in Figure(7.3.c) that through-

out the evolution as the nodes get closer and closer to the singularity, there

are fewer nodes away from the blow-up point. This means that if there is any

interesting behaviour in this area then it will not necessarily be detected.
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7.1.5 A Numerical Self-Similarity Property

For self-similar behaviour Budd et al [1] expects the power law relation to

be L(t) (T � t)0:5. Although Budd states that the 2D case is "‘not strictly

self-similar"’[1], we found that in our results r
t�

was eventually almost self-

similar.

Figure 7.4: Self-similarity of r
t�

for 2D Chemotaxis, where �t = 2 � 10−7,
nt = 165 and nr = 21
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7.2 Chemotaxis 3D

7.2.1 Changing �t, nr and nt

From Table(7.2) we can see that by �xing �r and decreasing �t we can take

more timesteps. With this the blow up time increases. By increasing nr and

keeping �t we need fewer timesteps for blow-up. However, the blow-up time

is decreasing.

Table 7.2: Changing �t, nr and nt for the 3D chemotaxis problem

nr �t nt T
11 4�10−7 63 2.52�10−5

11 2�10−7 127 2.54�10−5

11 1�10−7 255 2.55�10−5

11 5�10−8 511 2.555�10−5

21 4�10−7 65 2.6�10−5

21 2�10−7 130 2.6�10−5

21 1�10−7 260 2.6�10−5

21 5�10−8 530 2.65�10−5

41 4�10−7 47 1.88�10−5

41 2�10−7 100 2�10−5

41 1�10−7 230 2.3�10−5

41 5�10−8 495 2.47�10−5
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7.2.2 Solution of u(r; t)

We will again look at the evolution of the cell density, u(r; t), throughout

the time period as we approach a blow up solution. In (7.5) we can see the

(a) nr = 11 (b) nr = 21

(c) nr = 41

Figure 7.5: Blow-up of u(r; t
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In the 3D case, it takes fewer timesteps (for the same �t in the 2D case),

for the solution to blow up, although the solution does not blow-up as much.

By increasing the number of spatial nodes (nr), we see the maximum that

u(r; t) reaches is higher in (7.5.b), where nr has increased. However, u(r; t)

has a smaller maximum in (7.5.c), where the nx is greater than (7.5a and b)
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7.2.3 Solution of v(r; t)

We again want to see the e�ect that the concentration of the chemical sub-

strate v(r; t), has on the cell density u(r; t), as the solution blows up. We

look at v(r; t), when we have 41 spacial nodes. We see in Figure(7.6), that

(a) �t = 2x10−7, nt = 102 (b) �t = 1x10−7, nt = 230

(c) �t = 5x10−8, nt = 479

Figure 7.6: Solution of v(r; t), when nr = 41, for a 3D Chemotaxis System

v(r; t
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7.2.4 Movement of the Nodes

We will look at the nodes moving when nr = 41 In Figure(7.7) we can see

(a) �t = 2x10−7, nt
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up, which can not be done as well in Figure(7.3)where there are fewer nodes.

7.2.5 A Numerical Self-Similarity Property

For self-similar behaviour Budd et al [1] expects the power law relation to

be L(t) (T � t)0:5. By using setting � = 0:5, we do eventually see an almost

self-similar behaviour for the 3D case

Figure 7.8: Self-similarity of r
t�

for 3D Chemotaxis, where �t = 2 � 10−7,
nt = 130 and nx = 21.

7.3 Comparison Between 2D and 3D Chemo-

taxis

The main point to notice from Table(7.1)and(7.2) is that by comparing the

solutions where �r and �t are the same, we see that the 3D case requires
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fewer timesteps to blow-up. This means that the blow-up time is less in the

3D case.

We would have expected that in both cases, that as nx is increased, the

solution u(r; t) would reach a higher value than the previous nx. However,

this has not been the case. An explaination for this could be that as we

increase nx the rounding error propogates. Or another possible reason is

that numerical di�usion is causing the solution to be smeared out. This could

explain why the solution in Figure(7.5) begins to increase as nx increases,

but then decreases in Figure(7.5.c).

Budd et al [1] expected to see self-similar behaviour for the 3D chemotaxis

case, which we are in agreement with. However, we also observe self-similar

behaviour in the 2D case, which is not in line with [1].



Chapter 8

Conclusion

8.1 Discussion of the Project

To begin with we used the Fisher’s equation to investigate the existence of

blow-up. We found that by using a �xed mesh to numerically compute the

solution to the Fisher’s equation, that blow-up did exist. However, it became

apparent that as the solution reached a higher blow-up point, the �xed mesh

would not be able to resolve the solution further. From this we discussed

the di�erent types of adaptive mesh procedures and decided a moving mesh

method would be useful to resolve our solution as it converged. The moving

mesh method used would conserve the relative area underneath the solution

curve. In turn we could generate nodal velocities. The nodes could then

be moved in towards the blow-up point. This method was applied to the

Fisher’s equation. With this method we were able to approach the blow-up

time that Budd et al had stated in [2], which was T � 0:082372. We believe

that our method is computationally less expensive than the method used in

[2].

Our main interest in the problem was to numerically compute the solution

54
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to a system of PDEs called the Keller-Segel model. This system is used to

model chemotaxis. In [1] this system had been investigated using a moving

mesh method. The method in this paper used a MMPDE to determine the

position of new nodes, using a monitor function to adequately track the

solution. To make comparisons with [1] we used the same model and initial

data, but we applied the method of conservation to move the mesh, as was

previously described for the Fisher’s equation.

We found that as we decreased �t and increased the number of timesteps

the blow-up time increased. However, by increasing nr in many circum-

stances the value of u(r; t) decreased. There could be many explainations for

this, which were discussed in the results chapter. Another explaination for

this could have been the Robin bounary conditions we had on the right hand

boundary in Chapter(6). Since the solution becomes at at this boundary

we could have used extrapolation to obtain the solution on the boundary.

However, it was found that this had no e�ect on the solution.

8.2 Further Work

To complete this project there are some details which could be investigated

in further work. Since we are dealing with a Biological problem it would be

interesting to apply realistic numbers to the problem. This way we could

make comparisons with experimental data to determine how e�ective our

numerical approach is.

The chemotactic coe�cient � seems to hold a lot of relevance. It would

be an idea to investigate how this coe�cient e�ects the overall result in order

to understand its importance.

We saw that as the solution to u(r; t) blew up the solution to v(r; t)

remained the same. If we made changes to the initial data we may see a

change in how these functions depend on one another.
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Some of the solutions were not very smooth. We could use smoothing

of the mesh to gain better approximations of the results, and return more

meaningful results.
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