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Abstract

Due to the wide usage of numerical models in Meteorology it is essential reduce

model errors to get better predictions. The model errors are due to space and time-

differencing. The model errors are considered separately with the main focus of

the paper on time-differencing schemes. The Asselin-filtered leapfrog scheme, the

proposed modified filters and the Adams-Bashforth family of scheme
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of the globe where observations cannot easily be made. Therefore it depends on the

area of the atmosphere you are modelling in order to get accurate initial data. How-





1.3 Aims

In this dissertation we will only consider time-differencing schemes and will not con-

sider different space-differencing schemes. This is done to isolate the time-stepping

errors. The aims are:

• To implement a number of time-differencing schemes in a simple nonlinear



Chapter 2

Time-Differencing Schemes

In this Chapter we discuss various time-differencing schemes. We first consider the



that we are after. The actual solution is known as the physical mode. Depending on

the problem being solved the computational mode can cause the numerical solution

to grow exponentially. The rate at which this occurs depends on the time step ∆t.

Towards the end of the numerical integration the numerical solution deviates further

away from the actual solution. The reason for this is the integration goes from the

tn−1 time point to the tn+1 time point and misses out at even and odd time steps the

tn time point. By missing out the tn time point this causes the numerical solution

to drift apart as you step forward through the integration and as result generates

the so-called computational mode. The simple leapfrog scheme is unstable but can

be stabilised using the Robert-Asselin filter.

2.1.1 Leapfrog Scheme with Robert-Asselin Filter

The Robert-Asselin filter was designed specifically for the leapfrog scheme in 1966

by Robert and in 1972 Asselin showed that it dampens the computational mode but

leaves the physical mode relatively undamped [1][6][7]. Since then it has become

known as the Robert-Asselin filter. After each leapfrog step, the filter mixes solu-

tions from three consecutive time points at tn−1, tn and tn+1 which can seen from

Figure 2.1. The solution at the inner point at time tn is displaced by

d =
ν

2
[xn−1 − 2xn + xn+1] (2.2)

where ν is the filter parameter and the values xn−1, xn and xn+1 correspond to the

time points tn−1, tn and tn+1 respectively. Typically the filter parameter is taken to

be 0.01. In Chapter 4 we will see the importance of the filter parameter ν.

The leapfrog scheme with the Robert-Asselin filter suffers from num



Figure 2.1: Comparison between the (a) the standard Robert-Asselin filter and (b)



2.2.1 First-Order



xn−2. The third-order Adams-Bashforth method is an explicit scheme that requires

one function evaluation per time step. The only potential problem is the storage

requirements that prove to be a problem with all higher order schemes. Using the

third-order Adams-Bashforth method eliminates the computational mode without

introducing any other parameters [3].

9



Chapter 3

Model Description

In this Chapter we will discuss the QUAGMIRE v1.3 model that will be used to test

the behaviour of the time-differencing schemes outlined in Chapter 2. We will look

at the model equations along with the assumptions that have been made. Also, we

will look at initialising the model to gather suitable initial conditions.

3.1 QUAGMIRE v1.3

QUAGMIRE v1.3 is a quasi-geostrophic model that performs high-resolution sim-



may grow due to baroclinic instability. Baroclinic instability being an important

mechanism that influences mid-latitude synoptic scale patterns that cause initial

disturbances. These disturbances or perturbations are wave-like features that grow

and decay with time.

Figure 3.1: Two layer diagram showing the interface between the two layers where
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Parameter Meaning

ψ1 Stream function in the upper layer (layer 1)

ψ2 Stream function in the lower layer (layer 2)

q1 Potential vorticity in the upper layer (layer 1)

q2 Potential vorticity in the lower layer (layer 2)

Ω Angular velocity

f Coriolis parameter (usually 10−4) for mid-latitudes)

H Scale height

g Acceleration due to gravity

g
′

Reduced gravity

ν1 Kinematic viscosity in the upper layer (layer 1)

ν2 Kinematic viscosity in the lower layer (layer 2)

r Polar coordinate

θ Polar coordinate

z Polar coordinate

χ1 Perturbation potential vorticity in the upper layer (layer 1)

χ2 Perturbation potential vorticity in the lower layer (layer 2)

∇ Laplacian operator

Table 3.1: Physical parameters used in the nonlinear model
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The horizontal grid points are shown in Figure 3.2. For the mid-latitudes, normally

30o − 60oN if the Northern hemisphere atmospheric jet stream is being represented

or 30o − 60oS if the oceanic Antarctic Circumpolar Current is being represented.



• Atmosphere in hydrostatic balance.

• Ekman layer depths << scale height H.

• Rossby number << 1.

• Reduced gravity g
′

<< g

The first initial assumption is to assume incompressible fluids. This means when you



3.4 Initialisation

The model uses a leapfrog time-stepping scheme with a Robert-Asselin filter. We

may refer to this as the default time-stepping scheme. The Robert-Asselin filter ν is

taken to be 0.01 and a time step ∆t = 0.0008 is used (in suitable units which are not

of interest here). The model was run initially until the amplitude of the baroclinic





Chapter 4

Numerical Results

In this Chapter we will compare the results from the time-differencing schemes that

we have implemented in the QUAGMIRE v1.3 model. We will look at the associated

amplitude errors with the schemes.

4.1 Leapfrog with Robert-Asselin Filter

We will first begin with the default time-stepping scheme in the model by varying

the filter paramater ν. By only changing ν it helps to determine the affect the filter

parameter has on the results. We will consider the standard filter and modified

filters in turn.
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4.1.3 Modified Filter α = 0

Finally, the modified filter with α = 0 only displaces the outer point. This scheme is

unconditionally unstable. Once ν > 0.7 the model becomes unstable and terminates.

This scheme is equal and opposite to the standard filter when α = 1. The amplitude

at the end of the integration decreases as ν increases. This can be seen from Figure

4.7 and 4.8. The ringing is apparent at the start of the time integration for the

larger ν. Figure 4.9 shows the final amplitude decreasing as ν increases which does

agree with the linear theory because equation 4.1 gives an amplitude error less than

1.
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4.2 Adams-Bashforth Schemes

We shall now consider the Adams-Bashforth schemes which we will run from the

initial conditions set by the default scheme.

4.2.1 First-Order

The first-order Adams-Bashforth scheme becomes unstable before the end of the



4.2.2 Second-Order

We know the first-order Adams-Bashforth method is unstable so we shall now use

the second-order method. Using the default time step ∆t = 0.0008 the scheme is

stable over the whole integration. Figure 4.11 shows as the time step increases the

final amplitude also increases. The amplitude increases more rapidly for larger ∆t.

This is correct with the linear theory as the associated amplitude error suggests an

increase in amplitude [3]. This is given by

|A| = 1 +
ω4∆t4

4
(4.3)

where ∆t is the time step and ω is the angular frequency. We will derive the

amplitude error in Section 4.3.





4.3 Deriving Amplitude Errors





the amplification factor |A| and the correct value [2].

The exact solution to equation 4.5 is

F (t) = F (0) exp(iω∆t) (4.17)

with an amplification factor of

|Aexact| = exp(iω∆t) (4.18)

As we increase the numerical resolution by making ∆t→ 0 then |A+| → 1, |A−| → 0

and |A



4.4 Combined Leapfrog and Forward Step

We have so far implemented a leapfrog with a Robert-Asselin filter and a first-order

Adams-Bashforth method separately.

We will now combine the leapfrog scheme and a simple forward scheme to see
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Chapter 5

Sensitivity Tests
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When taking the forcing and dissipation from the model and applying only advection

the oscillations become more irregular and the wave amplitudes do not grow as large.

Figure 5.3 shows that the amplitudes of the three case of α perfectly map each other

until the final stages of the integration. At this point the phase and amplitudes of

the waves begin to deviate.
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Chapter 6

Conclusion

In this final Chapter we shall conclude the dissertation by summarising the results

from the QUAGMIRE v1.3 model from all the different time-differencing schemes

used throughout. The benefits and costs of the schemes for NWP models and the

future work that needs to be undertaken to take this area of Meteorology to the

next level.

6.1 Summary

The aim of this dissertation was to implement a number of time-differencing schemes

in a simple nonlinear numerical model and compare the time step errors in the

schemes with the predictions of simple linear analysis. Then finally deciding whether

the schemes could be implemented into existing NWP models.

We have implemented a number of time-differencing schemes into the nonlinear

QUAGMIRE v1.3 model. The development of baroclinic waves in the model indicate

a good resemblance between the model and laboratory. This indicates that the



was then tested for the three cases of α
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6.2 Future Work

In the future it would be beneficial to implement and employ more time-differencing

schemes into the QUAGMIRE v1.3 model to understand a wider concept of possible

schemes that could be used in NWP models. Above all, not every scheme will be

perfect, but by analysing the benefits and costs of the schemes it may be possible to

determine if the scheme should and could be employed into existing models. If the
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