
MSc Dissertation

Analysis of Integral Operators from Scattering

Problems

Edmund Ridley

August 20, 2006

i

Acknowledgements

I would like to acknowledge Dr. Marko Lindner and Dr. Stephen Lang-

iii CONTENTS

Contents

1 Introduction 1

2 Background 3

2.1 The Wave Scattering Problem 4

2.2 Literature Results . 8

3 A Brief Outline of Norms 9

4 Upper Bounds on ||S||Lp 10

4.1 The Single Layer Potential . 11

4.2 The p = 1 Norm Single Integral 12

4.3 The p =∞-norm Single Integral 13

4.4 Double Integral for the One and Infinity Norms 15

4.5 Other Upper Bounds On ||S||Lp for p ∈ (1,∞) 19

5 Lower Bounds on ||S||Lp 22

6 Numerical Methods for the Lower and Upper Bounds 23

6.1 Gaussian Quadrature . 25

6.1.1 Legendre Polynomial 26

6.2 How Gaussian Quadrature Works in 1-D 26

6.2.1 Example . 27

6.2.2 2-D Gaussian Quadrature 28

6.3 Testing the Method . 29

6.4 Evaluating the Single Integral 30

7 Speeding Up the Code 32

iv CONTENTS

7.1 For Loops vs Vectors and Matrices 32

7.2 Graded Mesh - The Duffy Transformation 34

7.3 The Duffy Transformation for Piecewise Constants 38

8 Results 39

8.1 1-norm and the ∞-norm . 40

8.2 The 2-norm . 44

9 Conclusion 45

10 Future Work 46

10.1 Lower Norms . 47

10.2 Further Research into the Two Norm 47

10.3 Looking at the Operator A 48

vi LIST OF TABLES

8.1 Approximation to the 1-norm for the Circle as k →∞ using

the Single Integral . 41

8.2 Results for the 1-Norm as k → ∞ for y(τ) = (2 cos τ, sin τ)

using the Single Integral . 42

8.3 Approximations for the 2-Norm as k →∞ for y(τ) = (2 cos τ, sin τ)

using the mid-point of the lower and upper bounds 43

8.4 Approximations for the 2-Norm as k →∞ for the circle using

the mid-point of the lower and upper bounds 43

2 Introduction

manipulation of the operator A using theory from projection methods in [9]

we state why the norms of ||A|| and ||A−1|| are crucial in finding out about

the behaviour of the error in the solution (i.e. ||φ− φn||).

This project looks at the single layer potential (2.8), which is a key part

of the operator A, and is an important first step into looking at the operator

A as a whole. The choice of investigating A instead of A−1 is that much

work has been done on the inverse operator such as in the paper [1], and less

is known about A. In looking at the operator S, we analyse ||S|| in Lp space

(i.e. ||S||Lp). We establish upper (Section 4) and lower bounds (Section 5)

on ||S||Lp . We start by looking at two special cases where p = 1 and p =∞

as these provide us with upper bounds on ||S||Lp for 1 < p <∞. These two

cases fortunately have explicit formulae for ||S||Lp , unlike for p = 2. The

explicit formulae are also single intergrals, whereas for the 2-norm we are

required to compute a double integral. Although, we also discuss how it is

possible to use the more complicated double integrals for the 1-norm and

∞-norm to approximate ||S||Lp . After this we discuss two upper bounds,

one of which is found by manipulation of ||S||Lp and another which is found

by use of the Riesz-Thorin interpolation formula. With these upper bounds,

and other arguments that give us ||S||Lp being symmetric about p = 2 and

also p = 2 being a global minimum, we are able to combine these upper

bounds to provide us with the figures towards the end of Section 4..

The next stage is to look at the lower bounds of ||S||Lp , which is done

in Section 5. In particular in this section we look at ||S||
L2 , for the reason

that it is then possible to make direct comparisons with results from [3] and

[1]. These results being on various shapes, such as a circles and convex ob-

jects with a smooth boundary (both of which are looked at here) in [3] and

polyhedra in [1]. In looking at the lower bound for ||S||L2 , we numerically

3 Background

compute
||Su||

L
2

||u||L2
, where we seek to find a u such as our numerical approxi-

mation gives a value close to the real value of ||S||
L2 . This lower bound can

then be combined with the upper bound to provide us with the figures in

Section 8 and Section 9.

In Section 6 we then talk about the numerical methods used to compute

these upper and lower bounds. Gaussian quadrature is introduced here, and

an example is used to give an idea into how it works. Also, we include some

equations which test the method (and the code) to indicate how Gaussian

quadrature converges with n (the number of Gaussian quadrature points)

going to infinity. With Section 7 continuing this numerics by discussing how

it is possible to speed up the code in MATLAB with the use of vectors and

matrices. Then we go on to discuss one way to use the quadrature points

more effectively by use of a graded mesh, with at the same time taking

consideration of the singularity.

Next we have Section 8 on the results that have been obtained. With a

table showing how our numerically approximated ||S||
L2 changes as k →∞.

Also here we include figures of the lower and upper bounds as k increases.

Then we go on to our conclusions and relate then to literature, and finally

future work which would be the next stages if more time was available.

2 Background

There is much theory on wave scattering, and hence here is a condensed and

brief outline of the general problem for the direct scattering problem. That

is, the problem of finding the scattered field after a wave has hit an object,

when the incident wave is known.

5 Background

with JR(x) being a Bessel function of the first kind and YR(x) being a

Bessel function of the second kind (also known as the Neumann function).

6 Background

becomes ∫
Γ

∂φ(x, y)
∂n(x)

∂u(y)
∂n

ds(y)− ∂u(x)
∂n

, x ∈ Γ

(see [8] and [7]). By multiplying (2.4) by iη and adding (2.5), then multi-

plying all through by 2 we get,

∂u(x)
∂n

+ 2
∫

Γ
{∂φ(x, y)

∂n
+ iηφ(x, y)}∂u(y)

∂n
ds(y) = f(x), x ∈ Γ, (2.6)

where f(x) = 2
(

∂ui

∂n + iηui(x)
)

. Thus we have our unknown

∂u

∂n

and the following integral equation,

(I −B)
∂u

∂n
= f. (2.7)

Then denoting

Bv =
∫

Γ
Rk · v

where

Rk = 2
[

∂φ(x, y)
∂n(x)

+

7 Background

to solve, where A = I + 2(D + iηS) = I−B, and we seek the solution φ. To

solve (2.1) numerically one can use a projection method, such as the Galerkin

and collocation methods. Writing the problem as Aφ = (I − B)φ = f then

we can look at how projection methods can be used to look at the error

analysis of this problem. From Section 3 in [9] there is much description

on precisely how the projection methods can be used to look at the error

analysis. We will take the key outline of the argument relevant for the

problem that has been looked at in this project.

We have a projection operator Pn which when applied to (2.10) we have,

PnAφn = Pnf

and hence

Pn(I −B)φn = Pnf (equation (3.1.24) in [9]).

Noting that Pnφn = φn, we can then write,

(I − PnB)φn = Pnf (equation (3.1.25) in [9]),

where the An = (I −PnB). An is determined by the method. Therefore we

now have,

Anφn = Pnf, i.e. φn = A−1
n Pnf.

We are interested in φn since this is our approximation to the solution φ,

and thus knowledge of A−1
n is also of interest. Using equation (3.1.27) from

[9] we can write that,

An = A[I + A−1(B − PnB)].

Then using Theorem 3.1.1 in [9] and assuming that ||B − PnB|| → 0 as

n→∞ we can say that A−1
n exists and is also bounded (i.e. ||A−1

n || <∞ for

sufficiently large n). Information about the operators A and A−1 can tell

8 Background

us about An and A−1
n , and hence tell us something about how φn depends

on k. For our particular problem we can use the Theorem 3.1.1, and the

equations (3.1.30) and (3.1.31) to say that,

1
||An||

||φ− Pnφ|| ≤ ||φ− φn|| ≤ ||A−1
n ||||φ− Pnφ||.

This gives us upper and lower bounds for the error term norm, ||φ − φn||.

In this project we are concentrating on a part of the operator A. We are

looking at the operator S, our single layer potential. Using this is the first

step in investigating the norm of A, ||A||. Much work has been done on the

inverse in such papers as [3] and [1]. Information on ||A|| is not so vast, with

this project giving a first stage on how to tackle ||A||. Also, of great interest

is to know the condition number of A,

cond A := ||A|| · ||A−1||.

The condition number indicates how much a change in f effects the ap-

proximate solution φn. A large condition number represents a large change,

and hence a small amount of error in f creates a big error in the solution.

Clearly, knowledge of ||A||

9 A Brief Outline of Norms

much of the results gathered have been on ||A−1||. These results include

||A−1|| ≤ 2 (for sufficiently large k) for a circle shown in [3] and an upper

bound for ||A−1|| for polyhedra in [1].

3 A Brief Outline of Norms

A set X with an operation + is a linear space if x + y ∈ X, αx ∈ X ∀α ∈

C,∀x, y ∈ X and the following axioms hold:

• x + y = y + x

• (x + y) + z = x + (y + z)

• ∃0 ∈ X such that 0 + x = x ∀x ∈ X

• ∀x ∈ X∃“− x” ∈ X such that x + (−x) = 0

• (α + β)x = αx + βx

• α(x + y) = αx + αy

• 1 · x = x, ∀x ∈ X

If X, Y are linear spaces and A : X → Y is a map with,

• A(x + y) = Ax + Ay, ∀x, y ∈ X

• A(αx) = α ·Ax, : ∀α ∈ C, x ∈ X

then we call A a linear operator from X to Y .

A linear space X is called a normed linear space if there is a map ||.|| :

X −→ R+ such that

• ||x|| ≥ 0, ∀x ∈ X with ||x|| = 0⇐⇒ x = 0

• ||αx|| = |α| · ||x||, ∀α ∈ C, x ∈ X

10 Upper Bounds on ||S||Lp

• ||x + y|| ≤ ||x||+ ||y||, ∀x, y ∈ X.

Examples of some linear spaces with norms are

1. X = Rn with ||(x1, ..., xn)|| = p
√
|x1|p + ... + |xn|p where p ∈ [1,∞).

• For p = 2, we have the Euclid Norm ||(x1, x2)|| =
√
|x1|2 + |x2|2

2. X = Rn with

||(x1, ..., xn)|| = max{|x1|, ..., |xn|}

= lim
p→∞

p
√
|x1|p + ... + |xn|p

3. X = Lp[0, 1] with ||f || = p

√∫ 1
0 |f(t)|p

11 Upper Bounds on ||S||Lp

4.1 The Single Layer Potential

This project will be concentrating on the single layer potential operator,

(Su)(x) =
∫

Γ
H

12 Upper Bounds on ||S||Lp

If ||u|| = 1 we have

||S|| = sup
||u||=1

||Su||

hence

13 Upper Bounds on ||S||Lp

Then parameterising this gives,

||Su||
L1 (Γ)

=
∫ 2π

0

(∫ 2π

0
|κ(t, τ)||y′(t)|dt

)
|u(τ)||y′(τ)|dτ

≤

(
sup

τ∈[0,2π]

∫ 2π

0
|κ(t, τ)||y′(t)|dt

)∫ 2π

0
|u(τ)||y′(τ)|dτ

= M1||u||L1 [0,2π]
,

where

M1 := sup
τ∈[0,2π]

∫ 2π

0
|κ(t, τ)||y′(t)|dt.

We can choose appropriate functions (as shown in section(4.4)) so that this

M1 is the smallest M1 ≥ 0 and hence we can write,

||S||
L1 (Γ)

= sup
τ∈[0,2π]

∫ 2π

0
|κ(t, τ)||y′(t)|dt. (4.6)

The advantage of (4.6) compared to (4.4) is not only that it is a single

integral and thus less costly to numerically compute, but more importantly

there is no u term. This means it is not needed to look for a u, as is required

when computing (4.4).

(Results computed using (4.6) can be seen in Table 8.1 and Table 8.2).

4.3 The p =∞-norm Single Integral

As with the one norm we can perform some manipulations on (4.2) to obtain

||Su||L∞ [0,2π] ≤M∞||u||L∞ [0,2π].

We have

||Su||L∞ (Γ) = sup
x∈Γ
|(Su)(x)|

= sup
x∈Γ

∣∣∣∣∫
Γ

κ(x, y)u(y)ds(y)
∣∣∣∣

≤ sup
x∈Γ

∫
Γ
|κ(x, y)||u(y)|ds(y)

14 Upper Bounds on ||S||Lp

Taking the supremum of |u(y)|, it can then be taken out of the integral such

that,

||Su||L∞ (Γ) ≤
(

sup
x∈Γ

∫
Γ
|κ(x, y)|ds(y)

)(
sup
y∈Γ
|u(y)|

)
Then parameterising we have,

||Su||L∞ [0,2π] =

(
sup

t∈[0,2π]

∫ 2π

0
|κ(t, τ)||y′(τ)|dτ

)(
sup

τ∈[0,2π]
|u(τ)|

)
and hence as required,

||Su||L∞ (Γ) = M∞||u||L∞ (Γ)

where

M∞ := sup
t∈[0,2π]

∫ 2π

0
|κ(t, τ)||y′(τ)|dτ.

This can be shown to be the smallest M∞ ≥ 0 (as shown in Section(4.4))

and therefore we have,

||S||L∞ (Γ) = sup
t∈[0,2π]

∫ 2π

0
|κ(t, τ)||y′(τ)|dτ. (4.7)

As with the single integral for the one norm, this gives us the same advan-

tages. In fact, because of the symmetry of the Hankel function we have

that,

||S||
L1 (Γ)

= sup
y∈Γ

∫
Γ

∣∣∣∣ i

4
H1

0 (k|x− y|)
∣∣∣∣ ds(x)

= sup
y∈Γ

∫
Γ

∣∣∣∣ i

4
H1

0 (k|y − x|)
∣∣∣∣ ds(x)

= sup
x∈Γ

∫
Γ

∣∣∣∣ i

4
H1

0 (k|x− y|)
∣∣∣∣ ds(y)

= ||S||L∞ (Γ),

so M1 = M∞. More generally we have the result

||S||Lp = ||S||Lq , if
1
p

+
1
q

= 1 (4.8)

for all p ∈ [1,∞]. This means that ||S||Lp is symmetric about p = 2 (in the

sense that p = 2 is the mid-point of the interval [1,∞]), which will be used

later on.

15 Upper Bounds on ||S||Lp

4.4 Double Integral for the One and Infinity Norms

Although we have the single integrals for the 1-norm and the∞-norm, (4.6)

and (4.7) respectively, it is also possible to compute them accurately using

the double integral (4.4). Simplifying this as a matrix problem we have,

Su =

← τ →

↑

t K

↓

u

,

where K = κ(t, τ)|y′(τ)|. The 1-norm corresponds to the maximum column

sum and the ∞-norm corresponds to the maximum row sum of K.

Equation (4.4) for p = 1 is

||S||
L1 (Γ)

= sup
||u||

L
1 =1

∫ 2π

0

∣∣∣∣∫ 2π

0
κ(t, τ)u(τ)|y′(τ)|dτ

∣∣∣∣ |y′(t)|dt (4.9)

With the 1-norm being equivalent to a column sum, we need to find the

value of τ say τ ∗ where this is greatest. Thus, by choosing u such that it

16 Upper Bounds on ||S||Lp

6

-

1

aj bj

τ
2π

u

0

Figure 4.1: u Chosen for the One Norm

Thus, to keep ||u||
L1 = 1 we are required to divide by

∫ bj

aj
|y′(τ)|dτ . Trying

N different u with just one piecewise constant where u = 1 over the interval

[aj , bj] for j = 1, ..., N , and u = 0 over the rest of the interval (i.e. [0, aj]

and [bj , 0]). For each u,∫ 2π

0

∣∣∣∣∫ 2π

0
κ(t, τ)u(τ)|y′(τ)|dτ

∣∣∣∣ |y′(t)|dt.

needs to be divided by ∫ bj

aj

|y′(τ)|dτ.

We then take the largest value and this is the approximation for ||S||
L1 .

Then as N is increased the approximation improves.

Table 4.1 shows that as N (which concentrates u on a smaller and smaller

part of K(t, τ)) increases the values given by the double integral become

closer to the single integral value (in Table 8.2).

With the ∞-norm being the maximum row sum, it is required to find a u

such that

||u||L∞ (Γ) = sup
τ∈[0,2π]

|u(τ)| = 1 (4.11)

and which ‘picks’ out the maximum row sum. The maximum row sum can

be found in this case by using the single integral. This is used by choosing

17 Upper Bounds on ||S||Lp

No. of Piecewise k = 1 k = 2

Constants

1 0.8324275994 0.23012335522458

2 1.0414252323 0.49073840309276

4 1.4298599218 0.71693171534810

8 1.5807037799 1.09042637401177

16 1.6554936274 1.15937045669100

32 1.6839774230 1.21630454860917

64 1.6925392013 1.23577686095915

128 1.6950365160 1.24129630635884

256 1.6957527179 1.24283441218079

Table 4.1: Values of (4.4) for y(τ) = (2 cos τ + sin τ)

many t, and remembering the value of t say t∗ where the single integral is

largest. This value of t∗ indicates the row which has the maximum sum.

Choosing a u which then multiplies each entry in such a way that this is

maximised would give the required u to find ||u||L∞ (Γ). Hence, since it is

only necessary for the supremum of the |u| to be one it is possible to let

all |u| = 1. Splitting u into piecewise constants, and choosing the piecewise

constants such that they return the maximum real positive value. This

means each K(t∗, τ) needs to be multiplied by

Uj =
|K(t∗, τ)|
K(t∗, τ)

,

where the Uj is the jth piecewise constant, where j = 1, ..., N as with the

1-norm. Therefore, in this case the real and imaginary part of u would look

19 Upper Bounds on ||S||Lp

Number of Piecewise k = 1 k = 2

Constants

1 1.02268644630414 0.36106346459050

2 1.31546183059806 0.58603913271996

4 1.49238353781992 0.81049822013627

8 1.62799322382511 1.09309495375556

16 1.66182296004815 1.17544163253251

32 1.68166215056378 1.22204280535008

64 1.68608506923276 1.23270470271323

128 1.68792226061701 1.23673616359326

256 1.68834810758787 1.23767714177830

512 1.68852172630963 1.23802042310760

Table 4.2: Values of (4.12) for y(τ) = (2 cos τ, sin τ)

4.5 Other Upper Bounds On ||S||Lp for p ∈ (1,∞)

The p = 2 norm has the most interest and it would be good to see how the

||S||
L2 changes as gF15 (,)]T255 Tf 20.811 0 Td[(p)]TJ/F40 11.955 Tf 9.196 0 Td[(2)]TJ/F17 11.955 Tc939 5.978 Tf 5hanges as

20 Upper Bounds on ||S||Lp

and the Hölder Inequality for Integrals (taken from [4])∣∣∣∣∫ b

a
f(x)g(x)dx

∣∣∣∣ ≤ [∫ b

0
|f(x)|cdx

] 1
c
[∫ b

a
|g(x)|ddx

] 1
d

if
1
c

+
1
d

= 1, c > 1, d > 1.

we get

||Su||Lp
(Γ) ≤

(∫
Γ

[(∫
Γ
|κ(x, y)|qds(y)

) 1
q
(∫

Γ
|u(y)|pds(y)

) 1
p

]p

ds(x)

) 1
p

with

||u||Lp =
(∫

Γ
|u(y)|p

) 1
p

.

Then

||Su||Lp
(Γ) =

(∫
Γ

((∫
Γ
|κ(x, y)|qds(y)

) 1
q

||u||Lp

)p

d0 10.909 Tf 6.244 0 Td[(jj)]TJ/F21 7.97 Tf 6.061 -2.891 Td[(L)]TJ/F22 5.978 Tf 5.759 4.075 Td[(p)]TJ/F41 10.909 Tf 5.3a28 4.5012 18.654 Td[(!)]TJ/F19 10.TJ/F1.7.97 Tf 6.061 -2.891 Td[(L)]TJ/F22 5.978 Tf 5.7540400 10.1 7/F1.7.97 Tf(1)]97 Tf 6.061 -2.891 Td[(L)]TJ/F22 5.964.51h

q

22 Lower Bounds on ||S||Lp

Figure 4.4: Upper bound Using the Riesz-Thorin Interpolation 4.14 for k = 1

5 Lower Bounds on ||S||Lp

The lower bound for the 2-norm can be found by looking at equation (4.4).

Letting p = 2 we have the following,

||S||
L2 [0,2π]

= sup
||u||L2=1

(

23 Numerical Methods for the Lower and Upper Bounds

Figure 4.5: Combined Upper Bounds from Figures 4.4 and 4.3 for k = 1

where aj = (j−1)2π
N , bj = j2π

N and Uj is a constant. The constants are chosen

randomly over a uniform distribution, and are of the form,

Uj = Aj + Bji, with A, B ∈ [−1, 1], i =
√
−1.

Then we also have,

||u||L2 =

 N∑
j=1

∫ bj

aj

|Uj |2|y′(τ)|

 1
2

which gives us an lower bound for ||S||
L

2
[0,2π]

. Using this technique Table

5.1 shows the lower bound values that were found.

6 Numerical Methods for the Lower and Upper

Bounds

All integrals we approximated using Legendre Gaussian Quadrature. Al-

though, for highly oscillatory functions such as the Hankel function this

does not give exactness, all results shown have converged as in 6.3. We

begin this section by giving an overview of Gaussian Quadrature.

24 Numerical Methods for the Lower and Upper Bounds

Figure 4.6: Upper Bound using the Symmetric Property for Figure 4.5

Figure 4.7: Symmetric Upper Bound for k = 1 Using 4.14 Again

25 Numerical Methods for the Lower and Upper Bounds

k ||S||L2 Lower Bound for ||S||L2 Lower Bound for

y(τ) = (cos τ, sin τ) y(τ) = (2 cos τ, sin τ)

1 0.92591123989195 0.91814408816802

2 0.48317060607222 0.54140030886589

4 0.24311615739346 0.26110271592417

8 0.11254776960321 0.13052717540095

16 0.05744056422210 0.07149107040318

32 0.02268706077302 0.03127729495608

Table 5.1: Lower Bound Numeric Approximations for the 2-norm

6.1 Gaussian Quadrature

Gaussian Quadrature is a type of numerical integration. The likes of the

Simpson Rule and the Trapezoidal Rule converge much slower for almost

all functions. With the Simpson Rule being accurate for quadratic curves

between nodes, and the Trapezoidal Rule being accurate for linear curves

between nodes. Gaussian Quadrature is based around taking the roots of a

specific polynomial and using this to decide which points to use. This is the

26 Numerical Methods for the Lower and Upper Bounds

polynomials of degree 2n− 1 with n being the number of points used.

6.1.1 Legendre Polynomial

The Legendre polynomials provide one option for the weights and points to

be used for Gaussian Quadrature. The Legendre polynomials are an infinite

set of orthogonal polynomials on the interval (−1, 1) with respect to the

weight function w(x) ≡ 1. These polynomials are the solution of Legendre’s

differential equation,

d

dx

[
(1− x2)

d

dx
P (x)

]
+ n(n + 1)P (x) = 0 (6.1)

They can be expressed using Rodrigues’ formula [4]

Pn(x) = (2nn!)−1 dn

dxn

[
(x2 − 1)n

]
. (6.2)

Hence the first four are:

P0(x) = 1

P1(x) = x

P2(x) =
3
2

x2 − 1
2

P3(x) =
5
2

x3 − 3
2

x

6.2 How Gaussian Quadrature Works in 1-D

Gaussian Quadrature approximates a function f(x) on a defined interval

[a, b] say. This function is ideally continuous. However, if it is not but it is

known where the function is not continuous the interval can be split up to

avoid the discontinuity 1. We require
1Of course notice should be made that the discontinuous area is an important part of

the integration, and would be foolish to ignore off hand.

27 Numerical Methods for the Lower and Upper Bounds

∫ a

b
f(x)dx ≈

n∑
i=1

wif(xi) (6.3)

The weights wi and points xi are determined by the polynomial used. The

domain usually taken for the rule is [−1, 1], and therefore requires a trans-

formation for a general [a, b] domain where a, b ∈ R. This is done by∫ b

a
f(x)dx =

b− a

2

∫ 1

−1
f

(
b− a

2
x +

a + b

2

)
dx

which after applying the Gaussian quadrature rule is

b− a

2

n∑
i=1

wif

(
b− a

2
xi +

a + b

2

)
. (6.4)

28 Numerical Methods for the Lower and Upper Bounds

where a0, a1, . . . , a5 are constants (noticing there are the same number of

constants as there are weights and points). Therefore it is needed that,∫
(a0 + a1x + . . . + a5x5)dx = a0

∫
1dx + a1

∫
xdx + . . . + a5

∫
x5dx

which is equivalent to showing that the Gaussian quadrature method gives

exact results when f(x) = 1, x, . . . , x5. Thus we need,

w1 + w2 + w3 =
∫ 1

−1
1dx = 2

w1x + w2x + w3x =
∫ 1

−1
xdx = 0

w1x2 + w2x2 + w3x2 =
∫ 1

−1
x2dx =

2
3

w1x3 + w2x3 + w3x3 =
∫ 1

−1
x3dx = 0

w1x4 + w2x4 + w3x2 =
∫ 1

−1
x4dx =

2
5

w1x5 + w2x5 + w3x5 =
∫ 1

−1
x5dx = 0.

This system of equations has the unique solution,

x1 = −0.77459666924148, x2 = 0, x3 = 0.77459666924148

w1 = 0.55555555555556, w2 = 0.88888888888889, w3 = 0.55555555555556,

where the xi are the roots of P3(x) = 0. This works for all

29 Numerical Methods for the Lower and Upper Bounds

∫ 1

−1
f(x, y)dxdy =

m∑
j=1

n∑
i=1

wivjf(xi, yj)dxdy

where the wi and the xi are the weights and the points in the x direction

and the vj and the yj are the weights and the points in the y direction . This

double integral again needs to be transformed into the interval [a, b]× [c, d].

This is done in a similar way to before.

∫ b

a
f(x, y)dxdy =

m∑
j=1

n∑
i=1

wivjf

(
b− a

2
xi +

b + a

2
,

d− c

2
yj +

d + c

2

)
dxdy

(6.5)

6.3 Testing the Method

According to the theory if I take n Gaussian quadrature points over the

interval [−1, 1] then this should give the exact value for a polynomial of order

2n − 1. Thus if I take n = 2 then this should give the exact value for any

cubic. By taking many different n and testing the MATLAB code we have

written on the relevant polynomial we can test if the code is correct and that

the Gaussian Quadrature method is working. Looking at the values in Table

6.1 where n Gaussian Quadrature points and (n− 1) Gaussian Quadrature

points have been used, and the interval [−2, 3] you can see that a polynomial

of order 2n−1 is integrated correctly for n points but not for (n−1) points.

Also notice how the accuracy improves for a function such as sin and cos

as n increases. Testing the double integral code is also necessary. Choosing

a = 1, b = 2, c = 3 and d = 4 and increasing n and m as we increase the

order of the polynomials lets us see whether the code is as accurate as it

should be. (See Table 6.2)

30 Numerical Methods for the Lower and Upper Bounds

Polynomial Exact Value n n Points (n− 1) Points

2x3 + x2 − 2 (cubic) 34.1667 2 34.1667 −7.5000

−x5 + 3x4 (quintic) 54.1667 3 54.1667 45.4861

7x7 + 7x6 (7th order) 7831.87 4 7831.87 6952.96

sin(x) + cos(x) 1.62426 5 1.62428 1.62298

Table 6.1: Single Integral Gaussian Quadrature Code

Polynomial Exact Value n, m n, m Points (n− 1), (m− 1)

Points

x3 + y3 47.5 2, 2 47.500 46.250

x5 + y5 571.667 3, 3 571.667 571.569

x7 − y7 −7.34000 4, 4 −7.34000 −7.33999

sin(x) + cos(y) −0.268522 3, 3 −0.268522 −0.268442

Table 6.2: Double Integral Gaussian Quadrature Code

6.4 Evaluating the Single Integral

We have the two single integrals

||S||L1(Γ) = sup
τ∈[0,2π]

∫ 2π

0
| i
4

H1
0 (k|y(t)− y(τ)|)|y′(t)|dt (6.6)

||S||L∞(Γ) = sup
t∈[0,2π]

∫ 2π

0
| i
4

H1
0 (k|y(t)− y(τ)|)|y′(τ)|dτ. (6.7)

We have H1
0 as the Hankel function, this is made up of the first kind and

second kind Bessel functions. y(τ) represents the shape which we are looking

at, for instance in the circle case we have y(τ) = (cos(τ), sin(τ)). In this case

the |y′(τ)| term would be
√

cos2(τ) + sin2(τ). Also, there is the |y(t)−y(τ)|

31 Numerical Methods for the Lower and Upper Bounds

term. This term is the vector modulus of y(t)− y(τ). Thus for the circle

|y(t)−y(τ)| =

∣∣∣∣∣∣ cos(t)− cos(τ)

sin(t)− sin(τ)

∣∣∣∣∣∣ =
√

(cos(t)− cos(τ))2 + (sin(t)− sin(τ))2.

Performing some manipulation,

√
(cos(t)− cos(τ))2 + (sin(t)− sin(τ))2 =

√
2− 2 cos(t− τ)

32 Speeding Up the Code

n k = 1 k = 2 k = 64

8 1.25599845796364 0.92636623468931 0.17206436985466

16 1.26820470397750 0.93836905487429 0.17805048230319

32 1.27153224321317 0.94166907961211 0.18061491732263

64 1.27240328043588 0.94253590847969 0.18141859166216

128 1.27262646245432 0.94275842180936 0.18163342024274

256 1.27268300857123 0.94281485758333 0.18168871333813

512 1.27269725094977 0.94282908104077 0.18170275604897

1024 1.27270082697329 0.94283265370303 0.18170629876787

2048 1.27270172332930 0.94283354944311 0.18170718933635

4096 1.27270194779501 0.94283377379287 0.18170741275990

8192 1.27270200397511 0.94283382995065 0.18170746874657

16384 1.27270201803147 0.94283384400261 0.18170748276610

32768 1.27270202154766 0.94283384751793 0.18170748627512

Table 6.3: Approximations of ||S||L1 = ||S||L∞ for a Circle with t = 0

7 Speeding Up the Code

There are two key ways that the code has been improved. This is by using

vectors and matrices instead of for loops, and also by using a graded mesh.

7.1 For Loops vs Vectors and Matrices

In MATLAB for loops are computed significantly slower than multiplying

vectors and matrices. This is because MATLAB was originally designed to

33 Speeding Up the Code

n t = pi
4 t = π

2 t = 3π
2 t = 2π = 0

1024 1.2722513420 1.2716660046 1.2722513420 1.2727008269

2048 1.2731297511 1.2721816171 1.2731297511 1.2727017233

4096 1.2725886266 1.2724409165 1.2725886266 1.2727019477

8192 1.2728096451 1.2725711201 1.2728096451 1.2727020039

16384 1.2726735661 1.2726364333 1.2726735661 1.2727020180

32768 1.2727290360 1.2726691723 1.2727290360 1.2727020215

Table 6.4: Approximations of ||S||L1 = ||S||L∞ for Different t for a Circle

manipulate vectors and matrices, e.g. finding inverses, and therefore needed

to do this efficiently. A for loop can be written equivalently by using a vector

multiplied by another vector. This can be seen clearly by taking an example

of the code that was used in computing Gaussian Quadrature integration

for the single integral, i.e. to evaluate
∫ b

a f(t, τ, k)dτ ≈
∑n

j=1 wif(tj , τj , k).

for 1:n;

h = h + w(i)*f(t(i),tau,k)

end

This can be re-written using two vectors,

w*f(t,tau,k)

What is going on above can be expressed as,

(
w(1) w(2) ... w(n)

)

f(t(1), tau, k)

f(t(2), tau, k)

...

f(t(n), tau, k)

.

34 Speeding Up the Code

Similarly, two for loops can be written by vector×matrix×vector. Taking

another example of code that was used,

for i = 1:m;

for j = 1:n;

h = h + w(i)*f(t(i),tau(j),k);

end

g = g + v(j)*h;

end

can be re-written,

w*f(t,tau,k)*v;

where f(t,tau,k) is the matrix

f(t,tau,k) =

f(t(1), tau(1), k) ... f(t(1), tau(m), k)

f(t(2), tau(1), k) ... f(t

35 Speeding Up the Code

on the edges a graded mesh can be used. The original double integral (4.4)

6

-�
�

�
�

�
�

�
�

�
�

�
�

�
��

0

2π

2π

τ

t

2

1

&%
'$

&%
'$

Figure 7.1: Region Before Transformation

can be written,(∫ 2π
0

∣∣∣∫ 2π
0 F (t, τ)|y′(τ)|dτ

∣∣∣ |y′(t)|dt
)

=
(∫ 2π

0

∣∣∣∣∫ τ

0
F (t, τ)|y′(t)|dt

∣∣∣∣ |y′(τ)|dτ

+
∫ 2π

0

∣∣∣∣∫ t

0
F (t, τ)|y′(τ)|dτ

∣∣∣∣ |y′(t)|dt

)
where F (t, τ) = i

4 H1
0 (k|y(t)−y(τ)|). For the Gaussian Quadrature method,

we need to make sure that the correct points are taken from the intervals.

Triangle 1 takes points using the integral
∫ 2π

0

∣∣∫ τ
0 F (t, τ)|y′(t)|dt

∣∣p |y′(τ)|dτ

and triangle 2 takes points using
∫ 2π

0

∣∣∣∫ t
0 F (t, τ)|y′(τ)|dτ

∣∣∣p |y′(t)|dt.

Taking the Duffy Transformation τ = st, dτ
ds = t triangle 2 becomes a

rectangle as in Figure 7.2. The singularities being where τ = t are therefore

now at s = 1 and t = 0. After this transformation there is the integral∫ 2π

0

∣∣∣∣∫ 1

0
F (t, st)|y′(st)|tds

∣∣∣∣p |y′(t)|dt (7.1)

36 Speeding Up the Code

6

-

0 1

2π

t

s

Figure 7.2: Transformed Triangle 2

for triangle 2. The use of a graded mesh is now a lot simpler. Using four

different meshes on the rectangle it is possible to have many points near

the singularity points, and save on expense by using relatively few points

far away from the singularity. Dividing the rectangle as follows (shown in

Figure 7.3):

• In the region, [0, k−1
k] × [2π

k , 2π] using n by n Gaussian Quadrature

points in each dotted area shown in Figure 7.3..

• In the region, [0, k−1
k]× [0, 2π

k] using n Gaussian Quadrature points in

the s direction. With n Gaussian points every [2π
k (0.15i), 2π

k (0.15i+1)]

with i = {0, 1, ..., 9} in the t direction for each dotted area.

• In the region, [k−1
k , 1] × [2π

k , 2π] using n Gaussian Quadrature points

in the t direction. With n Gaussian Quadrature points every [1 −
0.15i

k , 1− 0.15i+1

k
] i = {0, 1, ..., 9}

38 Speeding Up the Code

graded mesh. This means that where a lot is going on, we are concentrating

a lot of our resources. Therefore the larger oscillations near the singularity

can be approximated with greater accuracy.

7.3 The Duffy Transformation for Piecewise Constants

If the τ axis is split up into evenly spaced piecewise constants (see Figure

4.2) then the Duffy transformation can still be used. The transformation

works when both integrals start at zero. Taking the jth piecewise constant

from aj to bj

39 Results

Now, performing the Duffy transformation as before by letting τ = st, dτ
ds = t

this becomes,∫ bj−aj

0

∣∣∣∣∫ 1

0
κ(t + aj , st + aj)|y′(st + aj)|tds

∣∣∣∣ |y′(t + aj)|ds.

This is a rectangle similar to before, where the singularities are at t = 0 and

s = 1, and the grading can be done as before.

6

-�
�

�
�

�
�

�
�

�
�

�
�

�
��

0

2π

2π

τ

t

aj bj

aj

bj

1
2j j

Figure 7.4: Region Before Transformation Using Piecewise Constants

8 Results

We have 1-norm and ∞-norm results for the operator S (i.e. ||S||L1 and

||S||L∞). Using these results (shown in Table 8.1) we are able to say how

the ||S|| changes as we increase k for the circle. Table 8.2 shows this for

an ellipse of the form y(τ) = (2 cos τ, sin τ). Upper bounds (Figure 8.1) and

lower bounds (Table 5.1) found in Sections 4 and 5 can be used together, and

by analysing the region in which the 2-norm can lie, results can be gathered

(Table 8.3 and Table 8.4) to determine behaviour of ||S||L2 .

40 Results

8.1 1-norm and the ∞-norm

Using the single integrals it was possible to look at how the values changed

as k was increased. Looking at the circle first we obtain Table 8.1. From

this it can be seen that log

41 Results

k ||S||
L1 for logk||S||L1 for

y(τ) = (cos τ, sin τ) y(τ) = (cos τ, sin τ)

1 1.27269909813074 -

2 0.94283092667553 -0.08492901233913

4 0.68817972895875 -0.26957134912594

8 0.49731659257114 -0.33592117619175

...
...

...

512 0.06497404812582 -0.43822139961133

1024 0.04602585988168 -0.44414115146863

2048 0.03258593605505 -0.44905515924963

...
...

...

32768 0.00816349758682 -0.46243979257239

65536 0.00577323389157 -0.46477528813075

131072 0.00408254822470 -0.46684202100476

Table 8.1: Approximation to the 1-norm for the Circle as k →∞ using the

Single Integral

43 Results

k ||S||
L2 for logk||S||L2 for

y(τ) = (2 cos τ, sin τ) y(τ) = (2 cos τ, sin τ)

1 1.294548530868040 -

2 0.883817805885845 -0.178179098161715

4 0.575077907006125 -0.399085340338845

8 0.384944183600455 -0.459092940931912

16 0.264450390167755 -0.479732747741775

44 Results

8.2 The 2-norm

The upper bounds and lower bounds found in Sections 4 and 5 allow us to

investigate the 2-norm. The upper bounds for the circle as k increase can

be seen in Figure 8.2, and for the ellipse y(τ) = (2 cos τ, sinτ) can be seen in

Figure 8.1. The lower bounds as k increase can be seen in Table 5.1. Using

these bounds we then have a region where the 2-norm must lie. By taking

the mid-point of this region, we can use them to calculate a table as we did

for the 1-norm and the∞-norm. This Table 8.3 shows results for the ellipse.

Taking the mid-point as we increase k the value of logk||S||L2 seems to be

approaching −1
2 . Table 8.4 shows results for the circle, where again the

Figure 8.1: Upper Bounds of ||S|Lp with k increasing for y(τ) =

(2 cos τ, sin τ)

mid-point of the upper and lower bound for ||S||L2 has been taking. This

time the value seems to be larger than - 1
2 .

45 Conclusion

Figure 8.2: Upper Bounds of ||S||Lp with k increasing for the Circle

9 Conclusion

The aim of this project was to look at behaviour of the single layer poten-

tial, S, which would be a crucial step in analysing the operator A and its

46 Future Work

that ||S||L2 behaves like k− 1
2 . Then by choosing η = k again, this tells us

that we have behaviour of ||A||L2 like k
1
2 . This is the same result as stated

in [3] (see Section 2.2). Similarly, the numerical results for the circle for

the 2-norm behave like kβ where β seems less than −1
2 . If we had the result

that ||S||L2

47 Future Work

10.1 Lower Norms

We say that A is bounded below if ∃M > 0 such that,

||Ax|| ≥M, ∀x ∈ X, with ||x|| = 1

or

||Ax|| ≥M ||x|| ∀x ∈ X.

The largest M is called the lower norm of A, and is denoted |A|. We can

also write,

|A| = inf
||x||=1

|Ax|

or

|A| = inf
x 6=0

||Ax||
||x||

, M ≤ |Ax| ≤ C if ||x|| = 1 where M and C are constants.

It is known that

|A| = 1
||A−1||

48 Future Work

49 REFERENCES

References

[1] Simon N. Chandler-Wilde and Peter Monk, Wave-Number-Explicit

Bounds in Time-Harmonic Scattering (submitted for publication)

[2] Mark Webber, The Point Source Method in Inverse Acoustic Scattering,

MSc Dissertation, The University of Reading 2004

