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Chapter 1

Introduction

Consider the hyperbolic conservation law

ut + f(u)x = 0 (1.1)

where u is the conserved quantity and f(u
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Figure 1.1: Sketch to show the basic technique

The Buckley-Leverett equation is used for oil recovery in industry. The discovery

and recovery of oil is highly complex process, in which mathematical modelling and

numerical simulation play a crucial role. Usually when an oil well is produced, the

pressure at early stage is naturally high, and is such that there will be minimum

difficulty in recovering the oil. The rate at which oil flows out of the well will nat-

urally diminish with time; common ways of keeping up the oil flowing is to inject

water to drive the oil towards the producing well.

Generally an oil reservoir consists of layers of porous rock, which are sandwiched

between layers of impervious rock. These layers are often bent up in a cup shape

which is known as an anticline. The oil reservoir is formed when oil is produced over

geological time scales at great depths, migrating into a reservoir which is filled with

water. This movement causes displacement to the water; gas may also be present





MSc Numerical solution of differential equations Rakib Ahmed

Chapter 2

Exact Solution by Characteristics

Consider the hyperbolic conservation law

ut + f(u)x = 0 (2.1)

where f(u) is the flux function. This can also be written as

ut + a(u)ux = 0

where

a(u) = f 0(u):

A basic solution procedure for hyperbolic equations is the method of characteristics,

which will allow us to investigate the features of the solution of this equation. The

characteristics are given by

dx

dt
= a(u); on which

du

dt
= 0 (2.2)

9
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We can see that on the characteristics

dt

The characteristics are given by equation 2

0
u

f(u) = 1/2u^2

Figure 2.1: To show the shape of Burgers’ equation
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Here

f(u) =
1

2
u2 and a(u) = u

where f(u) has a convex shape (see Fig. 2.2). Then
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2.1.2 Initial Data 1

We first use the initial data (in the right half of the plane)

u(x; 0) =

8
><
>:

1
2

x = 0

0 x > 0 8t

�
�

� � ����� �	� 
 � � ��� �

� 
 �

	�����	�

Figure 2.2: Shape of f(u) for Burgers’ equation with initial data 1 points

The characteristics are given by

du

dt
= 0;

dx

dt
= u )

8
>>>><
>>>>:

u = u0

x = u0t + x0 (leaving the x ¡ axis)

x = u0(
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until they cross. Integrating equation (2:8), we obtain

x =

8
><
>:

1
2

‡
t ¡ t0

·
when t > 0
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Figure 2.4: Graph to show solution at intervals of t =4, for example 1

2.1.3 Initial Data 2

Secondly we use the initial data (on the whole x-axis)

u(x; 0) =

8
>>>><
>>>>:

0 x < ¡1

1
2

¡1 < x < 0

0 x > 0

To evaluate the characteristics in the x,t plane for all t > 0, we proceed as follows.

The characteristics are given by

du

dt
= 0;

dx

dt
= u0 =

8
>>>><
>>>>:

0 x0 <:

0¡10:11.e
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Figure 2.5: Flux function for Burgers’ equation with initial data 2 points

i.e

dx

dt
=

8
>>>><
>>>>:

0
¡
u = 0

¢
for x < ¡1; t > 0:

1
2

¡
u = 1

2

¢
for t > 0 ¡ 1 • x • 0

0
¡
u = 0

¢
for x > 0; t > 0:

(2.13)

until they cross. Integrating equation (2:13), we obtain

x =

8
>>>><
>>>>:

x0 when x < ¡1; t > 0

1
2

‡
t ¡ t0

·
when ¡ 1 • x • 0; t > 0

x0 when x > 0; t > 0

(2.14)

The shock is initially at x = 0. We proceed as follows to calculate the shock speed.

As before

S =
[f ]

[u]
=

fR ¡ fL

uR ¡ uL

=
1
2

¡
0)

¢2 ¡ 1
2

¡
1
2

¢2

0 ¡ 1
2

=
1

4
(2.15)

Connecting (0; 0) to (0; 1
2
) is a straight line which represents the shock. By looking

15
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at Figure (2:5) we can visualise that by connecting 1
2

to 0 on the curve represents

the fan. The initial shock for this problem is at x = 0 with a speed which is 1
4
.

Using this we obtain the shock line xs(

xs
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Hence for t • 4 we have

u(x; t) =

8
>>>>>>><
>>>>>>>:

0 x < ¡1

x+1
t

¡1 < x < t
2

¡ 1

1
2

t
2

¡ 1 < x < 1
4
t

0 1
4
t < x

(2.18)

(see Figure 2.6). We now look at the form of the shock when the expansion meets

�
��� �

� ��� �	� 
 � � ��� �	� 
 �
� ��� �	� 
 � � �

�	
�	� � 
 �

���	�

���	�	����� � �	���	��
�

�

Figure 2.6: Burgers’ equation for example 2

the shock t ‚ 4. To do this we equate the shock speed to the average of the values

to the left and to the right:

dxs

dt
=

1

2

µ
uR + uL

¶
=

1

2

ˆ
(xs + 1)

t
+ 0

!

i.e.

S =
dxs

dt
=

(xs + 1)

2t
(2.19)

17
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f(u)

u 0

Figure 2.7: To show the shape of a non-convex function

2.2.1 Initial Data 1 for the B-L equation

In this problem we will again use the initial data

u(x; 0) =

8
><
>:

1
2

x = 0

0 x > 0

To evaluate the characteristics in the x,t plane for all t > 0, we proceed as follows.

The characteristics are given by

dx

dt
= a(u);

du

dt
= 0 (2.23)

We can see that u is a constant which shall be denoted by u0. From equation (2:23),

u = u0 and x is given by

x = a(u0)t + x0 (2.24)

19
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Figure 2.8: Graph of B-L flux and shock construction for first initial conditions

where

a(u0) =

µ
5u2

0 ¡ 2u0 + 1

¶
8u0 ¡ 4u2

0

µ
10u0 ¡ 2

¶

µ
5u2

0 ¡ 2u0 + 1

¶2

Hence

dx

dt
= a(u0) =

µ
8u0 ¡ 8u2

0

¶

µ
5u2

0 ¡ 2u0 + 1

¶2

The characteristics are now

x =

ˆ
8u0 ¡ 8u2

0¡
5u2

0 ¡ 2u0 + 1
¢2

!
t + x0 (2.25)

We can substitute the initial conditions into equation (2:25), giving

x =

8
><
>:

32
25

t x0 = 0 (leaving the t ¡ axis)

x0 x0 > 0 (leaving the x ¡ axis)

At x = t 2  6(2)]TJ/F8 11.95 Tf 5.93 24Fea:t TfDn

a
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and we have the shock speed

dxs

dt
=

fR ¡ fL

uR ¡ uL

=

0 ¡
µ

1
4

1
4
+ 1

4

¡
1¡ 1

2

¢2

¶

0 ¡ 1
2

=
8

5

For this initial condition we always get a shock, see figure (2.8). By looking at this
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Evaluating the characteristics in the x,t plane for all t > 0, we obtain (as before)

x =

ˆ
8u0 ¡ 8u2

0¡
5u2

0 ¡ 2u0 + 1
¢2

!
t + x0 (2.26)

This time we get not only a shock but also a fan (see Figure 2.10) because we

� � ���

� ��� � �
�

��� �	��
 � ��� ����
��� � �

� � �

���������

� ���

Figure 2.10: Buckley-Leverett equation for example 2

cannot connect the points (0; 0) and (3
4
; f(3

4
)) by a straight line, and satisfy the

entropy condition see equation (2.65). Instead let uT the value of u corresponding

to the tangent from (0; 0) to the curve. To evaluate uT , we proceed as follows:

The slope of curve at uT must equal slope of tangent at uT , therefore

f
0
(uT ) =

f(uT ) ¡ 0

uT ¡ 0
(2.27)

which leads to

8uT ¡ 8u2
T¡

5u2
T ¡ 2uT + 1

¢2 =
u2

T + 1
4

¡
1 ¡ uT

¢2

uT

(2.28)

22
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Therefore uT is given by equation (2:28). This is a non-linear equation for uT . In

order to use Newton’s method to solve equation (2:28) we re-arrange it to obtain in

the form F (uT ) = 0 to, where F (uT ) is

F (ut) =
8uT ¡ 8u2

T¡
5u2

T ¡ 2uT + 1
¢2 ¡ u2

T + 1
4

¡
1 ¡ uT

¢2

uT

(2.29)

The method is described in terms of a sequence, using the Newton formula

xn+1 = xn ¡ F (xn)

F 0(xn)
(2.30)

By starting with an initial guess of 1
2
, we obtain the value of uT after 5 iterations

where uT = 0:617403. The actual form of fan is beyond the scope of this work, so

it is just sketched.

0 u = 0

x

t

slope = infinity

dx/dt = 0

shock

edge of fan

immediate point
where shock begins

FAN
dx/dt = 3/4

Figure 2.11: Sketch of characteristic diagram for the Buckley-Leverett equation
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Chapter 3

Classical numerical schemes

Consider the general form of the hyperbolic conservation law given by equation

(2:1). In our case the two non-linear equations used are the Burgers and the

Buckley-Leverett equations. The flux of the equations are given by f(
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3.2 Lax-Friedrichs

The Lax Friedrichs scheme is first order accurate in both space and time, and the

stability region is defined by
flfla ∆t

∆x

flfl • 1. The picture on the right of figure (3.1)

����� � �����

�

�

�

�

�

� ���

�
	����� � 	��
������� � ��� ��� �
� 	��� � � ��� ������� � 	 � ��� � � 	 �

� ��� �
�� � � � � � � ��� � �
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and

hn
j¡ 1

2
=

1

2

µ
1

2
u2

j¡1 +
1

2
u2

j

¶
¡ ∆x

2∆t

µ
un

j ¡ un
j¡1

¶
(3.6)

We can now write down the Lax-Friedrichs conservative finite difference scheme for

solving the conservation law for the Burgers equation in its conservative form by

substituting equation (3.5) and (3.6) into equation (3.1). Doing this we obtain.

un+1
j = un

j ¡ ∆t

∆x

ˆµ
1

2

µ
1

2
u2

j +
1

2
u2

j+1

¶
¡ ∆x

2∆t

µ
un

j+1 ¡ un
j

¶¶

¡
µ

1

2

µ
1

2
u2

j¡1 +
1

2
u2

j

¶
¡ ∆x

2∆t

µ
un

j ¡ un
j¡1

¶¶!
(3.7)

and simplifying equation (3:7) gives

un+1
j = un

j ¡ ∆t

4∆x

¡
u2

j+1 + u2
j¡1

¢
+

1

2

¡
un

j+1 + un
j¡1

¢
(3.8)

By substituting the flux of the Buckley-Leverett equation into equation (3.4), we

get

hn
j+ 1

2
=

1

2

ˆ
u2

j

u2
j + 1

4

¡
1 ¡ uj

¢2

∆
+

1
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form by substituting equation (3.9) and (3.10) into equation (3.1), leads to

un+1
j = un

j ¡ ∆t

∆x

ˆˆ
1

2

ˆ
u2

j

u2
j + 1

4

¡
1 ¡ uj

¢2 +
u2

j+1

u2
j+1 + 1

4

¡
1 ¡ uj+1

¢2

!
¡ ∆x

2∆t

µ
un

j+1¡un
j

¶!

¡
ˆ

1

2

ˆ
u2

j¡1

u2
j¡1 + 1

4

¡
1 ¡ uj¡1

¢2 +
u2

j

u2
j + 1

4

¡
1 ¡ uj

¢2

!
¡ ∆x

2∆t

µ
un

j ¡ un
j¡1

¶!!
(3.11)

and simplifying equation (3:11) gives

un+1
j = un

j ¡ ∆t

2∆x

ˆ
u2

j+1

u2
j+1 + 1

4

¡
1 ¡ uj+1

¢2 ¡ u2
j¡1

u2
j¡1 + 1

4

¡
1 ¡ uj¡1

¢2

!

+
1

2

µ
un

j+1 + un
j¡1

¶
(3.12)

The Lax-Friedrichs scheme has now been written in its conservative form for the

Burgers and the Buckley-Leverett equations.

3.3 First order upwind

The first order upwind scheme is also first order accurate in both space and time, but

the scheme is only stable for the interval 0 • a ∆t
∆x

• 1 for (a > 0), or ¡1 • a ∆t
∆x

• 0

for (a < 0).

The picture on the right of figure (3.2) also shows the domain of dependence. If

a ∆t
∆x

is slope of AB then the CFL condition is satisfied because AB lies in the stencil

of the scheme, whilst the line AC is a violation of the CFL condition, lying outside

the domain of dependence. The numerical flux function is

28
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For hj¡ 1
2
, we obtain

hj¡ 1
2

=

8
><
>:

1
2
u2

j¡1 vj¡ 1
2

> 0

1
2
u2

j vj¡ 1
2

< 0
(3.16)

where

vj¡ 1
2

=

8
><
>:

∆t
∆x

1
2
(uj + uj¡1) uj¡1 6= uj

∆t
∆x

uj¡1 uj¡1 = uj

We can now write the first order upwind scheme for solving the conservation law,

for the Burgers equation in its conservative form by substituting equation (3.15)

and (3.16) into equation (3.1), which gives rise to

un+1
j = un

j ¡ ∆t

∆x

¡
equation(3:15) ¡ equation(3:16)

¢
(3.17)





MSc Numerical solution of differential equations Rakib Ahmed

line AC violates the CFL condition, by lying outside the domain of dependence.

The numerical flux function can be written as

hj+ 1
2

=
1

2

µ
(fj+1 + fj) ¡ vj+ 1

2
(fj+1 ¡ fj)

¶
(3.21)

Substituting the Burgers flux gives rise to

hj+ 1
2
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where vj¡ 1
2

and vj+ 1
2

for this scheme are as in the first order upwind scheme. We

can now write the Lax-Wendroff scheme for solving the conservation law, for the

Burgers and the Buckley-Leverett equations may be written as

un+1
j = un

j ¡ ∆t

∆x

¡
equation(3:22) ¡ equation(3:23)

¢
(3.26)

and

un+1
j = un

j ¡ ∆t

∆x

¡
equation(3:24) ¡ equation(3:25)

¢
(3.27)

3.5 Warming-Beam

The Warming-Beam is also a second order accurate numerical scheme, but the

scheme is only stable for the interval 0 • a ∆t
∆x

• 2.

�

����� �

�

�

�

�

�

��� �

	�
���� � 
��	��� � 	� �� �
� 
���� � � ��� ������� � 
 � 	� � � 
 �� � � �� � ��
�� ��� ������ 
�� "!$#

Figure 3.4: Stencils for the Warming-Beam scheme

The picture on the right of figure (3.4) shows the domain of dependence for this

numerical scheme. If a ∆t
∆x

is the slope of AB then the CFL condition is satisfied

33
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because AB lies in the stencil of the scheme, whilst the line AC violates the CFL

condition, by lying outside the domain of dependence. The numerical flux function

can be written as

hj+ 1
2

=

8
><
>:

1
2

¡
3fj ¡ fj¡1

¢ ¡ 1
2
vj¡ 1

2

¡
fj ¡ fj¡1

¢
vj+ 1

2
> 0

1
2

¡
3fj+1 ¡ fj+2

¢ ¡ 1
2
vj+ 3

2

¡
fj+2 ¡ fj+1

¢
vj+ 1

2
< 0

(3.28)

and

hj¡ 1
2

=

8
><
>:

1
2

¡
3fj¡1 ¡ fj¡2

¢ ¡ 1
2
vj¡ 3

2 f

and
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the TVD (total variation diminishing) property, which the original problem satisfies.

The total variation TV =
P jun

j+1 ¡ un
j j and the D means it is decreasing in time

(within). The introduction of flux limiters can be added to the Lax Wendroff and

Warming-Beam schemes in order to make it TVD and therefore non-oscillatory. I

have not pursued limiters for the finite difference methods here for the lack of time
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respectively. Examination of these two equations by using Fourier Transforms [12],

shows the schemes to be of a non-dispersive nature, due to the waves travelling at

the same speed as of those in equation (1:1). The CFL number a ∆t
∆x

is positive and

at most 1, so when D > 0 the amplitudes of the waves are damped with the higher

wave numbers being affected more severely. Therefore we can conclude that the

Lax- Friedrichs and first order upwind schemes are dissipative. By looking at equa-

tions (3:31) and (3:32) we can clearly see that the coefficient for the Lax- Friedrichs

scheme has a much larger factor than of the first order upwind scheme, so we expect

the Lax-Friedrichs scheme to be much more diffusive than the first order upwind

scheme.

The modified equation for the Lax-Wendroff and Warming-Beam numerical schemes

can be written in the form

ut + a(u)ux = Ruxxx (3.33)

where

R =
1

6
∆x2

µ
a2 ∆t2

∆x2
¡ 1

¶
(3.34)

and

R =
1

6
∆x2

µ
2 ¡ a

∆t

∆x

¶µ
1 ¡ a2 ∆t2

∆x2

¶
(3.35)

respectively. Investigation of equation (3.33) by Fourier Transforms shows that dif-

ferent wave numbers are travelling at different speeds, which means that the equa-

tion is said to be dispersive. By looking at the stability region for the Lax-Wendroff

scheme, we can see that R is negative, which leads to high wave numbers travelling

36
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with slower speed than they should. As a result of this we obtain oscillations oc-

curring to the left of a shock. Due to the comparison of clasical numerical schemes,

we shall concentrate on the lower half of the stability region
¡
0 • a ∆t

∆x
• 1

¢
for

the Warming-Beam scheme. If we consider the lower half of the stability region, by

looking at equation (3.35) we can see that R will always stay positive. This result-

ing in high wave numbers travelling with faster velocity than they should, therefore

the oscillations are observed in the front of the discontinuity for the Warming-Beam

scheme.

Numerical results for the application of the schemes for Burgers and the Buckley-

Leverett equations will be shown in chapter 5.

37
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Chapter 4

Discontinuous Galerkin Method

In this Chapter we describe the derivation of the Discontinuous Galerkin Method,

a non-classical method, and its application to the Buckley-Leverett equation.

4.1 Basic derivation of D-G Method

Given

ut + f(u)x = 0; in (a; b) £ (0; T ) (4.1)

with an initial condition

u(x; 0) = u0(x); 8x 2 (a; b) (4.2)

To numerically solve equations (4:1) and (4:2), we can use the Discontinuous Galerkin

method to discretise in space with a Runge-Kutta method to step forward in time

[4] and [5]. We shall first discretize (4:1) and (4:2) in the spatial variable x. To

discretize in space we proceed as follows. For each part of the interval (a; b), we set
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Ij = (xj¡ 1
2
; xj+ 1

2
) where ∆j = xj+ 1

2
¡xj¡ 1

2
for j = 1; : : : ; N and denote the quantity

max1•j•N∆j by ∆x. We use the Galerkin method for which the finite dimensional

space Vh to which the approximate solution uh(t) belongs to is taken as

Vh = V k
h =

‰
v 2 L1(0; 1) : v j ij 2 P k(IJ); j = 1; : : : ; N

¾

where P k(Ij) denotes the space of polynomials of degree at most k in the cell (Ij).

In V k
h , the functions are allowed to have jumps at the interfaces xj+ 1

2
which is why

this method is called the Discontinuous Galerkin method. Multiply equation (4:1)

by v and integrate over Ij,

Z

Ij

vutdx +

Z

Ij

vf(u)xdx = 0: (4.3)

Integrating the second term by parts, gives

Z

Ij

vutdx +
h
vf(u)

iflflfl
Ij

¡
Z

Ij

vxf(u)dx = 0 (4.4)

Equation (4:4) is the weak form used for linear approximation. For each j put

u = u0 + (x ¡ xj¡ 1
2
)u1 and choose v0 = 1 and v1 = (x ¡ xj¡ 1

2
). Substituting v0 = 1

into equation (4:4), yields

Z

Ij

utdx +

"
f(u)

#flflflflfl
Ij

= 0: (4.5)

Substituting v1 = (x ¡ xj¡ 1
2
) into equation (4.4) we get

Z

Ij

(x ¡ xj¡ 1
2
)utdx +

"
(x ¡ xj¡ 1

2
)f(u)

#flflflflfl
Ij

¡
Z

Ij

f(u)dx = 0 (4.6)
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Equations (4:5) and (4:6) for all the j0s can be written in a concise ODE form

d

dt
uh = Lh(uh
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4.2 Buckley-Leverett flux

Introducing the Buckley - Leverett flux into equation (4:5) gives

Z

Ij

utdx +

"
u2

u2 + 1
4
(1 ¡ u)2

#flflflflfl
Ij

= 0 (4.8)

Introducing the flux into equation (4:6) gives

Z

Ij

(x¡xj¡ 1
2
)utdx+

"
(x¡xj¡ 1

2
)

ˆ
u2

u2 + 1
4
(1 ¡ u)2

!#flflflflfl
Ij

¡
Z

Ij

ˆ
u2

u2 + 1
4
(1 ¡ u)2

!
dx = 0

(4.9)

To evaluate the first term of equation (4:8), we proceed as follows

Z xR

xL

utdx =

Z

Ij

ˆ
duL

dt
`L(x) +

duR

dt
`R(x)

!
dx

=
duL

dt

Z xR

xL

ˆ
xR ¡ x

xR ¡ xL

!
dx +

duR

dt

Z xR

xL

ˆ
x ¡ xL

xR ¡ xL

!
dx

By integrating we obtain

Z xR

xL

utdx =
duR

dt

1

xR ¡ xL

"
1

2

¡
x ¡ xL)

¢2

#xR

xL

+
duL

dt

1

xR ¡ xL

"
1

2

¡
xR ¡ x)

¢2

#xR

xL

Substituting in the limits we obtain

Z xR

xL

utdx =
duR

dt

1

2

¡
xR ¡ xL

¢
+

duL

dt

1

2

¡
xL ¡ xR

¢
: (4.10)

To evaluate the second term of equation (4
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"
f

¡
u

¢
#flflflflfl

Ij

=

ˆ
f

¡
uj+ 1

2

¢ ¡ f
¡
uj¡ 1

2

¢
!

Replacing the non-linear flux f

ˆ
u

¡
xj+ 1

2
; t

¢
!

by a numerical flux which depends on

two values of uh at the point
¡
xj+ 1

2
; t

¢
, this is given by

h(u)j+ 1
2
(t) = h

¡
u(x¡

j+ 1
2

; t)(u(x+
j+ 1

2

; t)
¢

By using a monotone numerical flux, we should achieve high-order accuracy while

keeping their stability and convergence properties. A monotone flux is one which

satisfies the following properties listed below.

† If it is locally Lipschitz and consistent with the flux f(u), for example h(u; u) =

f(u).

† If it is a nondecreasing function of its first argument, and a nonincreasing

function of its second argument

An example of a numerical flux which satisfies the above properties is the Local
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¡1

2

ˆ
u+2

j¡ 1
2

u+2
j¡ 1

2

+ 1
4

¡
1 ¡ u+

j¡ 1
2

¢2

!
¡ 1

2
C

µ
u+

j+ 1
2

¡ u¡
j+ 1

2

¶
+

1

2
C

µ
u+

j¡ 1
2

¡ u¡
j¡ 1

2

¶

To evaluate the first term of equation (4:9), we proceed as follows

Z xR

xL

(x ¡ xL)utdx =

Z xR

xL

(x ¡ xL)

ˆ
duL

dt
`L(x) +

duR

dt
`R(x)

!
dx

=
duL

dt

Z xR

xL

(x ¡ xL)

ˆ
xR ¡ x

xR ¡ xL

!
dx +

duR

dt

Z xR

xL

(x ¡ xL)

ˆ
x ¡ xL

xR ¡ xL

!
dx

By integrating we obtain

Z xR

xL

(x¡xL)utdx =
duR

dt

1

xR ¡ xL

"
1

3

¡
x¡xL

¢3

#xR

xL

+
duL

dt

1

xR ¡ xL

"
xRx2

2
¡xLxRx¡x3

3
+

xLx2

2

#xR

xL

hence

Z xR

xL

(x¡xL)utdx =
duR

dt

"
1

3

¡
xR¡xL

¢2

#
+

duL

dt

1

xR ¡ xL

"
1

6
x3

R¡1

2
xLx2

R¡1

6
x3

L+
1

2
xRx2

L

#

To evaluate the second term of equation (4:9), we treat this term in the same way

as we did previously for the second term in equation (4:8). By doing this we obtain

"
(x ¡ xj¡ 1

2
)f

¡
u

¢
#j+ 1

2

j¡ 1
2

=
¡
xj+ 1

2
¡ xj¡ 1

2

¢µ
f

¡
uj+ 1

2

¢¶

Applying the Local-Lax Friedrichs flux to this term yields

hLLF =
1

2

¡
xj+ 1

2
¡xj¡ 1

2

¢
ˆ

u¡2
j+ 1

2

u¡2
j+ 1

2

+ 1
4

¡
1 ¡ u¡

j+ 1
2

¢2

!
+

1

2

¡
xj+ 1

2
¡xj+ 1

2

¢
ˆ

u+2
j+ 1
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¡1

2

¡
xj+ 1

2
¡ xj¡ 1

2

¢¡1

3

¡
xj+ 1

2
¡ xj¡ 1

2

¢2¢µ
u+

j+ 1
2

¡ u¡
j+ 1
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Solving equations (4:12) and (4:13) simultaneously yields

duL

dt
=

C ⁄ RHS1 ¡ A ⁄ RHS2

B ⁄ C ¡ A ⁄ D
(4.14)

and

duR

dt
=

RHS1

A
¡ B

(RHS1 ¡ A ⁄ RHS2)

A(B ⁄ C ¡ A ⁄ D)
(4.15)

We can now apply the TVD-Runge-Kutta to discretise our ODE system in time [2].

If
¡
tn

¢N

n=0
is a partition of [0; T ] and ∆tn = tn+1 ¡ tn; n = 0; ¢ ¢ ¢ ; N ¡ 1, then our

time marching algorithm reads as follows:

† Set u0
h = un

h;

† For n = 0; ¢ ¢ ¢ ; N ¡ 1 compute un+1
h from un

h as follows:

1 Set u0
h = un

h;

2 for i = 1; ¢ ¢ ¢ ; k + 1 compute the intermediate functions:

ui
h =

ˆ
i¡1X

l=0

fiilu
l
h + flil∆tnLh

¡
ul

h

¢
!

; (4.16)

3 set un+1
h = u

(k+1)
h .

where Lh

¡
ul

h

¢
is given by equations (4:14) and (4:15). In equation (4:16) we take k

to equal one, where fiil and flil are the Runge-Kutta time discretisation parameters.
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Chapter 5

Numerical Results

Numerical experiments were performed using five different numerical schemes. The

schemes used are the first order upwind, Lax-Friedrichs, Lax- Wendroff, Warming-

Beam and the Runge-Kutta Discontinuous Galerkin method. Unfortunately we
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5.1 Burgers initial data 1
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Figure 5.1: Graphs of schemes for Burgers’ initial data 1 points

The solution for this data describes a shock which is propagating in the positive

x-direction, with a speed of 0.25. We can compare the behaviour of the numerical

schemes, since the analytic solution is known. Figures (5:1) and (5:2) were plotted

using a step size ∆x = 0:01 and a time step ∆t = 0:009, with a number of 100

timesteps used for figure (5:1). At this particular time point the shock has moved

to x = 0:225 from its initial position. By analysing fig (5:1) we can clearly see that

the Lax-Friedrichs and the first order upwind schemes have introduced numerical
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.1
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0.4

0.45

0.5
t=0
t=2/3

Figure 5.2: Graph of RKDG method for Burgers equation with initial data 1

diffusion (smearing). The smearing for the Lax-Friedrichs scheme is much more

severe than of the first order upwind scheme, this being a direct feature of the

truncation error terms of these schemes (see Chapter 3), whilst the Lax-Wendroff

and Warming-Beam schemes are much more accurate at capturing the shock. The

Lax-Wendroff scheme produces spurious oscillations to the left of the shock and the

Warming-Beam scheme creates oscillations to the right of the shock, as can be seen

by looking at figure (5.1). Finally by looking at figure (5:2) we can see that the

RKDG method does not create oscillations, due to the use of the TVD Runge-Kutta

to march forward in time. However, there is a subtle smearing if we look at the

time intervals provided on the graph.
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5.2 Burgers initial data 2
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Figure 5.3: Graphs for Burgers’ initial data 2 points
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−2 −1.5 −1 −2 −1.5 −1
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0
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0.2

0.3

0.4

0.5

−1.5 −1 −0.5

Figure 5.4: Graphs for Burgers’ initial data 2 points

which has influenced the accuracy of the scheme compared to the analytical solution.

The first order upwind scheme has behaved somewhat better, with better accuracy

than of the Lax-Friedrichs scheme. The Lax-Wendroff and Warming-Beam schemes

are the most accurate of the four classical schemes, but the overall phase shape

is quite poor, due to introduction of oscillations which are present behind and

front of the discontinuities, respectively. The behaviour to the left of the fan for

the Lax-Wendroff scheme is due to entropy violation. Figure (5:4) was plotted

using a step size ∆x = 0:02 and a time step of ∆t = 0:03, with 200 timesteps,
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Figure 5.5: Graph for Lax Wendroff scheme with initial data (5.3)

giving a location time of 6. At this time the expansion fan and the shock are

combined together. By looking at figure (5:4), we can clearly see that by moving

forward in time, the initial square wave has been damped, this being a feature of

the shock and fan combining together. Once again the Lax-Friedrich scheme is

the most dissipative in comparison to the first order upwind scheme, both of the

schemes giving poor resolution to discontinuities. Although the Lax-Wendroff and

Warming-Beam schemes are creating oscillations, the position of the final location

of the shock are most accurate.

If we change initial data 2 and use the initial conditions

u(x; 0) =

8
>>>><
>>>>:

0:5 x < ¡1

1 ¡1 < x < 0

0:5 x > 0

(5.3)
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we do not obtain the entropy violation as occurred in figures (5:3) and (5:4) for the

Lax-Wendroff scheme. Figure (5.5) was plotted using a step size ∆x = 0:0125 and

a time step of ∆t = 0:009, with 200 timesteps. By looking at this figure we can

clearly see that the problem we faced earlier has been resolved. The graph shows

that at the discontinuities, the oscillations are behind the shock and the expansion

fan.

5.3 Buckley - Leverett initial data 1
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Figure 5.6: Graphs for Buckley-Leverett using initial data 1
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of these type of second order numerical schemes. By looking at figure (5:7), we

can see that the waves for the RKDG method seem to be travelling way too slow.

However by extracting the behaviour from these results, we can visualise that there

are no oscillations present due to the built in TVD property.

5.4 Buckley - Leverett initial data 2

0 0.5 1 1.5 2 2.5 3
−0.1

0

0.1
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0.4

0.5

0.6

0.7

0.8

Figure 5.8: Graphs for Buckley-Leverett using initial data 2

This initial data generates a fan and a shock conbination. Figures (5:8) and (5:9)

was plotted using a step size ∆x = 0:06 and a time step ∆t = 0:009, where the
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

u 8

Figure 5.9: RKDG for Buckley-Leverett initial data 2

number of timesteps is 100 for figure (5:8). From the results obtained in figure (5.8)

we can clearly see that the Lax-Friedrichs scheme is yet again the most diffusive, in

comparison to the first order upwind scheme.

The Lax-Wendroff scheme for this initial data seems not to have produced any visible

oscillations to the left of the shock. This is most probably due to the combination

of the fan and the shock combining together at left of the shock, where the fan is

damping the oscillations that are produced by the shock, therefore resulting with

no visible oscillations to the left of the shock. By looking at the Warming-Beam

scheme we can clearly see that oscillations are still present to the right of the shock
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as initially expected. By looking at figure (5:9) we can see that the second order

RKDG method has not produced any oscillations, although there is slight evidence

of smearing, even though the speed of the waves are yet again moving way too slow.

56



MSc Numerical solution of differential equations Rakib Ahmed

Chapter 6

Conclusion

In this dissertation we have studied the effects of four classical schemes on the

Burgers and Buckley-Leverett equations. The schemes are first order upwind, Lax-

Friedrichs, Lax-Wendroff and Warming-Beam, found that the the Lax-Friedrichs

and the first order upwind schemes are very diffusive, this being a common feature

for first order accurate schemes. The reason for this type of dissipative behaviour

is an artefact of the terms in the truncation error for these schemes.

The Lax-Wendroff, Warming-Beam and the RKDG method are second order ac-

curate schemes, and it is a well known fact that second order accurate numerical

schemes produce oscillations at discontinuities. The Lax-Wendroff scheme is shown

to produce oscillations to the left of the discontinuities, except for initial data 2 for

the Buckley-Leverett equation, where we had the fan and shock combination. The

Warming-Beam scheme has produced oscillations to the right of the shock for all

the cases considered. However the oscillations for the Lax-Wendroff and Warming-

Beam schemes can be suppressed by using limiters, although that has not been done
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