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Abstract

The usual second order advection-diffusion equation is known to under predict

dispersion in turbulent flows. It is thought we can replace the diffusion term with

a fractional diffusion term to better predict the dispersion.

The main concern of this work will be the numerical methods used for solving

the fractional diffusion equation. Before we are able to begin with the derivation

of the numerical schemes, an understanding of some fractional calculus is needed,

we will therefore give a disscusion on this and detail the definitions and derivatives

which are needed for our numerical methods.

We notice in the literature that it is mainly finite difference methods that have

been proposed. We shall see that this is perhaps the most obvious and straight

forward numerical method to develop given the definitions for fractional deriva-

tives. Due to the non-local nature of the fractional derivative the finite difference

approach is computationally expensive as it usually requires a large number of

degrees of freedom to obtain an accurate solution. We will therefore be interested

in developing other numerical schemes in particular schemes based on non-local

methods such as the spectral method.
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Chapter 1

Introduction

1.1 Why Fractional Dispersion

The second order advection-dispersion equation is usually used to model disper-

sion in flows. However in complex flows such as turbulent flows this model is no

longer adequate, in fact it under predicts dispersion.

In non turbulent flows the dispersion of a contaminant is driven by the mean flow

velocity and local interactions between particles i.e. particles push each other.

This results in a series of small amplitude, random displacements of the contam-

inant particles and is known as Brownian motion. However, in complex flows

such as flow through porous medium or turbulent flows it is now possible to have

large variations from the mean velocity in the flow. This results in particles of

the contaminant being dispersed large distances in the flow. Brownian motion is

no longer an adequate description for this type of dispersion, we wish to model a
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butions. Unlike the Gaussian distribution, which is the PDF of Brownian motion,

Lévy distributions have heavier tails and an infinite variance which implies they

allow contaminant particles to be dispersed or jump large distances. Where the

second order advection-dispersion equation is describing Brownian motion, Lévy

motion can be described by a fractional order advection-diffusion equation. There-

fore we wish to use the fractional advection-diffusion equation to model dispersion

in these complex flows, with the purpose that this will give us a more realistic

model of the dispersion.

The fractional advection-dispersion equation only uses a fractional derivative on
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which take into account extreme market volatility. Here instead of modelling par-

ticle jumps price jumps are modelled see [8].

One example from [14] talks about anomalous diffusion in fluids which are par-

titioned into convective cells e.g a steady state atmosphere. Diffusion here is

characterised by two types of motion, one is the fast convective motion within a

convective cell and the other is the random walk behaviour for the crossing of the

convective cells, this type of motion leads to the diffusion behaviour at large scales.

There are also many papers on diffusion through porous media in a
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neighbourhood of any point’. This presents a problem when considering diffusion

in turbulent flows.

In turbulent flows diffusion is due to the random fluctuations in the velocity, this

can randomly transport particles of the contaminant over larger distances i.e be-

yond the local volumes. This is easy to imagine if we consider the analogy of

rotating eddies in a flow, here the velocities in the flow varies greatly. Therefore

we want a method for modelling diffusion that provides a more global process. [13]

provides a discussion on this for the case where velocity variations are produced

by flow through porous medium rather than eddies. To develop this new method

of modelling diffusion we first need to look at Brownian motion which will lead us

on to Lévy motion and the global process.

2.2 Brownian Motion

To introduce the idea of Brownian motion we first find the solutio
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Chapter 3

Fractional Calculus

Before we begin to develop any sort of numerical scheme we need to become familiar

with fractional derivatives and how they are defined. If we consult [12] we see that

there are many definitions for the fractional derivative and ways of defining the

derivatives of standard functions.

3.1 Main Definition

Perhaps the easiest way to see where one of these definitions comes
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Chapter 4

Finite Difference Approximations

The majority of methods to solve the fractional diffusion equation use a finite

difference approach see [10, 9, 15].

4.1 Numerical Approximation

Although the definitions for fractional derviatives suggest a finite difference scheme

should be straight forward to develop, it is important to take make sure the scheme
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we can choose the required set of summations to model that particular diffusion.

Further to this, we could also use a modification of our symmetric scheme in one
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4.3.2 Accuracy



CHAPTER 4. FINITE DIFFERENCE APPROXIMATIONS 34

10
−1

10
−4

10
−3

10
−2









CHAPTER 4. FINITE DIFFERENCE APPROXIMATIONS 38











Chapter 5

A numerical scheme using

Spectral Methods

We now wish to develop a spectral method to numerically calculate our solution.

Our idea is that because spectral methods use global data rather than data from

immediate surrounding points, they should be better suited to fractional diffusion.



CHAPTER 5. A NUMERICAL SCHEME USING SPECTRAL METHODS 44





CHAPTER 5. A NUMERICAL SCHEME USING SPECTRAL METHODS 46











CHAPTER 5. A NUMERICAL SCHEME USING SPECTRAL METHODS 51

function is not the best choice.

On the positive side we also find that the complex exponential case is valid on

any domain.

5.3 Results and Comparison with Finite Differ-

ence Scheme

To look at a range of results and compare to our finite difference scheme we shall

use the spectral method that uses complex exponential expansion functions. This
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We then evaluate the standard deviation at various times and calculate its evolu-

tion see Fig. 5.4 this gives a very similar result to that displayed in Fig. 4.10.
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Figure 5.5: Comparision of Plume Widths



Chapter 6

Conclusions and Future Work

6.1 Fractional Diffusion
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Further work can be done to fit the fractional diffusion equation to a real world

example and assess the how well it fits the data over using the ordinary second

order diffusion equation.
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modelling an advecting plume. Again only a few results have been produced here.

Further investigation would allow us to determine whether using the fractional dif-
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