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Abstract

In a large category of wetting phenomena, the
contact line was always regarded as a compact,
one-dimensional object with only microscopic
length scales involved. This prevailing opin-
ion had a certain impact and repercussions on
the developing theories, interpretation of exper-
imental results and the subsequent modeling
methodologies. In this report, we will demon-
strate, on the basis of �rst principles of molec-
ular dynamic simulations, that this is not al-
ways the case. In particular, this is not true
in the complete wetting case, when the advanc-
ing contact line motion is often accompanied
by a running ahead precursor �lm. We study
the onset of the dynamic wetting regime with
the precursor �lm present and its main char-
acteristic properties, such as dimensions. We
show how the contact line becomes wide and
practically macroscopic, and how the presence
of the precursor �lm
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Introduction

In 1805, Thomas Young proposed an equation
to predict the value of the equil.u96yn31so-sion28(ntact)]TJ 0 -14.446 Td [angpleformsedby(the)273(freed)2726surfache(of)273(af)273(liequed)2726ionaf



line. In equilibrium, at zero contact line ve-
locity, the friction force F = 0 vanishes and
the contact angle should attain the equilibrium
value � 0 in the absence of the hysteresis e�ects.

In both static and dynamic scenarios recre-
ated in molecular dynamics simulations (MDS),
the local character of the contact line was di-
rectly established. It was found that the con-
tact line region, including the domain where
the contact line friction force F was generated,
was on the microscopic length scale of a few
or so atomic distances, that is basically around
one or two nanometers in dimensional units.7,8

In fact, the analysis and simulations performed
in8 have con�rmed the longstanding hypothesis
postulated in the molecular kinetic theory9,10

about the existence of a friction force of non-
hydrodynamic, that is of microscopic origin act-
ing directly on the contact line and leading to
the modi�ed Young’s law (2).

As one can see, the locality of the contact
line region has important repercussions for the
modelling of the dynamic wetting phenomena.
In the current study, we consider a situation,
when the local character of the contact line re-
gion is completely broken.

In general, non-locality in dynamic wetting
is often associated with the presence of surface
tension gradients (Marangoni e�ect) created by
gradients of temperature or relative concentra-
tions of surface phase components.11 In this
case, hydrodynamic motion can inuence sur-
face tension gradients on macroscopic length
scales and therefore a�ect the local contact an-
gle. The contact angle can be inuenced di-
rectly if the system size is on the length scale
comparable to the size of the contact line re-
gion, basically in the nanoow conditions.12 In
simple liquids at constant temperature, the in-
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Figure 1: Snapshots of the cylindrical droplets
in a steady state in MDS set-up at H �
57 � � and two dynamic contact angles: � c =
122:7 � 1� at U = 0:06 u0 and � c = 68:7 � 1�

at U = 0:009 u0. The set-up is periodic in
the x-direction with the total number of liq-
uid particles in the simulations varied between
90; 000 to 140; 000. The solid wall was mov-
ing along the z-direction aligned in the [1,0,0]
crystallographic direction of the fcc lattice com-
prising the solid substrate. The steady state
was reached following an equilibration period
of 10000 � 0.

To mimic the forced wetting regime, the solid
wall particles were moving with velocity U in
the z-direction ([1,0,0] crystallographic direc-
tion), where the reective wall was acting as a
piston at rest. After initial equilibration during
�teq = 10000 � 0 with the time integration step
�ts = 0:01 �



agates according to the di�usion law,

Lp =
p

Dst (3)

similar to the well-known in the capillary sci-
ence Lucas-Washburn propagation dynamics.
Here Lp is the length of the precursor �lm
counted from the foot of the macroscopic liq-
uid region and Ds is e�ective coe�cient of sur-
face di�usion. As one can readily observe, the
velocity of the moving �lm front

dzf

dt
=

1

2

r
Ds

t
=

Ds

2Lp
(4)

vanishes with time as the �lm length increases.
This in turn implies that in a moving contact
line problem, when, for example, a droplet is
moving with macroscopic velocity U and the
tip of the precursor �lm is propagating indepen-
dently at the rate dzf =dt in the same direction,
the length of the precursor �lm is expected to
attain a constant value de�ned by the droplet
velocity and the coe�cient of the surface di�u-
sion

Lp =
Ds

2U
(5)

when
dzf

dt
� U =

dLp

dt
= 0: (6)

In our MDS, the precursor �lm is only ob-
served in the complete wetting cases (� 0 = 0),
when the droplet velocity is below some criti-
cal value U < UT , Tables 1 and 2. The steady
state of the precursor �lm is indeed observed
and is illustrated in Fig. 2. As one can see
from the averaged density pro�les at the foot of
the wetting volume, the thickness of the �lm is
about one atomic diameter � � . This is the typ-
ical morphology of the precursor �lms observed
in our MDS in the liquids consisting of both
short chain (NB = 5) and long chain (NB = 50)
molecules. Consider now the obtained steady
state in detail.

Results and discussion

Consider �rst how do our MDS results corre-
spond to the predictions of the di�usion theory

represented by equation (3).

Figure 3: Illustration of the precursor �lm
dynamics while the system was reaching the
steady state in MDS set-up. Precursor �lm
length Lp as a function of time t at di�erent
contact line velocities U and molecular length
NB at T = 1" � =kB . The solid lines are the �t
given by equation (8).
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Figure 4: Precursor �lm length Lp as a func-
tion of the droplet velocity U in a steady state
at di�erent system parameters T , NB and "wf .
The solid lines are the �t Lp = Ds=2U.

Evolution of the precursor �lm

Integrating the evolution equation

dLp

dt
=

Ds

2Lp
� U (7)
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Table 1: Parameters of the MDS systems and dynamic wetting regimes: NB



of the �lm. Note, in the �tting procedure, only
one parameter Ds in (8) has been allowed to
vary.



with characteristic dimensions �z = 1 � � and
�y = 3 � � , and by averaging over the time in-
terval �t = 10000� 0 and over the droplet depth
in the x-direction. The distribution as a func-
tion of the tangential coordinate z has two char-
acteristic regions, Fig. 6 (a). The �rst part of
the distribution has a characteristic bell-shaped
form and begins at the tip of the density distri-
bution at the substrate. Further along the sub-
strate, the bell-shaped region goes into a tail.
We note that the characteristic length scale of
the friction force variations is de�nitely micro-
scopic.

The tail of the friction force distribution in
our simulations is due to the small, �nite size of
the system H and corresponds well to the shear
stress developed in the rectilinear ow between
the solid substrates. Indeed, in the example
shown in Fig. 6 (a), the shear stress in the
tail region at z > 20 � � at the solid substrate
was found to be �yz = �0:082� 0:006 f 0, while
the value of �yz = �6� U

H e�
= �0:073 f 0 is ex-

pected assuming the Hagen-Poiseuille ow be-
tween the planes, where He� = H � 2�S �
52 � � is the e�ective gap between the plates
taking into account the size of the solid sub-
strate �S � 2:75 � � .

As the system size increases, the value of the
friction force in the tail region is observed to
decrease at a given substrate velocity, as is ex-
pected in the rectilinear Hagen-Poiseuille ow
conditions, and to eventually disappear in the
macroscopic limit H !1.8 At the same time,
the bell-shaped region in this limiting procedure
is shown to be qualitatively invariant (subject







changes, though the concept itself is still useful.
In a nutshell, the usually microscopic object,
the contact line becomes geometrically macro-
scopic due to the developing precursor �lm. As
a result, the processes usually taking place on
the scale of a nanometer, are now occurring
over much larger, tens of nanometers length
scales. In terms of the macroscopic observables,
the contact angle velocity dependence attains a
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Figure 7: MDS in the complete wetting case,
set (c) in Table 1, at the substrate velocity
U = 0:06 u0 and the dynamic contact angle
� c = 123� . Force balance and the density distri-
bution at the contact line region. The dashed
box designates the contact line region. Distance
y is measured from the equimolar surface of the
solid wall particles, while distance z is measured
from the centre of the simulation box.
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Figure 8: MDS in the complete wetting case,
set (c) in Table 1, at the substrate velocity
U = 0:06 u0 and the dynamic contact angle
� c = 123� . The upper solid line (black) is for
the integrated friction force FD =

Rz
z0

�F d� as
a function of z at z0 = �5 � � . The second,
lower solid line (brown) is the integrated force
in the macroscopic limit at the same system
parameters. The dashed lines designate the
contact line region as the interface crossover
shown in Fig. 7 by the dashed box and the
integration region to achieve the force balance
FD +  LS +  cos � c = 0.

Figure 9: MDS in the complete wetting case,
set (c) in Table 1, at the substrate velocity
U = 0:06 u0 and the dynamic contact angle
� c = 123� . The force FS per unit length (in the
x-direction) acting on the surface of the variable
side size �y oriented perpendicularly to the z-
axis and located at the right end of the dashed
box in Fig. 7. The dashed line is the linear �t
FS = A + B (�y � �y0) at A = �2:3 � 0:1  0,
�y0 = 0:44� 0:1� � and B = 0:78� 0:02f 0.
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Figure 10: MDS in the complete wetting case,
set (c) in Table 1, at the substrate velocity
U = 0:009 u0 and the dynamic contact angle
� c = 68:7� . Force balance and the density dis-
tribution at the contact line region. The dashed
box designates the contact line region. Distance
y is measured from the equimolar surface of the
solid wall particles, while distance z is measured
from the centre of the simulation box.
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Figure 11: MDS in the complete wetting case,
set (c) in Table 1, at the substrate velocity U =
0:009 u0 and the dynamic contact angle � c =
68:7� . (a) Tangential component of the friction
force �F , (b) surface density � S and (c) surface
velocity vS as functions of z. The dashed box
designates the contact line region, with similar
dimensions as in Fig. 7. The surface variables
have been obtained in the boundary layer �y =
1:5 � � at the solid wall.
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Figure 12: MDS in the complete wetting case,
set (c) in Table 1, at the substrate velocity U =
0:009 u0 and the dynamic contact angle � c =
68:7� . The integral of the tangential component
of the friction force

Rz
z0

�F d� as a function of z.

that mf , � � , " � and � 0 = � �

q
m f

" �
provide basic

scales for mass, length, energy and time respec-

tively. At the same time, � � 3
� , u0 =

q
" � m� 1

f ,

f 0 = " � � � 3
� ,  0 = " � � � 2

� and � 0 =
p

" � mf � � 2
�

provide necessary scales for particle density, ve-



means of harmonic potential �a = �x 2, with the
strength � = 800

" �

� 2
�

chosen such that the root-

mean-square displacement of the wall atomsp
< �r 2 > was small enough to satisfy the

Lindemann criterion for melting
p

< �r 2 > <
0:15 � ww . The strength of the harmonic poten-
tial was su�cient to guarantee rigidity of the
solid wall, so that elasto-capillarity e�ects can
be neglected, that is (=� )1=2 � 1, where 
is equilibrium liquid-gas surface tension.23 The
anchor points in the layer of the solid wall facing
the liquid molecules have been slightly random-
ized in the vertical y direction, with the ampli-
tude

p
< �y 2 > = 0:3 � � . This small roughness

allowed to avoid undesirably large slip lengths
observed in MDS21 and any bias towards ideal
substrates in this study. The substrate density
�S was set to �S = 1:41 � � 3

� with the liquid-
solid interaction length scale � wf = � � and the
solid-solid interaction length scale � ww = � � .
Two parameters of the model, temperature T
and strength of the liquid-solid interactions "wf

have been varied in the simulations to obtain
liquids with di�erent viscosities and to emulate
various wetting conditions (partial, � 0 > 0, or
full wetting, � 0



in the case of a free surface, and by

 LS =
Z L y

0

�
� zz + � xx

2
� � yy � y� (y)

d� S

dy

�
dy

(14)
for a solid-liquid interface, where �S is the po-
tential of the solid wall forces acting on the liq-
uid particles and � is the particle density.25,26

The liquid-solid surface tension is calculated in
the assumption of undeformable solid substrate,
so that  LS is in fact the surface tension of the
liquid.

The value of the zero shear rate viscosity in
the liquid in the bulk conditions is evaluated by
considering the correlation function

� =
V

kB T

Z 1

0
< � �� (t)� �� (0) > dt

at � 6= � , details can be found in.27

The methodology of the surface tension eval-
uation in MDS has been veri�ed either by com-
parison with the Laplace law (by independently
evaluating surface tension and the pressure in
a large, levitating liquid drop)28 or by compar-
ison with the Young-Dupr�e equation in equi-
librium  cos� 0 = �  LS +  GS .29 The Young-
Dupr�e equation was probed by evaluating inde-
pendently surface tensions and by directly mea-
suring the equilibrium contact angle � 0 from
the shape of the free-surface pro�les of cylin-
drical droplets.29,30 The di�erence between two
static contact angles (measured geometrically
and calculatedvia the Young-Dupr�e equation)
was found not to exceed the accuracy of the
contact angle evaluations.

Evaluation of the contact angles in MDS

The contact angle in our study has been in-
ferred from the free-surface pro�les de�ned as
the locus of equimolar points and averaged over
the x-direction, Fig. 1 and during the time pe-
riod of � t = 10000� 0. The pro�les were devel-
oped by means of a circular �t

(y � y0)



Figure 15: Illustration of the free surface pro-
�les (equimolar surfaces approximated by the
�t (15), shown by the dashed line) developed
from the particle density distributions obtained
in MDS in a steady state in the case of complete
wetting � 0 = 0� at NB = 50, T0 = 1 " � =kB

and "wf = 1:3 " � . Here, (a) � c = 90 � 1� ,
U = 0:01 u0, Ca = 0:67 and (b) � c = 128:3�1� ,
U = 0:1 u0, Ca = 6:7. In both cases hs =
8 � � and the distance y is measured from the
equimolar surface of the substrate particles of
the bottom plate, while the distance z is calcu-
lated from the centre of the simulation box, as
in Fig. 1.

has been applied to a part of the free-surface
pro�le of length � 20 � � excluding hs layer
adjacent to the substrate corresponding to the
liquid-solid interface, similar to the methodol-
ogy developed in.30 The accuracy of this ap-
proach is illustrated in Figs. 14 and 15. One
may notice that the interface shape is very well
described by the �t even at Ca > 1. The value
of the cut-o� distance hs was varied in between
4 � � � hs � 8 � � to exclude the area strongly
a�ected by the solid wall potential with density
variations on the scale of one atomic distance
� � .
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