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Abstract

We consider the large-sparse symmetric linear systems of equations that arise in the solution of weak constraint
four-dimensional variational data assimilation. These systems can be written as saddle point systems with a 3 � 3
block structure but block eliminations can be performed to reduce them to saddle point systems with a 2 � 2 block
structure, or further to symmetric positive de�nite systems. In this paper, we analyse how sensitive the spectra of
these matrices are to the number of observations of the underlying dynamical system. We also obtain bounds on
the eigenvalues of the matrices. Numerical experiments are used to con�rm the theoretical analysis and bounds.
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1 Introduction

Data assimilation estimates the state of a dynamical system by combining observations of the system with a prior
estimate. The latter is called a background state and it is usually an output of a numerical model that simulates
the dynamics of the system. The impact that the observations and the background state have on the state estimate
depends on their errors whose statistical properties we assume are known. Data assimilation is used to produce
initial conditions in numerical weather prediction (NWP) [22, 39], as well as other areas, e.g. ood forecasting [7],
research into atmospheric composition [11], and neuroscience [27]. In operational applications, the process is made
more challenging by the size of the system, e.g. the numerical model may be operating on108 state variables and
105 � 106 observations may be incorporated [28, 23]. Moreover, there is usually a constraint on the time that can be
spent on calculations.

The solution, called the analysis, is obtained by combining the observations and the background state in an
optimal way. One approach is to solve a weighted least-squares problem, which requires minimising a cost function.
An active research topic in this area is the weak constraint four-dimensional variational (4D-Var) data assimilation
method [42, 43, 10, 5, 13, 16, 14]. It is employed in the search for states of the system over a time period, called the
assimilation window. This method uses a cost function that is formulated under the assumption that the numerical
model is not perfect and penalises the weighted discrepancy between the analysis and the observations, the analysis and
the background state, and the di�erence between the analysis and the trajectory given by integrating the dynamical
model.

E�ective minimisation techniques need evaluations of the cost function and its gradient that involve expensive
operations with the dynamical model and its linearised variant. Such approaches are impractical in operational



the 1 � 1 block positive de�nite coe�cient matrix depend on the available observations of the dynamical system. We
present a novel examination of how adding new observations inuence the spectrum of these coe�cient matrices.

In Section 2, we formulate the data assimilation problem and introduce weak constraint 4D-Var with the 3 � 3
block and 2� 2 block saddle point formulations and the1� 1 block symmetric positive de�nite formulation. Eigenvalue
bounds for the saddle point and positive de�nite matrices and results on how the extreme eigenvalues and the bounds
depend on the number of observations are presented in Section 3. Section 4 illustrates the theoretical considerations
using numerical examples, and concluding remarks and future directions are presented in Section 5.

2 Variational Data Assimilation

The state of the dynamical system of interest at timest0 < t 1 < ::: < t N is represented by the state vectorsx0; x1; : : : ; xN

with x i 2 Rn . A nonlinear model m i that is assumed to have errors describes the transition from the state at timet i

to the state at time t i +1 , i.e.
x i +1 = m i (x i ) + � i +1 ; (1)

where � i represents the model error at timet i . It is further assumed that the model errors are Gaussian with zero mean
and covariance matrix Qi 2 Rn � n , and that they are uncorrelated in time, i.e. there is no relationship between the
model errors at di�erent times. In NWP, the model comes from the discretization of the partial di�erential equations
that describe the ow and thermodynamics of a strati�ed multiphase uid in interaction with radiation [22]. It also
involves parameters that characterize processes arising at spatial scales that are smaller than the distance between
the grid points [31]. Errors due to the discretization of the equations, errors in the boundary conditions, inaccurate
parameters etc. are components of the model error [19].

The background information about the state at time t0 is denoted by xb 2 Rn . xb usually comes from a previous
short range forecast and is chosen to be the �rst guess of the state. It is assumed that the background term has errors
that are Gaussian with zero mean and covariance matrixB 2 Rn � n .

Observations of the dynamical system at time t i are given by yi 2 Rpi . In NWP, there are considerably fewer
observations than state variables, i.e. pi << n . Also, there may be indirect observations of the variables in the
state vector and a comparison is obtained by mapping the state variables to the observation space using a nonlinear
operator H i . For example, satellite observations used in NWP provide top of the atmosphere radiance data, whereas
the model operates on di�erent meteorological variables, e.g. temperature, pressure, wind etc. [1] Hence, values of
meteorological variables are transformed into top of the atmosphere radiances in order to compare the model output
with the observations. In this case, the operator H i is nonlinear and complicated. Approximations made when
mapping the state variables to the observation space, di�erent spatial and temporal scales between the model and
some observations (observations may give information at a �ner resolution than the model), and pre-processing, or
quality control, of the observations (see, e.g. Section 5.8 of Kalnay [22]) comprise the representativity error [21]. The
observation error is made up of the representativity error combined with the error arising due to the limited precision
of the measurements. It is assumed to be Gaussian with zero mean and covariance matrixR i 2 Rpi � pi . The observation
errors are assumed to be uncorrelated in time [23].

2.1 Weak constraint 4D-Var

In weak constraint 4D-Var, the analysis xa
0 ; xa

1 ; : : : ; xa
N is obtained by minimising the following nonlinear cost function

J (x0; x1; : : : ; xN ) =
1
2

(x0 � xb)T B � 1(x0 � xb) +
1
2

NX

i



2.2 Incremental formulation



2.2.1 3 � 3 block saddle point formulation

In pursuance of exploiting parallel computations in data assimilation, Fisher and G•urol [13] proposed obtaining the
state increment � x by solving a saddle point system (see also Freitag and Green [14]). New variables are introduced

� = D � 1(b � L � x ) 2 R(N +1) n ; (6)

� = R � 1(d � H � x ) 2 Rp: (7)

The gradient of the cost function (5) with respect to � x provides the optimality constraint

0 = L T D � 1(L � x � b) + H T R � 1(H � x � d)

= � (L T � + H T � ): (8)

Multiplying (6) by D and (7) by R together with (8), yields a coupled linear system of equations:

A 3

0

B
@

�
�
� x

1

C
A =

0

B
@

b
d
0

1

C
A ; (9)

where the coe�cient matrix is given by

A 3 =

0

B
@

D 0 L
0 R H

L T H T 0

1

C
A 2 R(2( N +1) n + p) � (2( N +1) n + p) : (10)

A 3 is a sparse symmetric inde�nite saddle point matrix that has a 3 � 3 block form. Such systems are explored in
the optimization literature [18, 25, 26]. When iteratively solving these systems, it is usually assumed that calculations
involving the blocks on the diagonal are computationally expensive, while the o�-diagonal blocks are cheap to apply
and easily approximated. However, in our application, operations with the diagonal blocks are relatively cheap and
the o�-diagonal blocks are computationally expensive, particularly because of the integrations of the model and its
adjoint in L and L T .

Recall that the sizes of the blocksR , H and H T depend on the number of observationsp. Thus, the size ofA 3 and
possibly some of its characteristics are also a�ected byp. The saddle point systems that arise in di�erent outer loops
vary in the right hand sides and the linearisation states ofL and H .



2.2.3 1 � 1 block formulation

The 2 � 2 block system can be further reduced to a1 � 1 block system, that is, to the standard formulation (see, e.g.,
Tr�emolet [42] and A. El-Said [10] for a more detailed consideration):

(L T D � 1L + H T R � 1H )� x = L T D � 1b + H T R � 1d:

Observe that the coe�cient matrix

A 1 = L T D � 1L + H T R � 1H (13)

= ( L T H T )

 
D � 1 0

0 R � 1

!  
L
H

!

is the negative Schur complement of

 
D 0
0 R

!

in A 3. The matrix A 1 is block tridiagonal and symmetric positive

de�nite, hence the conjugate gradient method by Hestenes and Stiefel [20] can be used. The computations with the
linearised model in L at every time step can again be performed in parallel. However, the adjoint of the linearised
model in L T can only be applied after the computations with the model are �nished, thus limiting the potential for
parallelism.

3 Eigenvalues of the saddle point formulations

The rate of convergence of Krylov subspace iterative solvers for symmetric systems depends on the spectrum of the
coe�cient matrix (see, for example, Section 10 in the survey paper [3] and Lectures 35 and 38 in the textbook [41] for
a discussion). Simoncini and Szyld [37] have shown that any eigenvalues of the saddle point systems that lie close to
the origin can cause the iterative solver MINRES to stagnate for a number of iterations while the rate of convergence
can improve if the eigenvalues are clustered.

In the following, we examine how the eigenvalues of the3� 3, 2� 2 and 1� 1 block matrices A 3, A 2, and A 1 change
when new observations are added. This is done by considering the shift in the extreme eigenvalues of these matrices,
that is the smallest and largest positive and negative eigenvalues. We then present bounds for the eigenvalues of these
matrices. The bounds for the spectrum ofA 3 are obtained by exploiting the earlier work of Rusten and Winther [32].
We derive bounds for the intervals that contain the spectra ofA 2 and A 1.

3.1 Preliminaries

In order to determine how changing the number of observations inuences the spectra ofA 3, A 2, and A 1, we explore
the extreme singular values and eigenvalues of some blocks inA 3, A 2 and A 1. We state two theorems that we will
require. Here we employ the notation � k (A) to denote the k-th largest eigenvalue of a matrix A and subscripts min
and max are used to denote the smallest and largest eigenvalues, respectively.

Theorem 1 (See Section 8.1.2 of Golub and Van Loan [15]). If A and C are n � n Hermitian matrices, then

� k (A) + � min (C) � � k (A + C) � � k (A) + � max (C); k 2 f 1; 2; : : : ; ng.

Theorem 2 (Cauchy's Interlace Theorem, see Theorem 4.2 in Chapter 4 of Stewart and Sun [38]). If A is an n � n
Hermitian matrix and C is a (n � 1) � (n � 1) principal submatrix of A (a matrix obtained by eliminating a row and a
corresponding column ofA), then

� n (A) � � n � 1(C) � � n � 1(A) � � � � � � 2(A) � � 1(C) � � 1(A).

In the following lemmas we describe how the smallest and largest singular values of(L T H T ) (here L and H are
as de�ned in Section 2.2) and the extreme eigenvalues of the observation error covariance matrixR change when new
observations are introduced. The same is done for the largest eigenvalues ofH T R � 1H assuming that R is diagonal. In
these lemmas the subscriptk 2 f 0; 1; : : : ; (N + 1) n � 1g denotes the number of available observations and the subscript
k + 1 indicates that a new observation is added to the system withk observations, i.e. matricesR k 2

L R k 2 [(R)]TJ/F13 6.9738 Tf 7.9: :andN2

k L



Proof. We consider the eigenvalues ofL T L + H T
k H k and L T L + H T

k+1 H k+1 , which are the squares of the singular values
of (L T H T

k ) and (L T H T
k+1 ), respectively (see Section 2.4.2 of Golub and Van Loan [15]). We can write

H T
k+1 H k+1 =

�
H T

k hk+1

�
 

H k

hT
k+1

!

= H T
k H k + hk+1 hT

k+1 :

Then by Theorem 1,
! 2

min + � min (hk+1 hT
k+1 ) � � 2

min ; k 2 f 0; 1; : : : ; (N + 1) n � 1g;

and sincehk+1 hT
k+1 is a rank 1 symmetric positive semide�nite matrix, � min (hk+1 hT

k+1 ) = 0 .
The proof for the largest singular values is analogous.

Lemma 2. Consider the observation error covariance matricesR k 2 Rk � k and R k+1 2 R(k+1) � (k+1) . Then

� min (R k+1 ) � � min (R k ) and � max (R k ) � � max (R k+1 ); k 2 f 0; 1; : : : ; (N + 1) n � 1g;

i.e. the largest (respectively, smallest) eigenvalue ofR increases (respectively, decreases), or is unchanged when new
observations are introduced.

Proof. When adding an observation, a row and a corresponding column are appended toR k while the other entries
of R k are unchanged. The result is immediate by applying Theorem 2.

Lemma 3. If the observation errors are uncorrelated, i.e. R is diagonal, then

� max (H T
k R � 1

k H k ) � � max (H T
k+1 R � 1

k+1 H k+1 ); k 2 f 0; 1; : : : ; (N + 1) n � 1g;

i.e. for diagonal R , the largest eigenvalue ofH T R � 1H increases or is unchanged when new observations are introduced.

Proof. The proof is similar to that of Lemma 1. For diagonal R k+1 :

R � 1
k+1 =

 
R � 1

k
� � 1

!

; � > 0:

Then

H T
k+1 R � 1

k+1 H k+1 =
�

H T
k hk+1

�
 

R � 1
k

� � 1

!  
H k

hT
k+1

!

= H T
k R � 1

k H k + � � 1hk+1 hT
k+1 :

Hence, by Theorem 1,

� max (H T
k R � 1

k H k ) + � � 1� min (hk+1 hT
k+1 ) � � max (H T

k+1 R � 1
k+1 H k+1 ); k 2 f 0; 1; : : : ; (N + 1) n � 1g;



3.2 Bounds for the 3 � 3 block formulation

To determine the numbers of positive and negative eigenvalues ofA 3 given in (10), we write A 3 as a congruence
transformation

A 3 =

0

B
@

D 0 L
0 R H

L T H T 0

1

C
A =

0

B
@

D 0 0
0 R 0

L T H T I

1

C
A

0

B
@

D � 1 0 0
0 R � 1 0
0 0 � L T D � 1L � H T R � 1H

1

C
A

0

B
@

D 0 L
0 R H
0 0 I

1

C
A

= L̂ B̂ L̂ T ;

where I 2 R(N +1) n � (N +1) n is the identity matrix. Thus, by Sylvester's law of inertia (see Section 8.1.5 of Golub and
Van Loan [15]), A 3 and B̂ have the same inertia, i.e. the same number of positive, negative, and zero eigenvalues.
Since the blocksD � 1, R � 1 and L T D � 1L + H T R � 1H = A 1 are symmetric positive de�nite matrices, A 3 has (N +1) n + p
positive and (N + 1) n negative eigenvalues. In the following theorem, we explore how the extreme eigenvalues ofA 3

change when new observations are introduced.

Theorem 3. The smallest and largest negative eigenvalues ofA 3 either move away from the origin or are unchanged
when new observations are introduced. The same holds for the largest positive eigenvalue, while the smallest positive
eigenvalue approaches the origin or is unchanged.

Proof. Let A 3;k denote A 3 where p = k. To account for an additional observation, a row and a corresponding column
is added to A 3, henceA 3;k is a principal submatrix of A 3;k +1 . Let

� � (N +1) n (A 3;k ) � � � (( N +1) n � 1) (A 3;k ) � � � � � � � 1(A 3;k ) < 0 < � 1(A 3;k ) � � � � � � (N +1) n + k (A 3;k )

be the eigenvalues ofA 3;k , and

� � (N +1) n (A 3;k +1 ) � � � (( N +1) n � 1) (A 3;k +1 ) � � � � � � � 1(A 3;k +1 ) < 0 < � 1(A 3;k +1 ) � � � � � � (N +1) n + k+1 (A 3;k +1 )

be the eigenvalues ofA 3;k +1 . Then by Theorem 2:

smallest negative eigenvalues: � � (N +1) n (A 3;k +1 ) � � � (N +1) n (A 3;k );

largest negative eigenvalues: � � 1(A 3;k +1 ) � � � 1(A 3;k );

smallest positive eigenvalues: � 1(A 3;k +1 ) � � 1(A 3;k );

largest positive eigenvalues: � (N +1) n +



Corollary 2. If � max =  max , the upper bound for the negative eigenvalues ofA 3 in (16) is either unchanged or
moves away from the origin when new observations are added. If� min =  min , the same holds for the lower bound for
negative eigenvalues in(16).

Proof. The results follow from the facts that  max and  min do not change if observations are added, whereas� min

and � max increase or are unchanged by Lemma 1.

If � max = � max or � min = � min , it is unclear how the interval for the negative eigenvalues in (16) changes,

because
q

� 2
min + 4 � 2

max can increase, decrease or be unchanged, and both� max and
q

� 2
max + 4 � 2

min can increase or be
unchanged.

3.3 Bounds for the 2 � 2 block formulation

A 2 given in (12) is equal to the following congruence transformation

A 2 =

 
D L
L T � H T R � 1H

!

=

 
D 0
L T I

!  
D � 1 0

0 � L T D � 1L � H T R � 1H

!  
D L
0 I

!

;

whereI 2 R(N +1) n � (N +1) n is the identity matrix. Then by Sylvester's law, A 2 has(N +1) n positive and (N +1) n negative
eigenvalues. The change of the extreme negative and positive eigenvalues ofA 2 due to the additional observations is
analysed in the subsequent theorem. However, the result holds only in the case of uncorrelated observation errors,
unlike the general analysis forA 3 in Theorem 3.

Theorem 5. If the observation errors are uncorrelated, i.e. R is diagonal, then the smallest and largest negative
eigenvalues ofA 2 either move away from the origin or are unchanged when new observations are added. Contrarily,
the smallest and largest positive eigenvalues ofA 2 approach the origin or are unchanged.

Proof. Matrices D and L do not depend on the number of observations. In Lemma 3, we have shown that
H T

k+1 R � 1
k+1 H k+1 = H T

k R � 1
k H k + � � 1hk+1 hT

k+1 ; (� > 0) for diagonal R . Hence, whenA 2;k denotes A 2 with p = k,
we can write

A 2;k +1 = A 2;k +

 
0 0
0 � � � 1hk+1 hT

k+1

!

= A 2;k + E2;

where E2 has negative and zero eigenvalues. Let

� � (N +1) n (A 2;k ) � � � � � � � 1(A 2;k ) < 0 < � 1(A 2;k ) � � � � � � (N +1) n (A 2;k )

be the eigenvalues ofA 2;k , and

� � (N +1) n (A 2;k +1 ) � � � � � � � 1(A 2;k +1 ) < 0 < � 1(A 2;k +1 ) � � � � � � (N +1) n (A 2;k +1 )

be the eigenvalues ofA 2;k +1 . By Theorem 1,

smallest negative eigenvalues: � � (N +1) n (A 2;k ) � � � 1� max (hk+1 hT
k+1 ) � � � (N +1) n (A 2;k +1 ) � � � (N +1) n (A 2;k );

largest negative eigenvalues: � � 1(A 2;k ) � � � 1� max (hk+1 hT
k+1 ) � � � 1(A 2;k +1 ) � � � 1(A 2;k );

smallest positive eigenvalues: � 1(A 2;k ) � � � 1� max (hk+1 hT
k+1 ) � � 1(A 2;k +1 ) � � 1(A 2;k );

largest positive eigenvalues: � (N +1) n (A 2;k ) � � � 1� max (hk+1 hT
k+1 ) � � (N +1) n (A 2;k +1 ) � � (N +1) n (A 2;k ):

We further search for the intervals in which the negative and positive eigenvalues ofA 2 lie. We follow a similar
line of thought as in Silvester and Wathen [35], with the energy arguments for any non-zero vectorw 2 R(N +1) n

 min jjw jj 2 � w T Dw �  max jjw jj 2; (18)

� � max jjw jj 2 � � w T H T R � 1Hw � � � min jjw jj 2; (19)

� min jjw jj � jj L T w jj � � max jjw jj ; (20)

� min jjw jj � jj (L T H T )T w jj � � max jjw jj : (21)

Theorem 6. The negative eigenvalues ofA 2 lie in the interval

I � =
�

1
2

�
 min � � max �

q
( min + � max )2 + 4 � 2

max

�
; min f � 1; max f � 2; � 3gg

�
; (22)

8



where

� 1 =
1
2

�
 max � � min �

q
( max + � min )2 + 4 � 2

min

�
; (23)

� 2 = � � � 1
max � 2

min ; (24)

� 3 =
1
2

�
 max �

q
 2

max + 4 � 2
min

�
; (25)

and the positive ones lie in the interval

I + =
�

1
2

�
 min � � max +

q
( min + � max )2 + 4 � 2

min

�
;

1
2

�
 max � � min +

q
( max + � min )2 + 4 � 2

max

��
: (26)

Proof. Assume that (uT ; v T )T ; u; v 2 R(N +1) n is an eigenvector ofA 2 with an eigenvalue � . Then the eigenvalue
equations are

Du + Lv = � u; (27)

L T u � H T R � 1Hv = � v : (28)

We note that if u = 0 then v = 0 by (27) and if v = 0 then u = 0 by (28). Hence,u; v 6= 0.
First, we consider � > 0. Equation (28) gives v = ( I � + H T R � 1H ) � 1L T u , where I 2 R(N +1) n � (N +1) n . The matrix

I � + H T R � 1H is positive de�nite, hence nonsingular. We multiply (27) by uT and use the previous expression forv
to get

uT Du + uT L (I � + H T R � 1H ) � 1L T u = � jj u jj



We obtain an alternative upper bound for the negative eigenvalues, that depends on the observational information
and might be useful for the fully observed case, too. Equation (30) may be written as

� � jj v jj 2 = v T (L T H T )

 
(D � � I ) � 1 0

0 R � 1

!  
L
H

!

v :

Using (21) the previous equation gives inequality

� � � � 2
min �;

where � = min f � � 1
max ; (� � +  max ) � 1g. If � = � � 1

max , the upper bound is

� � � � � 1
max � 2

min = � 2:

If � = ( � � +  max ) � 1, the following inequality

� 2 �  max � � � 2
min � 0

gives the bound

� �
1
2

�
 max �

q
 2

max + 4 � 2
min

�
= � 3:

Hence,
� � max f � 2; � 3g: (32)

The required upper bound follows from (31) and (32)
Next, we obtain the lower bound for the negative eigenvalues. Using equation (30) with the largest eigenvalue of

(D � � I ) � 1 and other parts of (19) and (20) yields

� � jj v jj 2 � � 2
max jj v jj 2 1

 min � �
+ � max jj v jj 2:

Solving
� 2 � ( min � � max )� � � max  min � � 2

max � 0

results in
� �

1
2

�
 min � � max �

q
( min + � max )2 + 4 � 2

max

�
:

We observe that if the system is not fully observed, thenp < (N + 1) n and � min = 0 , and the upper bound for the
positive eigenvalues and the upper bound for the negative eigenvalues (23) in Theorem 6 reduces to (2.11) and (2.13)
of Silvester and Wathen [35].

We are interested in how the bounds in Theorem 6 change if additional observations are introduced. The change
to the upper negative bound in (22) depends on which of (23), (24) or (25) gives the bound. Hence, in Corollary 3
we comment on when (25) is larger than (24) and Corollary 4 describes a setting when the negative upper bound is
given by (25).

Corollary 3.

max f � 2; � 3g = � 3 ()
1
2

( max +
q

 2
max + � 2

min ) � � max :

Proof. max f � 2; � 3g = � 3 if and only if

1
2

�
 max �

q
 2

max + 4 � 2
min

�
� � � � 1

max � 2
min :

Rearranging this inequality gives

 max + 2 � � 1
max � 2

min �
q

 2
max + 4 � 2

min :

Squaring both sides with further rearrangement results in

� 2
min (� � 1

max  max + � � 2
max � 2

min � 1) � 0:

Since � 2
min > 0, this is equivalent to

� 2
max � � max  max � � 2

min � 0;

from which it follows that
� max �

1
2

�
 max +

q
 2

max + 4 � 2
min

�
:



Corollary 4. If the system is not fully observed andmax f � 2; � 3g = � 3, then the upper bound for the negative eigenvalues
of A 2 is given by (25).

Proof. The singular values of L and (L T H T ) are the square roots of the eigenvalues ofL T L and L T L + H T H ,
respectively. Hence, by Theorem 1,

� 2
min + � min (H T H ) � � 2

min ;

where � min (H T H ) � 0, sinceH T H is symmetric positive semide�nite. Also, if p < (N + 1) n, then H T R � 1H is singular,
i.e. � min = 0 , and from (23) and (25)

� 1 =
1
2

�
 max �

q
 2

max + 4 � 2
min

�
�

1
2

�
 max �

q
 2

max + 4 � 2
min

�
= � 3 = max f � 2; � 3g:

We further describe how the negative upper bound changes if it is given by (23) or (25), including the case described
in Corollary 4.

Corollary 5. If the upper bound for the negative eigenvalues ofA 2 in (22) is given by� 1 or � 3



Note that by de�nition � min �  min and the following inequality always holds

 min �
1
2

�
 min � � max +

q
( min + � max )2 + 4 � 2

min

�
;

because it can be simpli�ed to

 min + � max �
q



3.5 Alternative bounds

Alternative eigenvalue bounds for symmetric saddle point matrices have been formulated by Axelsson
and Neytcheva [2]. These depend on the eigenvalues of the matricesL T D � 1L , R , D and A 1, and
� = max fj � i (A

� 1=2
1 L T D � 1L A � 1=2

1 )j; i = 1 ; : : : ; (N + 1) ng.

Theorem 9 (From Theorem 1 (c) of Axelsson and Neytcheva [2]). The negative eigenvalues ofA 3 lie in the interval

I � =
�

1
2

�
� max �

q
� 2

max + 4 � max � max (A 1)
�

;
1
2

�
� min �

q
� 2

min + 4 � min � min (A 1)
��

and the positive ones lie in the interval

I + =
�
� min ;

1
2

�
� max +

q
� 2

max + 4 � max � max (A 1)
��

:

Note that the lower bound for the positive eigenvalues in Theorem 9 is the same as in Theorem 4.

Theorem 10 (From Theorem 1 (a) and (b) of Axelsson and Neytcheva [2]). The negative eigenvalues ofA 2 lie in the
interval

I � =

2

4 � � max (A 1);
� � min (A 1)

1 + �� min (A 1 )
 min

3

5 ;

and the positive ones lie in the interval

I + =
�
 min ;

1
2

�
 max +

q
 2

max + 4  max � max (L T D � 1L )
��

: (34)

We observe that the bound (34) for the positive eigenvalues, unlike our bound in Theorem 6, is independent of the
number of observations. Also, in practical applications it may not be possible to compute the upper bound for the
negative eigenvalues because of the� term.

4 Numerical Experiments

4.1 System setup

We present results of numerical experiments using the Lorenz 96 model [24], where the evolution of the space variables
X j ; j 2 f 1; 2; : : : ; ng, is governed by a set ofn coupled ODEs:

dX j

dt
= � X j � 2X j � 1 + X j � 1X j +1 � X j + F

with periodic boundary conditions. In our experiments, we setn = 40 and F = 8 , since the system shows chaotic
behaviour with the latter value. The equations are integrated using a fourth order Runge-Kutta scheme [6]. The space
increment is taken to be � x = 1 =n = 2 :5 � 10� 2 and the time step is set to � t = 2 :5 � 10� 2. The system is run for
N = 15 time steps.

The assimilation system is set up for identical twin experiments, i.e. the true statex t that has Gaussian model
errors � i (described in the Section 2) is generated and observationsyi are obtained by adding noise tox t . The error
covariance matrices that are used to generate the model error inx t and the observation error in yi are also used for
the assimilation, i.e. in the 3 � 3 block, 2 � 2 block and 1 � 1 block matrices. These error covariance matrices do not
change over time. The observation error covariance matrix isR i = � 2

o I pi , where pi is the number of observations at
time t i , (diagonal R i is a common choice in data assimilation experiments [14, 16]) and the model error covariance
matrix is equal to the background error covariance matrix Qi = B = � 2

bCb, whereCb is a Second-Order Auto-Regressive
correlation matrix [9] with correlation length scale 1:5 � 10� 2. In our experiments, the parameters are chosen so that
the observations are close to the real values of the variables, and the background and the model errors are low, in
particular, we set � o = 10 � 1, which is about 5% of the mean of the values inx t , and � b = 5 � 10� 2. yi consists of direct
observations of the variablesX j ; j 2 f 1; 2; : : : ; ng at time t i , hence the observation operatorH i is linear.

All computations are performed using Matlab R2016b. In particular, the eigenvalues are computed using the
Matlab function eig. If only extreme eigenvalues are needed,eigs is used, and the extreme singular values are given
by svds.

4.2 Dependence on outer loop

We �rst investigate whether the spectra of the matrices A 3, A 2 and A 1 depend on the outer loop of the incremental
approach. In this experiment, every 4th model variable at every 2nd time step is observed. The saddle point and
positive de�nite systems are solved using the Matlab direct solver "n". The intervals for the eigenvalues at the �rst 3
outer loops are presented in Table 2. Note that in these experiments, the extreme negative and positive eigenvalues
oscillate around the same values throughout the outer loops and the order of change is no larger than10� 2. We have
run additional outer loops, but the intervals remain similar. Hence, in our subsequent experiments we consider only
the �rst outer loop.
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Matrix 1st 2nd 3rd

A 3 [� 2:25; � 6:18 � 10� 2] [� 2:25; � 5:97 � 10� 2] [� 2:25; � 6:00 � 10� 2]
[1:70 � 10� 3; 2:25]



(I) (II)

(III) (IV)

(V)

Figure 1: Semi-logarithmic plots of the positive and negative eigenvalues of the matricesA 3 ((I) and (II)) and A 2

((III) and (IV)), and the positive eigenvalues of A 1 in (V) for the di�erent observation networks (a-f). Eigenvalues
are denoted with merged blue dots. The �lled black squares mark the bounds for eigenvalues ofA 3 in Theorem 4, A 2

in Theorem 6, and A 1 in Theorem 8. Note that the smallest negative eigenvalues ofA 2 coincide with the bounds.

Better eigenvalue clustering away from the origin when more observations are used can speed up the convergence of
iterative solvers when solving the1 � 1 block formulation. However, nothing de�nite can be said about the 3 � 3 block
and 2 � 2 block formulations: the negative eigenvalues become more clustered, but the smallest positive eigenvalues
approach the origin when new observations are introduced.

We also calculate the alternative eigenvalue bounds given in Theorems 9 and 10. With the choice of parameters and
observations considered in this section, the bounds given in these theorems are not as sharp as those in Theorems 4 and
6. However, this is not always the case, as is illustrated in Tables 6 and 7. Here� o = 1 :5, � b = 1 and the observation
network d) is used.
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O.n. I � Eigenvalues I + Eigenvalues
a) [� 2:193; � 2:66 � 10� 2] [� 2:192; � 2:99 � 10� 2] [5:93 � 10� 4; 2:198] [3:56 � 10� 3; 2:195]
c) [� 2:249; � 5:88 � 10� 2] [� 2:247; � 6:18 � 10� 2] [5:93 � 10� 4; 2:254] [1:70 � 10� 3; 2:251]
e) [� 2:360; � 1:28 � 10� 1] [� 2:358; � 1:31 � 10� 1] [5:93 � 10� 4; 2:365] [1:13 � 10� 3; 2:362]
f) [� 2:410; � 9:96 � 10� 1] [� 2:408; � 9:96 � 10� 1] [5:93 � 10� 4; 2:416] [9:14 � 10� 4; 2:413]

Table 3: Computed spectral intervals and bounds forA 3 from Theorem 4 for di�erent observation networks (O.n.).

O.n. I � Eigenvalues I + Eigenvalues
a) [� 1:0005� 102; � 2:83 � 10� 2] [� 1:0001� 102; � 2:99 � 10� 2] [6:03 � 10� 4; 2:196] [3:91 � 10� 3; 2:195]
c) [� 1:0005� 102; � 6:07 � 10� 2] [� 1:0002� 102; � 6:50 � 10� 2] [6:03 � 10� 4; 2:196] [1:78 � 10� 3; 2:148]
e) [� 1:0005� 102; � 1:29 � 10� 1] [� 1:0004� 102; � 1:33 � 10� 1] [6:03 � 10� 4; 2:196] [1:15 � 10� 3; 2:101]
f) [� 1:0005� 102; � 1:00 � 102] [� 1:0005� 102; � 1:00 � 102] [6:03 � 10� 4; 5:42 � 10� 2] [9:35 � 10� 4; 5:15 � 10� 2]

Table 4: Computed spectral intervals and bounds forA 2 from Theorem 6 for di�erent observation networks (O.n.).

O.n. I + Eigenvalues
a) [9:72 � 10� 2; 8:11 � 103] [3:23 � 10� 1; 6:30 � 103]
c) [4:05 � 10� 1; 8:53 � 103] [1:16; 6:32 � 103]
e) [1:75; 9:40 � 103] [5:21; 6:35 � 103]
f) [1:00 � 102; 9:80 � 103] [1:00 � 102; 6:40 � 103]

Table 5: Computed spectral intervals and bounds forA 1 from Theorem 8 with di�erent observation networks (O.n.).

Eigenvalues ofA 3 Bounds from Th. 4 Bounds from Th. 9
[� 1:93; � 1:38 � 10� 2] [� 2:17; � 5:83 � 10� 3] [� 5:10; � 1:33 � 10� 2]

[2:98 � 10� 1; 3:59] [2:37 � 10� 1; 3:81] [2:37 � 10� 1; 7:53]

Table 6: Computed spectral intervals and bounds forA 3 from Theorems 4 and 9 for observation network d) with
� o = 1 :5 and � b = 1 .

Eigenvalues ofA 2 Bounds from Th. 6 Bounds from Th. 10
[� 1:97; � 1:39 � 10� 2] [� 2:33; � 5:83 � 10� 3] [� 15:79; � 1:33 � 10� 2]

[3:00 � 10� 1; 3:51] [2:38 � 10� 1; 3:74] [2:37 � 10� 1; 7:51]

Table 7: Computed spectral intervals and bounds forA 2 from Theorems 6 and 10 for observation network d) with
� o = 1 :5 and � b = 1 .
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5 Conclusions

Weak constraint 4D-Var data assimilation requires the minimisation of a cost function in order to obtain an estimate
of the state of a dynamical system. Its solution can be approximated by solving a series of linear systems. We have
analysed three di�erent formulations of these systems, namely the standard system with1� 1 block symmetric positive
de�nite coe�cient matrix A 1, a new system with a2� 2 block saddle point coe�cient matrix A 2, and the version with
3 � 3 block saddle point coe�cient matrix A 3 of Fisher and G•urol [13]. We have focused on the dependency of the
coe�cient matrices on the number of observations.

We have found that the spectra ofA 3, A 2 and A 1 are sensitive to the number of observations and examined how
they change when new observations are added. The results hold with any choice of the blocks inA 3, whereas we
can only make inference about the change of the spectra ofA 2



Theorem 13. Let ! i ; i = 1 ; : : : ; (N + 1) n + p be the i -th value in f  k ; � j jk = 1 ; : : : ; (N + 1) n; j = 1 ; : : : ; pg (the set of
eigenvalues ofD and R ). Then the k-th eigenvalue ofA 3 is bounded by

positive eigenvalues: ! k � � max �  k � ! k + � max ; k = 1 ; : : : ; (N + 1) n + p;

negative eigenvalues: � � max �  k+( N +1) n + p < 0; k = 1 ; : : : ; (N + 1) n:

Proof. We can write A 3 as a sum of two symmetric matrices:

A 3 =

0

B
@

D 0 L
0 R H

L T H T 0

1

C
A =

0

B
@

D 0 0
0 R 0
0 0 0

1

C
A +

0

B
@

0 0 L
0 0 H

L T H T 0

1

C
A = S3x 3

D + S3x 3
L :

The spectrum of S3x 3
D is the union of the eigenvalues ofD , R and zeros. By Theorem 12, the eigenvalues� of

the inde�nite matrix S3x 3
L are the singular values of(L T H T ) with plus and minus signs, thus � min = � � max and

� max = � max .
The result follows from applying Theorem 1 to the matricesS3x 3

D and S3x 3
L .

Theorem 14. The eigenvalues ofA 2 are bounded by

positive eigenvalues:  k � � max � � k �  k + � max ; k = 1 ; : : : ; (N + 1) n:

negative eigenvalues: � � k � � max � � k+( N +1) n � � � k + � max ; k = 1 ; : : : ; (N + 1) n; (35)

Proof. As in Theorem 13, we expressA 2 as a sum of two symmetric matrices

A 2 =

 
D 0
0 � H T R � 1H

!

+

 
0 L

L T 0

!

= S2x 2
D + S2x 2

L :

The rest of the proof is analogous to that of Theorem 13.

Corollary 9. If there are p < (N + 1) n observations,(35) in Theorem 14 becomes

� � max � � k+( N +1) n � 0; k = 1 ; : : : ; (N + 1) n � p;

� � k � � max � � k+2( N +1) n � p < � � k + � max ; k = 1 ; : : : ; p:

Proof. The result follows from noticing that � H T R � 1H has (N + 1) n � p zero eigenvalues.
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