
 
 

 

 



Surface permeability of particulate porous media.
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The dispersion process in particulate porous media at low saturation levels takes place over the surface
elements of constituent particles and, as we have found previously by comparison with experiments, can
be accurately described by super-fast non-linear di�usion partial di�erential equations. To enhance the
predictive power of the mathematical model in practical applications, one requires the knowledge of the
e�ective surface permeability of the particle-in-contact ensemble, which can be directly related with the
macroscopic permeability of the particulate media. We have shown previously that permeability of a single
particulate element can be accurately determined through the solution of the Laplace-Beltrami Dirichlet
boundary-value problem. Here, we demonstrate how that methodology can be applied to study permeability
of a randomly packed ensemble of interconnected particles. Using surface �nite element techniques we examine
numerical solutions to the Laplace-Beltrami problem set in the multiply-connected domains of interconnected
particles. We are able to directly estimate tortuosity e�ects of the surface 
ows in the particle ensemble
setting.

I. INTRODUCTION

Liquid transport in particulate porous media, such as
sand, is customarily classi�ed into fully saturated, funic-
ular and pendular regimes of spreading1{4 . The �rst two
regimes of the liquid dispersion occur at relatively high
saturation levels s > s c � 10%, where saturation s is
de�ned as the ratio of the liquid volume VL to the vol-
ume of available voidsVE in a sample volume element
V , s = VL

VE
. At high saturation levels, above the critical

value sc, liquid transport takes place in the pore space
either fully or partially �lled by the liquid.

Our prime concern here is the special case of liquid
dispersion at low saturation levels. As the saturation
level drops below the critical value,s � sc, that is to the
value relevant to the pendular regime of spreading, the
liquid volumes in the porous matrix become isolated2{4 .
As a result, at low saturation levels, the liquid is only
contained in the pendular rings formed at the locations of
the particle contacts and on the particle rough surfaces,
and the liquid transport can only occur over the matrix
surface elements, as is illustrated in Fig. 1.

Our main concern here is the wetting cycle, when the
liquid spreads over a dry porous matrix or over a ma-
trix with a very low background saturation level up to
sr � 2%. These conditions are similar to those in the
case studied previously experimentally and theoretically
in6. The main driving force of the dispersion process,
as is often the case during the wetting cycle, is capillary
pressure developed at the moving front in the process of
wetting of dry porous matrix, while the liquid bridges
play a role of variable liquid reservoirs of uniform surface
curvature.

The analysis of this regime of wetting, which is cru-
cial for studies of biological processes and spreading of
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non-volatile liquids in arid natural environments and in-
dustrial installations, has shown that the liquid disper-
sion has many distinctive features and can be accurately
described by the so-called superfast non-linear di�usion
equation5,6 .

Theoretically, the superfast non-linear di�usion equa-
tion belongs to a special class of mathematical models.
Unlike in the standard porous medium equation7, in this
special case, the non-linear coe�cient of di�usion D(s)



many particles of the porous medium, the di�usion pro-
cess in the slow creeping 
ow conditions can be described
by the following non-linear di�usion equation

@s
@t

= r � f D (s)r sg; t > 0; (1)

where

D(s) =
D0(s)

(s � s0)3=2
; s > s 0;

for D0 > 0.
The details of derivation of (1) can be found in5,6 , here

we note that, the resultant governing non-linear equation
(1) directly follows from the conservation of mass princi-
ple

@(�s )
@t

+ r � Q = 0 ; (2)

where � is porosity de�ned as � =
VE

V
, which is further

assumed to be constant, andQ is the macroscopic 
ux
density. The macroscopic 
ux density Q is de�ned in
such a way that the total 
ux through the surface of
a macroscopic sample volume element is given by the
surface integral

R
Q � n dS, where n is the normal vector

to the surface of the sample volume element.
To obtain (1) from (2), one needs to apply the capil-

lary pressure-saturation relationship5,6,8 dictated by the
liquid bridges behaviour

p = � p0
Ac

(s � s0)1=2
(3)

and the local Darcy's law9,10 describing the surface 
ow
in the rough layer of the particle elements

�
� m

�
r u = q: (4)

Here,Ac =
q

3
4

1� �
�

N c
� , Nc is the coordination number,

that is the average number of bridges per a particle,p0 =
2

R cos� c, 
 is the coe�cient of the surface tension of the
liquid, � c is the contact angle made by the free surface
of the liquid bridge with the rough solid surface of the
constituent particles, R is an average radius of the porous
medium particles, q and u are the averaged local 
ux
density and pressure in the rough surface layer,� is liquid
viscosity and km is the local coe�cient of permeability of
the rough surface, which is proportional to the average
amplitude of the surface roughness� R , that is the width
of the surface layer conducting the liquid 
ux

km / � 2
R : (5)

One needs to emphasise here that two levels of averag-
ing are involved in obtaining the �nal governing equation
(1). While equations (1), (2) and (3) are 'truly' macro-
scopic, that is obtained by averaging using a volume ele-
ment V containing many grain particles, equation (4) is

only an average over some rough area of a single particle
containing many surface irregularities, so that quantities
q and u are also only local averages over that sample
surface area.

Therefore, to transit from (4) to the macroscopic de-
scription, the spatial averaging theorem formulated in11

should be applied. That is, using intrinsic liquid averag-
ing h:::i l = V � 1

l

R
Vl

d3x, where Vl is liquid volume within

the sample volumeV , one hashui l = p and hqi l Se
S = Q.

Here, S is the surface area of the sample volumeV with
the e�ective area of entrances and exitsSe. Note, the ra-
tio Se=S is not just a geometric property, but also takes
into account the connectivity of the porous elements. For
example, the e�ective area of entrances and exitsSe is



on the surface of the spherical particle, and particles of



α

Ω�

Ω�

Ω�

∂Γ�

∂Γ�

Γ
θ�

ns

nΓ

FIG. 2. Illustration of the 
ow and solution domains on the
surface � of a spherical particle, and their geometric arrange-
ments. In the picture, 
 0 is the domain of the surface 
ow
and the surface area covered by the liquid bridges corresponds
to the domains 
 1 and 
 2 .

are smooth19{21 , which, if it is found, allows to calculate
the total 
ux through the particle element

QT = � R
� m

�

Z

@� 1

@u
@ns

dl = � � R
� m

�

Z

@� 2

@u
@ns

dl; (10)

where ns is the normal vector to the domain boundaries
@� 1;2 on the surface,� R is the average amplitude of the
surface roughness, that is the width of the surface layer
conducting the liquid 
ux and the line integral is taken
along a closed curve in 
0, for example the boundary
@� 1.

If the total 
ux QT is determined, one can de�ne the
global permeability coe�cient of a single particle K 1.
This can be done, if we assume that the particle has
a characteristic sizeD and so that it can be enclosed in
a volume elementV = D 3 with the characteristic side
surface areaD 2. Then, the e�ective 
ux density Q can
be represented in terms ofK 1 (and the total 
ux QT )

Q =
QT

D 2 = �
K 1

�
U2 � U1

D
; (11)

if the 
ow is driven by the constant pressure di�erence
U2 � U1 applied to the sides of the volume element.

B. Surface permeability of a sphere in the case
of azimuthally symmetric domain boundaries

Consider now a spherical particle in an azimuthally
symmetric case, when the domain boundaries@� 1 and
@� 2 are oriented at the re
ex angle � = � and have a
circular shape. We use a spherical coordinate system
with its origin at the particle centre and the polar an-
gle � counted from the axis of symmetry passing through
the centre of the circular contour @� 1. In this case, the

Dirichlet boundary value problem (8)-(9) admits an ana-
lytical solution, so that particle permeability can be de-
termined explicitly. Indeed, problem (8)-(9), if we as-
sume that the liquid pressure distribution u is a func-
tion of � only and independent of the azimuthal angle, is
equivalent to

1
sin �

@
@�

�
sin �

@u
@�

�
= 0 ; � 0 < � < � � � 1; (12)

with the boundary conditions

uj � = � 0
= U1; uj � = � � � 1

= U2: (13)

The analytic solution to problem (12)-(13) after apply-
ing the boundary conditions can be represented in the
following form

u = 	 0(U2 � U1) ln
�

sin �
sin � 0

1 + cos� 0

1 + cos�

�
+ U1; (14)

where

	 0 =
1

ln
n

sin � 1
sin � 0

1+cos � 0
1� cos � 1

o :

One can now calculate the total 
ux and the perme-
ability, using its de�nition (11),

QT = �
K 1

�
D (U2 � U1) = � 2� sin � 0� R

km

�
@u
@�

�
�
�
�
� = � 0

= � (U2 � U1



the main di�usion equation? If we approximate the per-
meability coe�cient K by K 1 obtained in the azimuthally
symmetric case at � 1 = � 0, (17), and, using an ap-
proximate relationship between the radius of curvature
R sin � 0 of the boundary contour @� 1 and the pendular
ring volume2, one can show that

sin2 � 0 � � 2
0 =

p
s � s0:

Therefore, �nally

K (s) � 2
� R

R
�k m

j ln(s � s0)j
: (18)

As it follows from (18), the distinctive particle shape
results in logarithmic correction to the main non-linear
superfast-di�usion coe�cient D (s) = D 0 (s)

(s� s0 )3= 2 , such that

D(s) /
1

j ln(s � s0)j(s � s0)3=2
:

Apparently, the correction will mitigate to some extent
the divergent nature of the dispersion at the very small
saturation levels s � s0, smoothing out the characteristic
dispersion curves.

C. Surface permeability of a chain of spheres in
the case of azimuthally symmetric domain
boundaries

Consider now how the problem can be formulated in
the case of several particles arranged in a single chain,
as is illustrated in Fig. 3 in the case of two coupled by
the bridge particles. To create the 
ow in the system
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FIG. 3. Illustration of the solution domains in a system of two
coupled spherical particles and their geometric arrangements.

where

	 (2)
0 =

1

2 ln
�

1+cos � 0
1� cos � 0

� :

One can now calculate total 
ux and de�ne permeabil-



III. SURFACE PERMEABILITY OF A
RANDOMLY PACKED PARTICLE
ENSEMBLE

In real systems, the particles are interconnected ran-
domly, so that the e�ects of tortuosity should substan-
tially a�ect the permeability of the system 1,15{17 . To
analyse those e�ects, we consider an ensemble of spher-
ical particles randomly packed, as is shown in Fig. 4.
The randomly packed con�guration of approximately
3000� 7000 particles has been generated by means of
a molecular dynamics technique by applying a constant
force to every particle placed in a box with re
ecting
boundaries (in the perpendicular direction to the box
side), and interacting via the Lennard-Jones potential
with di�erent characteristic length scales R distributed
normally, that is with the probability of the particle ra-
dius W (R) / exp

�
� (R � R 0 )2

� R 2

�
at � R=R0 = 0 :3. In this

study, there were particles with three di�erent character-
istic dimensionsR1 = 1 :3R0, R2 = R0 and R3 = 0 :7R0.
The resultant porosity in the con�gurations was about
48%.

To obtain the con�guration, the particle temperature
controlled by the thermostat has been gradually reduced
to bring the system to a minimum energy, frozen state.
A representative sample volume element with dimensions
L B

x ; L B
y ; L B

z then was cut o� the system, as is illustrated
in Fig. 4, containing NS = 13 � 17 particles, see Table
I for details. We have generated several statistically in-
dependent sample con�gurations, and, as in the previous
examples, set constant pressure di�erenceU2 � U1 at the
boundaries of the sample elements, Figs. 4 and 6.

The Laplace-Beltrami method then has been applied
after establishing the position of the liquid bridges cou-
pling the particles in the sample. Two particles (of radii
R1 and R2) are assumed to be coupled by a liquid bridge
if the distance between their centresr was only slightly
larger than the sum of their radii

R1 + R2 � r < R 1 + R2 + 0 :05 max(R1; R2):

The size of a single liquid bridge footprint H



particles in the sample may signi�cantly increase com-
putational time to obtain highly resolved numerical so-
lutions, while at the same time would not substantially
rey
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FIG. 8. Reduced total 
ux QT =S0Q0 , Q0 = p0 � R
� m

�

�U2 � �U1

�L B
z

and S0 = �L B
x

�L B
y , as a function of 	 0(H B =2R0). The error

bar indicates the statistical error, which is expected due to
the 
uctuations of the number of particles in the samples.

have described.
As before, we are going to �nd a weak solution to a

system of the Laplace-Beltrami equations

� 
 ( k )
0

uk = 0

de�ned on each particle domain 
 (k )
0 , as in in Fig. 6.

On the internal boundaries of the domains we set up
continuity conditions, for example on @� (2)

3 and @� (3)
2

u2 j@� (3)
2

= u3 j@� (2)
3

= const; (36)

I

@� (3)
2

r u2 �ns2 j@� (3)
2

dl = �
I

@� (2)
3

r u3 �ns3 j@� (2)
3

dl: (37)

While on a few external boundaries, Dirichlet boundary
conditions are set.

The numerical solution allows to calculate the total
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