

Numerically stable computation of embedding formulae for scattering by polygons

by

A. Gibbs, **S. Langlering and A. Moiola**

Numerically stable computation of embedding formulae for scattering by polygons

A. Gibbs · S. Langdon · A. Moiola

Abstract For problems of the armonic scattering by polygonal obstacles embedding formulae provide a useful eans of computing the far-ed coefficient induced by any includent plane wave, given the far-ed coef c ent of a relatively set of canonical problems. The number of such problems to be solved depends on y on the geometry of the scatterer-state formulae themselves are exact in theory any implementation w n er t nu er cal error frot elect od used to solve the canonical problems. The serror can lead to nu er ca nstab t es-Here we present an effect ve app

 $\text{tfo } \text{owst at } |s \text{ n}(\textbf{\textit{p}}(- +) / \sqrt{3}| = |s \text{ n}(\textbf{\textit{p}}(- -) / \sqrt{3}|)$ nce $|\sin(px / \hat{ })|$ s sy etr c about t e po nts x
ence *p*

$$
s n \frac{P}{\lambda} +)
$$

 \therefore e now ave

$$
|D(,) - \mathscr{E}_{\mathscr{P}} D(, , , N_T)| =
$$

\n
$$
\frac{-}{(,)} \frac{M \ N_T}{m} \frac{(-)^{n-}}{n} B_m() \frac{n}{n} (, m) - b_m() \frac{n}{n} \mathscr{P} D(, m) + \mathscr{R}_{\mathscr{P}} D(, , N_T) ,
$$

w ere

$$
\mathscr{R}_{\mathscr{P}}D(\ ,\qquad,N_T)=\frac{M}{m}=B_m(\)\sum_{n=N_T+}\frac{(-)^{n-1}\frac{n}{n}}{n}\frac{n}{n}(\ ,\ _m).
$$

It follows in ed ate y from Lemma 2 that

$$
\frac{-}{(1,0)} \quad \frac{1}{p} \quad -1
$$
, for

which compares favourably to $\frac{49}{9}$ when is close to , provided that is sufficiently far from any w c senforced by t e second cond t on $n -$

Fg- $-\gamma$: wo pots of relative error for different inplementation of electeding formulae for the problem of scattering by a square of side engt wavenumber $k = -P$ ot a depicts accuracy for a naive implementation

<u> 1980 - Johann Barbara, martxa amerikan bashkar (</u>

5 More general incident waves

e now demonstrate low embedding formulae may be used to approximate the far-end coefficient of a farbroader class of includent waves than ust plane waves by eans of a general formula and some numerical exa pes–In part cu ar we w be nterested n nc dent waves of t e following form see e.g. [See n t on -1] w c can be t oug t as continuous near co b nations of p ane waves-

Definition 5.1 (Herglotz wave functions) G ven g_{Herg} *L* $($, ²) t e funct on

$$
\boldsymbol{\mathit{u}}_{\rm Herg}^j(\boldsymbol{x} \ \boldsymbol{\mathit{g}}_{\rm Herg})=\begin{array}{c c} \mathit{g}_{\rm Herg}(), & \mathrm{e}^{\boldsymbol{\mathit{k}} \boldsymbol{x} \cdot \boldsymbol{d}} \ \mathrm{d} \ \ , & \mathrm{for} \ \boldsymbol{x} \quad \mathsf{R} \end{array},
$$

where **d** := −(cos ,sn) scalled a *Herglotz wave function* or *Herglotz incident field* with Herglotz ernell g_{Herg} L^{2} , ²).

A second concept w c we w ind useful is the **far-field map** \mathscr{F}_{2} - e rst extend the scattering boundary value problem $-$ ² \rightarrow to general incident eds. for *uⁱ C* $(R$ ² s an entire solution of the Helmholtz equation, we denote by $\mathbf{u} = \mathbf{u}^{\prime} + \mathbf{u}^{\prime}$ the solution of the Helmholtz equation $\lambda = \lambda$ in the complement of the scatterer w t $\boldsymbol{u} = 0$ on s sats es t e o erfed rad at on cond t on-en we write \mathscr{F} \mathbf{u}^i C (, \langle \rangle) for the far_ied coefficient of the scattered ed \mathbf{u}^s -For example, in terms of factor are plane wave notation – and – we ave \mathscr{F} $\mathbf{u}^i = \mathbf{D}(\cdot,)$.

By De $n \times 1$ to $n-1$ the far-field coefficient of a Herglotz wave function inpinging on can be computed by integrating the plane wave far-ed coefficient against the Herglotz ernel, so it can be approximated using the co b ned e bedding approxⁱ at on of Definition $-\sqrt{1}$.

F *u i* Herg(· *g*Herg) () = *g*Herg()*D*(,)d *g*Herg()E ⊛ ^P*D*(, *N^T*)d . (5.1)

In practg

In st the solver s DOFs per side of the scatterer are the same as for the smallest errors observed in Fig. $ure - f$

A-G bbs et a $-$

 $\overline{1}$

 $\overline{}$

 r

w c can be obtained by solving only *M* problems of plane wave included-Figure $-$ solving the output of the co b nat on of atrom with our embedding solver and the MP pack solver for the problem of plane wave scattering with the regular polygons-sequired $\frac{2}{3}$ and $\frac{3}{3}$ solves on the triangle, square and pentagon respect vely a total of solves for a single scatterer each, a number independent of k . For wavenumber $k =$ using MP pack without solving value the bedding formulae results in a total of $\frac{250}{2}$ ves on each scatterer ence a total of solves- o even at a relatively low wavenumber the embedding formulae can reduce the number of solves required by $\arctan X$ grows with *O*(*k*), the number of solves required by embedding for ulae s independent of *k*- ere sone dden cost with embedding for ulae in experient the number of ter s required in the Taylor series $\frac{3}{2}$ and $\frac{3}{2}$ in order to maintain accuracy will need to grow with **k** we eave detailed consideration of this to future work.

Fig. $-\sqrt{2}$ a part of total ed for a conguration of utpe polygons with incident ed *u*^{*i*} / 250 ved using atrom coupled with MP pack and the combined embedding approximation of Definition $\frac{1}{\sqrt{3}}$ as the solver used for the embedding implementation, which in turn is used as the solver for Tatrom $-$ emerges representation is on y valid outside of the union of balls containing each obst

References

- Barnett, A-H-and Betcke, $\frac{1}{2}$ - tability and convergence of the method of fundamental solutions for He otz problems on analytic domains-*J. Comput. Phys.* $\frac{12}{10}$ 4.

 \angle Barnett, A–H–and Betce – \angle – An exponentially convergent nonpolynomial finite element et od for tearmonic scattering from polygons– **SIAM J. Sci. Comput.**, $\left(\begin{array}{c} 2,4 \end{array} \right)$ = 44 – MP pack software ava ab e to down oad from <github.com/ahbarnett/mpspack>-

 $-$ B ggs, N \mathbf{Y} ℓ $-$ A new fact of embedding formulae for diffraction by wedges and polygons–*Wave Motion* 4 \rightarrow

4– B ggs N – \blacktriangleright \blacktriangleright