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Numerically stable computation of embedding formulae for scattering by

polygons

A. Gibbs · S. Langdon · A. Moiola

Abstract For problems of time-harmonic scattering by polygonal obstacles, embedding formulae provide a

useful means of computing the far-field coefficient induced by any incident plane wave, given the far-field

coefficient of a relatively small set of canonical problems. The number of such problems to be solved depends

only on the geometry of the scatterer. Whilst the formulae themselves are exact in theory, any implementation

will inherit numerical error from the method used to solve the canonical problems. This error can lead to

numerical instabilities. Here, we present an effective app

http://arxiv.org/abs/1805.08988v1
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Since |sin(px/2)| is symmetric about the points x ∈Θ∗, it follows that |sin(p(θ +θ∗)/2) |= |sin(p(θ −θ∗)/2)|,
hence
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We now have

|D(θ ,α)−E
0
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where

R
0
PD(θ ,α;θ0,NT ) =

M

∑
m=1

Bm(α)
∞

∑
n=NT +1
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n!

∂ nD̂

∂θ n
(θ0,αm).

It follows immediately from Lemma 2.1 that
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≤ 8

p2|θ∗ − θ0| , for θ∗ 6∈ Θ∗,

which compares favourably to (2.9) when θ is close to θ0 ∈ Θα , provided that θ0 is sufficiently far from any

θ∗ ∈ Θ∗ (which is enforced by the second condition in (3.1))
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Fig. 3.1: Two plots of relative error for different implementation of embedding formulae for the problem of

scattering by a square of side length 1, wavenumber k = 1. Plot (a) depicts accuracy for a naive implementation
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5 More general incident waves

We now demonstrate how embedding formulae may be used to approximate the far-field coefficient of a far

broader class of incident waves than just plane waves, by means of a general formula and some numerical ex-

amples. In particular, we will be interested in incident waves of the following form (see e.g. [5, Definition 3.18]),

which can be thought as continuous linear combinations of plane waves.

Definition 5.1 (Herglotz wave functions) Given gHerg ∈ L2(0,2π), the function

ui
Herg(x;gHerg) =

∫ 2π

0
gHerg(α)eikx·dα dα, for x ∈ R

2,

where dα := −(cosα,sinα), is called a Herglotz wave function or Herglotz incident field with Herglotz kernel

gHerg ∈ L2(0,2π).

A second concept which we will find useful is the far-field map F∞. We first extend the scattering boundary

value problem (1.2)–(1.4) to general incident fields: if ui ∈ C∞(R2) is an entire solution of the Helmholtz

equation, we denote by u = ui + us the solution of the Helmholtz equation (1.2) in the complement of the

scatterer, with u = 0 on ∂Ω and such that us satisfies the Sommerfeld radiation condition. Then we write

F∞ui ∈ C∞(0,2π) for the far-field coefficient of the scattered field us. For example, in terms of familiar plane

wave notation (1.1) and (1.5), we have F∞ui
α = D(·,α).

By Definition 5.1, the far-field coefficient of a Herglotz wave function impinging on Ω can be computed by

integrating the plane wave far-field coefficient against the Herglotz kernel, so it can be approximated using the

combined embedding approximation of Definition 3.1:

[

F∞ui
Herg(·;gHerg)

]

(θ ) =
∫ 2π

0
gHerg(α)D(θ ,α)dα ≈

∫ 2π

0
gHerg(α)E ⊛

P
D(θ ,α;NT )dα. (5.1)
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Whilst the solver’s DOFs per side of the scatterer are the same as for the smallest errors observed in Fig-

ure 3.3, f-
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which can be obtained by solving only M problems of plane wave incidence. Figure 5.5 shows the output of the

combination of Tmatrom with our embedding solver and the MPSpack solver, for the problem of plane wave

scattering with three regular polygons. This required 8, 12 and 30 solves on the triangle, square and pentagon

respectively, a total of 50 solves for a single scatterer each, a number independent of k. For wavenumber k = 5,

using MPSpack without solving via the embedding formulae results in a total of 27 solves on each scatterer,

hence a total of 81 solves. So even at a relatively low wavenumber, the embedding formulae can reduce the

number of solves required by Tmatrom; as N̂ grows with O(k), the number of solves required by embedding

formulae is independent of k. There is one hidden cost with embedding formulae, namely that the number of

terms required in the Taylor series (3.2) and (3.3) in order to maintain accuracy will need to grow with k; we

leave detailed consideration of this to future work.

Fig. 5.5: Real part of total field for a configuration of multiple polygons, with incident field ui
3π/2

solved using

Tmatrom coupled with MPSpack and the combined embedding approximation (of Definition 3.3) as the solver

used for the embedding implementation, which in turn is used as the solver for Tmatrom. The representation is

only valid outside of the union of balls containing each obst
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