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VECTORIAL VARIATIONAL PRINCIPLES IN L1 AND THEIR

CHARACTERISATION THROUGH PDE SYSTEMS

BIRZHAN AYANBAYEV AND NIKOS KATZOURAKIS

Abstract. We discuss two distinct minimality principles for general supre-

mal �rst order functionals for maps and characterise them through solvability
of associated second order PDE systems. Speci�cally, we consider Aronsson’s

standard notion of absolute minimisers and the concept of 1-minimal maps in-

troduced more recently by the second author. We prove that C1 absolute min-
imisers characterise a divergence system with parameters probability measures

and that C2 1-minimal maps characterise Aronsson’s PDE system. Since in

the scalar case these di�erent variational concepts coincide, it follows that the
non-divergence Aronsson’s equation has an equivalent divergence counterpart.

1. Introduction

Let n;N 2 N and H 2 C2
�

 � RN� RN�n

�
with 
 � Rn an open set. In this

paper we consider the supremal functional

(1.1) E1(u;O) := ess sup
O

H(�; u;Du); u 2W 1;1
loc (
; RN ); O b 
;

de�ned on maps u : Rn � 
 �! RN . In (1.1) and subsequently, we see the gradient
as a matrix map Du = (Diu�)�=1:::n

i=1:::n : Rn � 
 �! RN�n. Variational problems
for (1.1) have been pioneered by Aronsson in the 1960s in the scalar case N = 1
([2]-[6]). Nowadays the study of such functionals (and of their associated PDEs
describing critical points) form a fairly well-developed area of vivid interest, called
Calculus of Variations in L1. For pedagogical general introductions to the theme
we refer to [10
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In the scalar case of N = 1, Aronsson’s concept of absolute minimisers turns
out to be the appropriate substitute of mere minimisers. Indeed, absolute minimis-
ers possess the desired uniqueness properties subject to boundary conditions and,
most importantly, the possibility to characterise them through a necessary (and
su�cient) condition of satisfaction of a certain nonlinear nondivergence second or-
der PDE, known as the Aronsson equation ([9, 10, 12, 11, 13, 14, 17, 18, 20, 21, 27,
39, 44]). The latter can be written for functions u 2 C2(
) as

(1.3) HP (�; u;Du) �D
�
H(�; u;Du)

�
= 0:

The Aronsson equation, being degenerate elliptic and non-divergence when formally
expanded, is typically studied in the framework of viscosity solutions. In the above,
HP ;H�;Hx denotes the derivatives of H(x; �; P ) with respect to the respective ar-
guments and \�" is the Euclidean inner product.

In this paper we are interested in characterising appropriately de�ned minimisers
of (1.1) in the general vectorial case of N � 2 through solvability of associated PDE
systems which generalise the Aronsson equation (1.3). As the wording suggests and
we explain below, when N � 2 Aronsson’s notion of De�nition 1 is no longer the
unique possible L1 variational concept. In any case, the extension of Aronsson’s
equation to the vectorial case reads

HP (�; u;Du) D
�
H(�; u;Du)

�
+ H(�; u;Du) [HP (�; u;Du)]?

�
Div
�
HP (�; u;Du)

�
�H�(�; u;Du)

�
= 0:

(1.4)

In the above, for any linear map A : Rn �! RN , [A]? symbolises the orthogonal
projection ProjR(A)? on the orthogonal complement of its range R(A) � RN . We

will refer to the PDE system (1.4) as the \Aronsson system", in spite of the fact it
was actually derived by the second author in [28], wherein the connections between
general vectorial variational problems and their associated PDEs were �rst studied,
namely those playing the role of Euler-Lagrange equations in L1. The Aronsson
system was derived through the well-known method of Lp-approximations and is
being studied quite systematically since its discovery, see e.g. [28]-[31], [34, 37].
The additional normal term which is not present in the scalar case imposes an
extra layer of complexity, as it might be discontinuous even for smooth solutions
(see [29, 31]).

For simplicity and in order to illustrate the main ideas in a manner which min-
imises technical complications,
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(i) u is a rank-one absolute minimiser, namely it minimises with respect to essen-
tially scalar variations vanishing on the boundary along �xed unit directions:

(1.5)
8 O b 
; 8 � 2 RN
8 � 2 C1

0 (O; span[�])

�
=) E1(u;O) � E1(u+ �;O):

(ii) u has 1-minimal area
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(III) For any O b 
 and any  2 C1
0 (O
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2. Proofs and a maximum-minimum principle for H(�; u;Du)

In this section we prove our main results Theorems 4-5. Before delving into that,
we establish a result of independent interest, which generalises a corresponding
result from [30].

Proposition 7 (Maximum-Minimum Principles). Suppose Let u 2 C2(
; RN ) be
a solution to (1.8), such that H satis�es
(a) HP (�; u;Du) has full rank on 
,
(b) there exists c > 0 such that�

�>HP (x; �; P )
�
�
�
�>P ) � c

���>HP (x; �; P )
��2;

for all � 2 RN and all (x; �; P ) 2 
� RN� RN�n.

Then, for any O b 
 we have:

sup
O

H(�; u;Du) = max
@O

H(�; u;Du);(2.1)

inf
O

H(�; u;Du) = min
@O

H(�; u;Du):(2.2)

The proof is based on the usage of the following ow with parameters:

Lemma 8. Let u 2 C2(
; RN ). Consider the parametric ODE system

(2.3)

(
_(t) = �>HP (�; u;Du)

��
(t)

; t 6= 0;

(0) = x;

for given x 2 
 and � 2 RN . Then, we have

d

dt

�
H(�; u;Du)

��
(t)

�
= �>HP (�; u;Du) D

�
H(�; u;Du)

���
(t)

;(2.4)

d

dt
�>u

�
(t)

�
� c

����>HP (�; u;Du)
��
(t)

���2:(2.5)

Proof of Lemma 8. The identity (2.4) follows by a direct computation and (2.3).
For the inequality (2.5), we have

d

dt
�>u

�
(t)

�
=
�
�>Du

�
(t)

��
� _(t)

=
�
�>Du

�
(t)

��
�
�
�>HP (�; u;Du)

��
(t)

�
� c

����>HP (�; u;Du)
��
(t)

���2:
The lemma ensues. �

Proof of Proposition 7. Fix O b 
. Without loss of generality, we may suppose
O is connected.

Consider �rst the case where rk
�
HP (�; u;Du)

�
� n � N . Then, the matrix-

valued map HP (�; u;Du) is pointwise left invertible. Therefore, by (1.8
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Consider now the case where rk
�
HP (�; u;Du)

�
� N � n. Fix x 2 O and a unit

vector � 2 Rn and consider the parametric ODE system (2.3) of Lemma 8. By the
fullness of the rank of HP (�; u;Du)

�
, we have that���
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Since g 2 C1(Rn
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on O. Since O(u) � O, the identity (2.6) yields u is a critical point. Since by
assumption H(x; �; �) is convex on RN�RN�n, it follows that E1(�;O) is convex on
W 1;1(O; RN ). Hence, the critical point u is in fact a minimum point for this class
of variations. This establishes our claim.

(III) This is an immediate corollary of items (I) and (II). �

Now we conclude by establishing Theorem 5.

Proof of Theorem 5. (I) =) (II): If u is an absolute minimiser, then by (2.6)-(2.7)
we have

max
O(u)

�
HP (�; u;Du) : D� + H�(�; u;Du) � �

�
= 0;

for any � 2 C1
0 (O; RN ). By replacing � with ��, the above yields the pointwise

equality

HP (�; u;Du) : D� + H�(�; u;Du) � � = 0

on O(u). Then, for any Radon probability measure � 2 P(O) with supp(�) �
O(u), we have �

O

�
HP (�; u;Du) : D� + H�(�; u;Du) � �

�
d� = 0

for all � 2 C1
0 (O; RN ). Hence, we have shown that

�div
�
HP (�; u;Du)�

�
+ H�(�; u;Du)� = 0;

in the dual space (C1
0 (O; RN ))�.

(II) =) (III): By assumption we have�
O

�
HP (�; u;Du) : D� + H�(�; u;Du) � �

�
d� = 0

for all � 2 C1
0 (O; RN ) and all Radon probability measures � 2P(O) with supp(�) �

O(u). Fix any �x 2 O(u). By choosing the Dirac measure �� 2P(O) given by

�� := ��x

which evidently satis�es supp(��) = f�xg � O(u), we obtain�
HP (�; u;Du) : D� + H�(�; u;Du) � �

����
�x

=

�
O

�
HP (�; u;Du) : D� + H�(�; u;Du) � �

�
d��

= 0;

for any �x 2 O(u). The conclusion ensues.

(III) =) (I): By assumption we have

HP (�; u;Du) : D� + H�(�; u;Du) � � � 0

on O(u). By (2.6)-(2.7), this implies

d

dt

���
t=0

E1(u+ t�;O) = max
O(u)

�
HP (�; u;Du) : D� + H�(�; u;Du) � �

�
= 0:

Hence, since by assumption H(x; �; �) is convex on RN � RN�n, it follows that
E1(�;O) is convex on W 1;1(O; RN ). Hence, the critical point u is in fact a mini-
mum point and this completes the proof. �
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