Department of Mathematics and Statistics

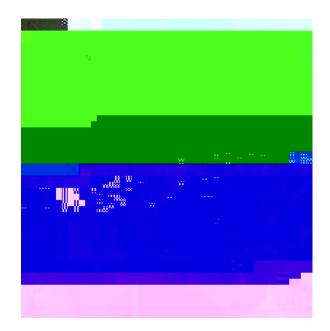
Preprint MPCS-2018-05

12 April 2018

Counterexamples in Calculus of Variations in L[∞] through the vectorial Eikonal equation

by

Nikos Katzourakis and Giles Shaw



Counterexamples in Calculus of Variations in through the vectorial Eikonal equation

Nikos Katzourakisa;1, Giles Shaw²

^aDepartment of Mathematics and Statistics, University of Re ading, Whiteknights, PO Box 220, Reading RG6 6AX, Berkshire, England, UNITED KINGDOM

We show that for any regular bounded domain s in

S ∞ nie de dieomorphismes nt desexemples explicites 1 -Laplacien apparaissant pour 🏹 🖓 ! 1 des cartes N arXiv:submie/2

1. Introduction

Calculus of Variations in L¹ is concerned with the variational study of supremal functionals, as well as with the necessary conditions governing their extrema. The archtypal model of interest is the functional

> E_1 (u; O) := ess sup₀ jDuj; for u 2 W^{1;1} (; R^N); O measurable; (1)

 R^n is a xed open set and $D_i(x) = (D_i u_i(x))_{i=1 \dots n}^{i=1 \dots N} 2 R^{N-n}$ is the gradient where n; N 2 N, matrix. We note that our general notation is either self-explanatory or standard. In (1) and throughout

Preprint submitted to Elsevier Science

April 12, 2018

⁽Nikos Katzourakis), giles.shaw@gmail.com (Giles Shaw). Email addresses: n.katzourakis@reading.ac.uk

^{1.} N.K. has been partially nancially supported through the EPSRC grant EP/N017412/1.

^{2.} G.S. acknowledges the full nancial support of the EPSRC g rant EP/N017412/1.

We note that the results above improve and supersede one of the **ain** results in [17] which required to be a punctured ball. Since the unique solution to the Dirichlet problem for $_{p}u = 0$ in with u = id on @ is u(x) = x when p < 1, it follows that none of our di eomorphisms is a limit of p-harmonic maps as p ! 1. Thus, we con rm that (2) by itself cannot su ce to identify limits of p-harmonic maps and that additional selection criteria are neededto have a situation analogous to the scalar case. The proof of Theorem 1.1 is based on the next result of independentheterest.

Proposition 1.1 Let n; m; be as in Theorem 1.1. Then, the nonlinear problem

$$|Du|^2 + 2 \operatorname{div} u = 0$$
 on @

has in nitely many non-trivial solutions $(u; C) \ge (C^m \setminus C_0^0) = R^n$ (0; 1). Additionally, the set of all solutions has the trivial solution (0; 0) as an accumulation point with respect to the topology of $\mathbb{C}^m = R^n$.

Since the proofs of the above results are non constructive, we incde in Section 3 explicit examples of smooth 1 -Harmonic maps de ned on annular domains which coincide with a ne maps on the boundary.

2. Proofs

We begin with the proof of Proposition 1.1, which is an immediate consequence of the next lemma and of the Morrey estimate, in the form of inclusion of spaces $\mathbb{H}^{+2}(; \mathbb{R}^n) = \mathbb{C}^m$; \mathbb{R}^n (since n 2 f 2; 3g). Lemma 2.1 Let n; m; ; be as in Theorem 1.1 and let us de ne the nonlinear mapping

$$\mathsf{M} \quad : \quad (\mathsf{H}^{m+2} \setminus \mathsf{H}^1_0)(\; ; \; \mathsf{R}^n) \; ! \qquad \mathsf{H}^{m+1}_l(\;) \; := \qquad \mathsf{w} \; 2 \; \mathsf{H}^{m+1}(\;) \; : \qquad \mathsf{w}(x) \; \mathsf{d}x = 0$$

by setting (here the slashed integral denotes the average) _

M [u] :=
$$\frac{1}{2}jDuj^2$$
 + div u $\frac{1}{2}^2$ $jDu(x)j^2$ dx:

Then, the inverse imageM 1 [f 0g] contains in nitely-many elements accumulating at zero. In addition, for any "> 0, there exists' " 2 (H^{m+2} \ H_0^1)(; Rⁿ) n f 0g such that M [' "] = 0 and k' "k_{H^{m+2}()} <". Proof of Lemma 2.1. First note that M is well de ned, namely its image lies in the subspace $f_{1}^{n+1}()$ of zero average. Indeed, for anyu 2 (H^{m+2} \ H_0^1)(; Rⁿ), the divergence theorem gives

By noting that $M^{0}[0]_{J_{V}} : V ! H_{J}^{m+1}()$ is a linear isomorphism, the canonical isomorphism between ker(M $^{0}[0]$) V and ker(M $^{0}[0]$) V allows us to viewM as a map on ker(M $^{0}[0]$) V by setting M

Since $e^{g(j \times j)S}$ is orthogonal and jOAj = jAj for any A; O 2 Rⁿ with O being orthogonal, we have

 $jDu(x)j^2 =$

- [11] F. Gazzola, H.-C. Grunau, G. Sweers, Polyharmonic boundary value problems, Springer Lecture Notes in Mathematics, 1991.
- [12] R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup nor m of the gradient Arch. Rational Mech. Anal., 123, no. 1, 51-74, 1993.
- [13] N. Katzourakis, L¹ variational problems for maps and the Aronsson PDE system J. Di erential Equations, 253(7), 2123-2139 (2012).
- [14] N. Katzourakis, Absolutely minimising generalised solutions to the equations of vectorial Calculus of Variations in L¹, Calculus of Variations and PDE 56(1), (2017) 1-25.
- [15] N. Katzourakis, Generalised solutions for fully nonlinear PDE systems and e xistence-uniqueness theorems, Journal of Di erential Equations 23, 641-686 (2017).
- [16] N. Katzourakis, An Introduction to Viscosity Solutions for Fully Nonlinear Variations in L¹, Springer Briefs in Mathematics, 150pp, 2015.
 PDE with Applications to Calculus of
- [17] N. Katzourakis, Nonuniqueness in Vector-valued Calculus of Variations in L¹ and some Linear Elliptic Systems, Comm. on Pure and Appl. Anal., Vol. 14, 1, 313 - 327 (2015).
- [18] E. Zeidler, Applied Functional Analysis: Main Principles and their App lications, Springer, New York, 1995.