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CONVERGENCE OF DENSITY EXPANSIONS OF CORRELATION
FUNCTIONS AND THE ORNSTEIN-ZERNIKE EQUATION

TOBIAS KUNA AND DIMITRIOS TSAGKAROGIANNIS

Abstract. We prove absolute convergence of the multi-body correlation functions as a
power series in the density uniformly in their arguments. This is done by working in the
context of the cluster expansion in the canonical ensemble and by expressing the correlation
functions as the derivative of the logarithm of an appropriately extended partition function.
In the thermodynamic limit, due to combinatorial cancellations, we show that the coe�-
cients of the above series are expressed by sums over some class of two-connected graphs.
Furthermore, we prove the convergence of the density expansion of the \direct correlation
function" which is based on a completely di�erent approach and it is valid only for some inte-
gral norm. Precisely, this integral norm is suitable to derive the Ornstein-Zernike equation.
As a further outcome, we obtain a rigorous quanti�cation of the error in the Percus-Yevick
approximation.

1. Introduction

Correlation functions of interacting particle systems provide important information of the
macroscopic as well as the microscopic properties of the system. This was well captured
already in the literature in the 30's, see [21]. Around the same period, with the development
of power series expansions by Mayer and his collaborators, [29], a direct perturbative rep-
resentation of correlation functions in terms of integrals over con�gurations associated to a
graphical expansion has been suggested in [30], where the density expansion of then-body
correlation function has been derived. However, being perturbative expansions around the
ideal gas, the density expansions of the correlation functions are not expected to be valid
at the densities of the liquid regime. So, one tries to\develop a theory of classical uids
without using the density expansion formulas", [34].
A candidate for deriving such relations is the original Ornstein-Zernike (OZ) equation, [37],
which, however, cannot be solved as an equation as it contains two unknown quantities,
namely the correlation function and the direct correlation function. Hence one has to pos-
tulate a relation between them, that is what one calls a closure scheme. A lot of e�ort has
been made in this direction and various suggestions have appeared. In [49], G. Stell sys-
tematically relates the most popular closure schemes (such as the Born-Green-Yvon (BGY)
hierarchy, [6, 52], the Hyper-Netted Chain (HNC) and the Percus-Yevick (PY) equation [40])
to graphical expansions and tries to quantify them in this way. Ever since an enormous body

Key words and phrases.Correlation function, canonical ensemble, density expansions, direct correlation
function, Ornstein-Zernike equation, cluster expansion, liquid theory.
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of works was created, which by now is a standard tool in liquid state theory, see e.g. [17].
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Let us discuss the points raised above in more detail. The �rst mathematically rigorous
construction of the correlation functions in the thermodynamic limit was obtained in the high
temperature and low density regime in [4] based on a �xed point argument for the Kirkwood-
Salsburg (KS) equations. Then, further progress has been made in the 60's starting with
the works of Groeneveld, Penrose and Ruelle. Ruelle used in [47] a �xed-point argument,
while Penrose uses an iteration of the (KS) equations in [38]. Closely related, in [39] Penrose
introduced the so-called tree-graph estimate, further developed in [7], cf. also [43] and
references therein for recent progress. After the 60's, the technique of cluster expansion has
been further developed and its validity has been established for a large class of di�erent
systems, for example with the introduction of the abstract polymer model [16, 23]. We refer
to [13] for a review of the di�erent su�cient conditions for convergence. For the case of
the classical gas, all results are based on the grand canonical ensemble as the techniques
that have been used exploit the in�nite sum over the number of particles. However, in this
paper we are considering expansion in the density. The coe�cients of this expansion were
identi�ed as sums over 2-connected graphs already in the 40's, cf. [29].
In order to derive from the expansion in the activity an expansion in the density, two further
steps are required, as in any resumming: �rst, some \inversion" theorem from analytic
function theory in order to show the convergence of the density expansion and second a
combinatorial relation between graphs, e.g. a \topological reduction" in the language of
Stell, to identify the coe�cients in the density expansions. Part of the latter is to check the
admissibility of the rearrangement of terms in the series necessary to realize the combinatorial
relations. In general, this is an issue because the series in the graphs is only conditionally
convergent. For Mayer's combinatorial identities [29] this is not an issue due to the iterative
structure leading in each order to �nite many identities. For details as well as for a lower
bound on the radius of convergence, see [25]. See also [42] for a recent improvement mainly
for potentials with negative part. For the multi-species case see [51] as well as [20]. In
[27] this relation between graphs is put in the systematic context of operations between
combinatorial \species".
In [25], it was also pointed out that one can derive the convergence of the correlation func-
tions following similar arguments as for the free energy. The coe�cientsa(n)

k of the density
expansion of the truncated correlation functionsu(n)(q1; : : : ; qn ) = � n

P 1
k=0 � ka(n)

k (q1; : : : ; qn )
are themselves functions of the position. A straightforward application of the arguments
from [25] gives only convergence for �xedq1; : : : ; qn . However, in order to work with the
expansion, e.g. in order to show that it satis�es the Ornstein-Zernike equation, one needs
that the series is absolutely convergent with respect to the uniform norm in the arguments or
the L1-norm, that isP
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the Fourier transform of the series in density with the series of the Fourier transform of its
summands.
In this paper, we follow a direct and natural approach to obtain the density expansion
starting from the canonical ensemble. In [44] the validity of the cluster expansion in the
canonical ensemble has been established for the free energy combining the cluster expansion
techniques for abstract polymer model and tree-graph estimates for particle systems. Because
of the latter, no signi�cant improvement for the radius of convergence for the virial expansion
over the activity expansion was achieved. Extending these techniques, in this paper, we prove
the convergence of the density expansions for both the correlation and the direct correlation
function working directly in the canonical ensemble. Here, it is worthwhile to note that the
direct correlation functions is quite di�erent from the truncated correlation functions. First,
there exists no natural graphical expansion for the direct correlation function in the activity.
Second, even in the density, we are not aware of a natural expansion of the direct correlation
function in �nite volume, but one can de�ne an expansion which is at least correct in the
thermodynamical limit. Third, we prove directly the convergence of this expansion which
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regime it is a priori clear that these calculations can be made rigorous. At least in this
regime, as a by-product of the validity of the convergence for the expansions proved here,
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V(q) = V(� q). A potential V is called stable, whenever there existsB � 0 such that:
X

1� i<j � N

V(qi � qj ) � � BN; (2.1)

for all N and all q1; :::; qN . In particular, bounded below. A potential V is called regular,
whenever

C(� ) :=
Z

Rd
je� �V (q) � 1jdq < 1 : (2.2)

The latter condition holds for a potential bounded below if and only if
R

Rd jV (q) ^ 1jdq < 1 .
The hard-core potential ful�ls all these assumptions withC(�; R ) = jBR(0)j, the volume of
the ball with radius the interaction rangeR.
The energy of the systemH � is de�ned as

H � (q) :=
X

1� i<j � N

V(qi;j i<j
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This is the generating functional of the correlation functions associated to the canonical
ensemble. In fact, by expanding the product in (2.7) we obtain

LB (� ) =
NX

n=0

1
n!

Z

� n
� (q1) : : : � (qn )� (n)

� ;N (q1; : : : ; qn ) dq1 : : : dqn ; (2.8)

where for n � N and the points q1; : : : ; qn 2 � we have de�ned the n-point correlation
function in the canonical ensemble� (n)

� ;N (q1; : : : ; qn ) as:

� (n)
� ;N (q1; : : : ; qn ) :=

1
(N � n)!

Z

� N � n
dqn+1 : : : dqN

1
Z �; � ;N

e� �H � (q) : (2.9)

Note that � (0)
� ;N = 1 and � (1)

� ;N = N
j� j . Thus, in the thermodynamic limit we obtain � (1) = � .

The existence of the thermodynamic limit� (n) for n � 2, that is the limit when j� j " 1
with N = b� j� jc, is more subtle than for thermodynamic quantities like pressure and free
energy which are on a logarithmic scale. Analogous results in the grand-canonical ensemble
are well-established [46, 47]. Furthermore, for small values of the activity, the correlation
functions can be represented as power series in the activity. A by-product of our analysis
below is that we also establish the convergence of the thermodynamic limit in the high-
temperature-low-density regime in the canonical ensemble. The only related previous result
we are aware of is [5].
The logarithm of the Bogoliubov function

logLB (� ) =:
X

n� 1

1
n!

Z

� n
� (q1) : : : � (qn )u(n)

� ;N (q1; : : : ; qn ) dq1 : : : dqn ; (2.10)

is the generating function foru(n)
� ;N (q1; : : : ; qn ), the sequence oftruncated correlation functions

or Ursell functions. Relation (2.10) can be understood as the de�nition ofu(n)
� ;N (q1; : : : ; qn ).

These are the analogues of the cumulants for the sequence of correlation functions. The
correlation functions and theUrsell functions
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holds also inL1. In order to obtain an explicit description of the limiting h(n) , we need an
explicit asymptotic expression forB �; � (n; m; k) in terms of a graphical representation. The
resulting expression forh(n) was already shown in [30], [33] and [48], and a proof for pointwise
convergence was sketched in [25]. First, we introduce some concepts from combinatorics and
graph theory. We also denote byf i;j := e� �V (qi � qj ) � 1 Mayer's f -function. Partially
following [27] we de�ne:

De�nition 2.3. A (simple) graph is a pair g := ( V(g); E(g)), where V(g) is the set of
vertices andE(g) is the set ofedges, withE(g) � f U � V(g) : jUj = 2g, j � j denoting
the cardinality of a set. A graphg = ( V(g); E(g)) is said to beconnected, if for every pair
A; B � V(g) such that A [ B = V(g) and A \ B = ? , there is an edgee 2 E(g) such
that e \ A 6= ? and e \ B 6= ? . Singletons are considered to be connected. We useCV to
denote the set of connected graphs on the set of verticesV � [N ], where we use the notation
[N ] := f 1; :::; Ng.

De�nition 2.4. A cutpoint of a connected graph g is a vertex ofg whose removal (with the
attached edges) yields a disconnected graph. A connected graph is called2-connected if it has
no cutpoint. A block in a simple graph is a maximal2-connected subgraph. The block-graph
of a graphg is a new graph whose vertices are the blocks ofg and whose edges correspond to
a pair of blocks having a common cutpoint.

Cutpoints are frequently also calledarticulation points. In this article, we reserve the latter
notion for the following slightly more general concept. We use this terminology in order to
stay close to Stell's seminal presentation [48] of these graphical constructions.

De�nition 2.5. Let k 2 N, n 2 N0. We consider graphs withn + k vertices, of which the
�rst n vertices are singled out and for simplicity we call them \white". All other vertices are
considered to be \black". The set of all such graphs is denoted byGn;n + k . Single vertices are
not considered as graphs. Similarly, we denote byCn;n + k the set of all connected graphs on
n + k vertices with n white vertices.
A vertex is calledarticulation vertex if upon its removal the component of which it is part
separates into two or more connected pieces in such a way that at least one piece contains
no white vertices.
We denote byBAF

n;n + k the subset ofGn;n + k free of articulation vertices.

The easiest example to distinguish cutpoint from articulation point is the graph: 1 (white)
- 2 (black) - 3 (white), which is an articulation free graph, but it is not a 2-connected one,
as the vertex 2 is a cutpoint (but not an articulation point).
This concept of articulation vertices free graph is also crucial for the de�nition of the so-
called direct correlation function, see below in (2.27) and (2.28). Motivated by the distinction
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We denote byBn;n + k the set of all connected graphs overn white andk black vertices free of
articulation and of nodal vertices. The latter coincides with the collection of all two-connected
graphs onn + k vertices with n white vertices.

The nodal points are exactly the cutpoints of a graph that are not articulation points. For
a graph g 2 Gn;n + k we de�ne the activity

~� � (g;f 1; : : : ; ng) :=
Z n+ kY

i =1

dqi

j� j

Y

f i;j g2E (g)

f i;j

Y

i 2f 1;:::;n g

� (qi ); (2.22)

as well as its version without the test function� , but with dependence on a �xed con�guration
q1; : : : ; qn :

~� �
� (g; q1; : : : ; qn ) :=

Z

� k

n+ kY

j = n+1

dqj

Y

f i;j g2E (g)

f i;j ; (2.23)

where f i;j := e� �V (qi � qj ) � 1. If � is compactly supported around some point in �, then~� �

scales asj� j � n� k while ~� �
� is of order one. Note also that in this paper we tend to denote

with a � all quantities that depend on the positionsq1; : : : ; qn . Now we are ready to state
the theorem about the existence of the in�nite volume limit of (2.13):

Theorem 2.7. There exists a constantc0 > 0 such that for all � C (� ) < c0 we have:

h(n)(q1; : : : ; qn ) := lim
� " Rd ;N !1 ;

N = b� j� jc

h(n)
� ;N (q1; : : : ; qn ) =

X

k� 0

� k 1
n!k!

X

g2B AF
n;n + k

~� � (g; q1; : : : ; qn ); (2.24)

where

~� � (g; q1; : : : ; qn ) := lim
� " Rd

~� �
� (g; q1; : : : ; qn ) =

Z

Rdk

n+ kY

j = n+1

dqj

Y

f i;j g2E (g)

f i;j : (2.25)

Moreover, at in�nite volume, we have the following bound:

sup
q1 n n � j

h
(n) (q1; : : : ; qn j

+1 c0



12 TOBIAS KUNA AND DIMITRIOS TSAGKAROGIANNIS

for �xed volume � and number of particles N + 2:

c(2)
� ;N +2 (q1; q2) :=

NX

k=0

� k

k!

X

g2B 2;2+ k

~� �
� (g; q1; q2): (2.27)

Then we have the following theorem:

Theorem 2.9. There exists a constantc0 > 0 such that for all � C (� ) < c0, the direct
correlation function c(2)

� ;N +2 in (2.27) converges in the thermodynamic limit, to

c(2) (q1; q2) :=
1X

k=0

� k

k!

X

g2B 2;2+ k

~� � (g; q1; q2); (2.28)

which is an analytic function in� , for � C (� ) < c0. Furthermore, the series(2.28) converges
in the following sense:

sup
q12 �

Z

�
dq2

� k

k!

�
�
�
�
�
�

X

g2B 2;2+ k

~� �
� (g; q1; q2)

�
�
�
�
�
�

� Ce� ck; (2.29)

uniformly in � .
Furthermore, the direct correlation function c(2)

� ;N +2 in (2.27) ful�ls the Ornstein-Zernike
equation (2.16) up to the orderO(1=j� j) and the limit function ful�ls the Ornstein-Zernike
equation (2.16).
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This follows from the fact that

LB (�� ) =
Z �; � ;N (�� )
Z �; � ;N (0)

; Z �; � ;N (0) � Z �; � ;N :

We de�ne the spaceV�
N whose elements are all ordered pairs (V; A) where V � f 1; : : : ; Ng

and A � V. We say that two elements (V1; A1) and (V2; A2) are compatible, and denote it
by (V1; A1) � (V2; A2), if and only if V1 � V2, where two setsV1; V2 are calledcompatible
(denoted byV1 � V2) if V1 \ V2 = ? ; otherwise we call themincompatible(� ).
Then we split (3.2) as

Z �; � ;N (�� ) =
j� jN

N !
Z int

�; � ;N (�� ) (3.3)

and write

Z int
�; � ;N (�� ) =

X

f (V1 ;A 1 );:::;(Vk ;A k )g�

kY

i =1

� � ((Vi ; A i )) ; (3.4)

where

� � ((V; A)) := � jA j
X

g2CV

~� � (g; A); ~� � (g; A) :=
Z dq

V

j� j jV j

Y

f i;j g2E (g)

f i;j

Y

i 2 A

� (qi ); (3.5)

with the latter as already de�ned in (2.22), anddq
V

is a shorthand for the product measureQ
i 2 V dqi . In the literature, see [2], this is called subset gas and it is a special case of the

generalAbstract Polymer Model, which consists of (i) a set of polymersV�
N , (ii) a binary

symmetric relation � of compatibility between the polymers (i.e., onV�
N � V �

N ) and (iii) a
weight function � � : V�

N ! C. We also de�ne the compatibility graph GV �
N

to be the graph
with vertex set V�

N and with an edge between two polymers (Vi ; A i ) and (Vj ; A j ) if and only
if they are an incompatible pair. In this framework we have the following formal relation for
the logarithm, which will be justi�ed rigorously in Theorem 3.1 below (see [23]):

logZ int
�; � ;N (�� ) = log

0

@
X

f (V1 ;A 1 );:::;(Vk ;A k )g�

kY

i =1

� � ((Vi ; A i ))

1

A =
X

I 2I (V �
N )

cI � I
� ; (3.6)

where

cI =
1
I !

X

G�G I

(� 1)jE (G)j : (3.7)

The sum in (3.6) is over the setI (V�
N ) of all multi-indices I : V�

N ! f 0; 1; : : :g. We use
the shortcut � I

� :=
Q

(V;A) � � ((V; A)) I (( V;A)) , but for notational simplicity in stating the main
theorem of cluster expansion, we use the notation := ( V; A) for the generic polymer
consisting of the ordered pair (V; A) 2 V �

N . Then, de�ning suppI := f  2 V �
N : I ( ) > 0g,

we denote byGI the graph with
P

 2 supp I I ( ) vertices induced from the restrictedGV �
N

in
suppI , by replacing each vertex by the complete graph onI ( ) vertices. Furthermore, the
sum in (3.7) is over all connected subgraphsG of GI spanning the whole set of vertices of
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GI and I ! :=
Q

 2 supp I I ( )!. Note that if I is such that GI is not connected (i.e.,I is not a
cluster) then cI = 0.
We state the general theorem for the special case of the subset gas, following [23]
to which we refer for the proof.

Theorem 3.1 (Cluster Expansion). Assume that there are two non-negative numbersa; c �
0 such that X

(V;A): V 3 1

j� � ((V; A)) jeajV j+ cjV j � a: (3.8)

Then, for every polymer(V 0; A0) 2 V �
N , we obtain that

X

I : I (( V 0;A 0)) � 1

jcI � I
� je

P
( V;A ) 2 supp I I (( V;A)) cjV j � j � � ((V 0; A0)) jeajV 0j+ cjV 0j ; (3.9)

where the coe�cients cI are given in (3.7).

Proof of Theorem 2.1: From (3.1), (3.2) and by representing the partition function by the
subset gas, we �rst check the validity of the convergence condition (3.8) of Theorem 3.1.
In order to bound the activity � � ((V; A)) we use the tree-graph inequality (see the original
references [28], [39], [7]; here we use the particular form given in [41], Proposition 6.1 (a)):
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corresponding term inB �; � is of the order of:

j� j jV1 j+ jV2 j+ jV j� 2 1
j� j jV1 j

1
j� j jV2 j

1
j� j jV j� 1

=
1

j� j
:

Hence, the structure of the leading term at the level of the multi-indices is quite simple: only
one polymer, call it (V0; A0) has A0 6= ? . Then, for all other polymers with A = ? we can
have a further structure as explained below (and as in [44]). Since it is always true that the
total number of labels (m + k) should satisfy m + k �

P
V 2 supp I (jV j � 1) + 1 (due to the

fact that each (V; A) should be incompatible with at least one of the other polymers, i.e.,
have at least one common label andV0 [

S
(V;A)2 supp I; V 6= V0

V = [ m + k]), overall we have:

I ((V; A)) = 1 ; 8(V; A) 2 suppI; and (4.1)

m + k = jV0j +
X

(V;A)2 supp I; V 6= V0

(jV j � 1): (4.2)

Hence, we restrict the summation over multi-indices in this subclass satisfying properties
(4.1), (4.2) and containing only one polymer (V0; A0) with A0 6= ? . We denote this fact
by adding a superscript� at the sum as e.g. in (4.4) below. The polymers (V;? ) can be
attached to the polymer with A 6= ? either on a vertex not in A (a black circle in the
terminology of Stell) or in a vertex inA (a white circle in the terminology of Stell). In order
to visualize the last case, we give the following example: consider the following multi-index
I : I is equal to one on the two polymers (f 1; 2g; f 1; 2g) and (f 1; 3g; ? ), zero otherwise. The
two polymers intersect in the label 1. We have:

j� j3� I
� = j� j3� 2

Z
� (q1)� (q2)f 1;2(q1 � q2)

dq1

j� j
dq2

j� j
�
Z

f 1;3(q1 � q3)
dq1

j� j
dq3

j� j

= � 2
Z

� (q1)� (q2)f 1;2(q1 � q2)dq1dq2 �
1

j� j

Z
f 1;3(q1 � q3)dq1dq3:

= � 2
Z

� (q1)� (q2)f 1;2(q1 � q2)dq1dq2 �
Z

f 1;3(q3)dq3:

As we will explain later, this term will be canceled by one summand from the termj� j3� I 0

� ,
with I 0 being the multi-index which is one only on the polymer (f 1; 2; 3g; f 1; 2g) and in
particular with the summand in j� j3� I 0

� which is associated with the graph onf 1; 2; 3g with
exactly two edgesf 3; 1g and f 1; 2g. Let us start with the formal proof for these cancelations.

Proof of Theorem 2.7:Following the discussion above, we splitB �; � from (3.14) as follows:

B �; � (n; m; k) = �B �; � (n; k)� n;m + R�; � (n; m; k); (4.3)

where

�B �; � (n; k) :=
j� j(n+ k)

n!k!

�X

I : A (I )=[ n+ k]

cI � I
� (4.4)

and
A(I ) := [ V 2 supp I V: (4.5)
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Recall that the superscript � indicates that the sum is over all multi-indices that satisfy
properties (4.1), (4.2) and that contain only one polymer withA 6= ? , for which we have
already chosen its labels and we call itA0 := f 1; : : : ; ng. For this reason, we can now
consider multi-indices inI (Vn;k ), where the classVn;k consists of all subsets of the labels
corresponding to the white verticesf 1; : : : ; ng and the black verticesf n + 1; : : : ; n + kg. The
new polymers either they containA0 or they intersect it at most one point. Therefore, in
the new set-up with I 2 I (Vn;k ) the conditions (4.1) and (4.2) can be rewritten as

I (V) = 1 ; 8V 2 suppI; and (4.6)

n + k = jV0j +
X

V 2 supp I; V 6= V0

(jV j � 1); (4.7)

where7a47ere774n
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hence we need to prove convergence of the cluster expansion with activities being functions
of q1; : : : ; qn in an appropriate norm. From (2.19) using the splitting (4.3) we have:

F�; � ;N (n; k) = PN; j� j(n + k) �B �; � (n; k) +
n� 1X

m=1

PN; j� j(m + k)R�; � (n; m; k); (4.9)

where the second term is vanishing in the limit �" Rd. Substituting in (2.18) we obtain:
Z

� n

nY

i =1

(dqi � (qi )) � nh(n)
� ;N (q1; : : : ; qn ) =

X

k� 0

PN; j� j(n + k)
1

n!k!

X

g2B AF
n;n + k

Z

� n + k

n+ kY

j =1

dqj

Y

f i;j g2E (g)

f i;j

nY

i =1

� (qi )

+
X

k� 0

n� 1X

m=1

PN; j� j(m + k)R�; � (n; m; k): (4.10)

Then, having the bounds (2.20) and (4.8) we can take the thermodynamic limit on the right
hand side of (4.10) and obtain:

X

k� 0

� n � k �B �
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Notice that one of them,b0 (without loss of generality), contains all white vertices with labels
in A0. We denote byF � (g) the collection of all F � B(g) such that [ b2 F b is a connected
graph, where we use the notation[ b2 F b := ( [ b2 F V(b); [ b2 F E(b)) for the union of graphs.
We also de�neH(g) to be the collection of all such graphs:

H(g) := f g0 : g0 =
[

b2 F

b; F 2 F � (g)g: (4.13)

Similarly,
A (g) := f V(g0); g0
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even easier since we win a power ofj� j because of non translation invariance, therefore we
refrain from repeating the proof here and we refer the reader to [44].
Thus, since we know that in (4.15) the componentb0 has to appear in each summand and
since by Lemma 4.3 there should be only one component, then the only non-zero contribution
comes from the articulation vertex free component, i.e.,g 2 B AF

n;n + k . In other words, we have
that for every g 2 Cn;n + k \ (BAF

n;n + k)c,
X

I : supp I �A (g); A (I )= V �

jV \ V 0j=1 ;8V;V 02 supp I

cI = 0 (4.17)

and = 1, otherwise. Notice the di�erence with respect to [44]: here, the elementb0 2 B(g)
as it appears inA(g) (via H(g), de�ned above) is special and consists of articulation free
graphs in their new de�nition within the presence of \white" vertices. This concludes the
proof of Lemma 4.1. �

Proof of Lemma 4.2. Recall the use of the shortcutI � 0
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as each of the polymersV1; : : : ; Vr intersects with V0 at most at one label. Alluding to the
constraints (4.6) and (4.7) we split the integral as follows:

Z

� k

kY

j =1

dqn+ j
1

j� jn+ k

�
�
�
�
�
�
�
�

X

g2Cn;n + k :
g� I

Y

f i;j g2E (g)

f i;j

�
�
�
�
�
�
�
�

�
1

j� jn

rY

j =0

�̂ �
� (Vf V �̂ �

� (Vg1rn
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some correlation function due to the absolute value in (4.20). Thus, from (4.21), using (3.9),
we obtain that

�X

I 2I (Vn;N � n )
jA (I )nA 0 j= k

jcI jj �̂ �
� j I � e� ck

�X

I 2I (Vn;N � n )
jA (I )nA 0 j= k

jcI jj �̂ �
� j I eck � Ce� ck; (4.25)

for someC > 0 as in (3.15), depending onn. �

5. Direct correlation function, proof of Theorem 2.9

Using (2.18), Theorem 2.7 and de�nition (2.23) the leading order of the second Ursell function
can be expressed as follows:

Z

� 2
dq1dq2 � (q1)� (q2)u(2)

� ;N (q1; q2) =
Z

� 2
dq1dq2 � (q1)� (q2)

X

k� 0

PN; j� j(2 + k)
1

2!k!

X

g2B A F
2;2+ k

~� �
� (g; q1; q2) + O

�
1

j� j

�
: (5.1)

In order to derive the Ornstein-Zernike equation in the canonical ensemble, we split the
graphs in the right hand side of (5.1) at the nodal points (recall De�nition 2.6). These are
the points through which pass all paths joiningq1 to q2, hence we can order them. Given
g 2 B AF

2;2+ k , we choose the �rst nodal point starting fromq1 and call its label j . Note that
by the de�nition of articulation points, j 6= 1; 2. Upon the removal of this point the graph
g splits into two connected components:g1 with l + 2 vertices andg2 with k � l + 1 vertices
with the only common vertex being the one with labelj . Note that g1 contains q1 and g2

contains q2. Sinceqj is the location of a nodal point, we can write

~� �
� (g; q1; q2) =

Z

�
dqj

~� �
� (g1; q1; qj ) ~� �

� (g2; qj ; q2):

Then, the leading term in (5.1) yields

Z

� 2
dq1dq2 � (q1)� (q2)

N � 2X

k=0

PN; j� j(2 + k)
1

2!k!

2

4
X

g2Bk) =

Z

k�
� (g2 ; q . Note that(2 Tf 10.821 0 Td [(k)]2]01TJ/F35 7.9701 Tf 4.621 0 Td [(=0)]TJ/22 Ts1. 0 T07.TJ/3.595 -3.587 Td5.53]TJ/F3267.9701 Tf -8.984 -25.372 T J Td [21 1157.9701 Tf 2.353 0 Td [(�.8F15 11.955= Tf 5.873 0 Td [(;N)15TJ/F32[(;)17.9701 Tf 4.622 0 Td [(�)]TJ/F29 7.9701 Tf 6.586 0 Td [(2)]TJ/F29 7.97011 Tf -13.595 -3.587 Td 2.1~)]TJF3267.9701 Tf -8.984 -25.372 T Jk�726 3[(• 11.9552 Tf 14363 10.793 Td [((for)
ET
q
1 0 0k Tf 9.357 0 Td [(6)]TJ14J/F33 5.9776 Tf 5.7F37 11.9552 Tf 11.959 7.97011 Tf -1329 7.9701 Tf 6TJ/99]TJ
028911.9552 Tf 6..423 19.558 Td [(J/F3)]TJ/831 11.9552 Tf Td [(:)]T0J/F15.9701 Tf 6.642 -27.066 Td [(�)]TJ/F30 5.9776 Tf 5.8705 0 Td [(k)]TJ32 7T
/F)17.97011 Tf 11.273 -1.793 Td [(j)]TJ/F15 11.9552 Tf 9.349 161.254 )]TJ31 Tf [()]TJ78 w 0 0 m 18.846 0 l S
Q
BT[(2959 7.9552 Tf 472.494 404.861 )]TJ76 0102Nj

j) =

Z

k�
� (g2; q; q j +

j) =n2+

� �
� (g2; qj ; q2) =

k
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We rewrite this in such a way thatdirect two-point correlation function (uniquely de�ned up
to leading order) as given in (2.27) appear. By choosing the labelj = 3 in (5.2) we obtain

Z

� 2
dq1dq2

1
2

� (q1)� (q2)

2

4
N � 2X

k=0

PN; j� j(2 + k)
1
k!

X

g2B 2;k +2

~� �
� (g; q1; q2)+

+
N � 2X

k=0

PN; j� j(2 + k)
k� 1X

l=0

Z

�
dq3

1
l!

X

g12B 2;l +2

~� �
� (g1; q1; q3)

1
(k � 1 � l)!

X

g22B AF
2;k � l +1

~� �
� (g2; q3; q2)

3

5 :

By using new labelsl1 := l and l2 := k � 1� l , the last summand can be rewritten as follows

N � 3X

l1=0

Z

�
dq3

1
l1!

X

g12B 2;l 1+2

~� �
� (g1; q1; q3)

N � 3� l1X

l2=0

PN; j� j(l1 + l2 + 3)
1
l2!

X

g22B AF
2;l 2+2

~� �
� (g2; q3; q2): (5.3)

Let us introduce the following shorthands

�C �
� (2; l1 + 2; q1; q3) :=

1
l1!

X

g12B 2;l 1+2

~� �
� (g1; q1; q3) (5.4)

and

�B �
� (2; l2 + 2; q3; q2) :=

1
l2!

X

g22B AF
2;l 2+2

~� �
� (g2; q3; q2): (5.5)

Then we can rewrite (5.3) as

Z

�
dq3

N � 3X

l1=0

PN; j� j(l1 + 1) �C �
� (2; l1 + 2; q1; q3) �

�
N � 3� l1X

l2=0

PN; j� j(l1 + l2 + 3)
PN; j� j(l1 + 1) P
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Lemma 5.1. Under the hypothesis of the previous theorems, the functionc(2)
� ;N de�ned in

(2.27) ful�ls the Ornstein-Zernike equation to leading order in the following sense:
Z

� 2
� (q1)� (q2)u(2)

� ;N (q1; q2) dq1dq2 = � 2
Z

� 2
� (q1)� (q2)c(2)

� ;N (q1; q2) dq1dq2

+
Z

� 2
� (q1)� (q2)

� Z

�
� c (2)

� ;N (q1; q3)u(2)
� ;N (q3; q2)dq3

�
dq1dq2

+ O
�

1
j� j

�
: (5.7)

Proof.
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In order to show that the above bound is of orderO(1=j� j), one notes that both summands
contain the following two factors which are tails of the corresponding convergent series:

sup
q2 ;q3

1X

l= N +1

PN; j� j(l + 2)
�
� �B �

� (2; l + 2; q3; q2)
�
� � Ce� cn (5.10)

and

sup
q1

1X

l= N +1

PN; j� j(l + 1)
Z

�
dq3

�
� �C �

� (2; l + 2; q1; q3)
�
� � Ce� cn; (5.11)

for some constantsC; c > 0. The �rst follows from the bound in (4.12), while the second is
claimed in (2.29) and proved in the next lemma. �
The second result is about the convergence and integrability ofc(2)

N (q1; q2) as N ! 1 . In
order to take the limit in (5.7) and get the in�nite volume version of the OZ equation, we
need to prove (2.29) which is given in the following lemma:

Lemma 5.2. For some positive constantsC and c independent ofN and � and for every
l1 2 N and q1 2 � we have that

PN; j� j(l1 + 1)
Z

�
dq2

�
� �C �

� (2; l1 + 2; q1; q2)
�
� � C�e � cl1 ; (5.12)

for � large enough.

Remark 5.3. As it will be clear in the proof, for the above estimate to hold it is important
that we have an integral inq2, that is an integral over the variable corresponding to the second
white vertex. For short we call it theintegrated white vertex.

Proof. The proof follows the line of calculation in Lemma 4.2. The main di�erence is that
here we do not require that there exists a special polymerV0 containing both white vertices.
Hence we restrict to the class

I (V) = 1 ; 8V 2 suppI; and (5.13)

m + k =
X

V 2 supp I

(jV j � 1) + 1 (5.14)

and we denote it by using the superscript�� over the sum, in order to distinguish it from
the previous case. Recalling the shortcutI � g for the class of multi-indic2 Tf 31 11.the
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in (4.15), we have:

PN; j� j(l1 + 1)
Z

�
dq2

�
� �C �

� (2; l1 + 2; q1; q2)
�
� =

=
N (N � 1) : : : (N � (l1 + 1) + 1)

j� j l1+1

Z

�
dq2

�
�
�
�
�
�

1
l1!

X

g2C2;2+ l 1

~� �
� (g; q1; q2)

��X

I � g

cI

�
�
�
�
�
�

=
N
j� j

�
N � 1

l1

� Z

�
dq2

�
�
�
�
�
�
�
�

��X

I 2I (V2;l 1 )
A (I )=[ l1+2]

cI
1

j� j l1
X

g2C2;2+ l 1 :
g� I

~� �
� (g; q1; q2)

�
�
�
�
�
�
�
�

: (5.15)

The classV2;l1 consists of all subsets of the labels corresponding to the white verticesf 1; 2g
and the black verticesf 3; : : : ; l1+2g. The classg � I is as before in (4.18). The compatibility
graph of the polymers is a connected graph whose blocks are complete graphs (usually called
Husimi graphs, see [27, 19]). Within this structure we denote byV1; : : : ; Vr the chain of
pairwise incompatible polymers such that the label 12 V1 and the label 22 Vr . Note that
r could be equal to 1, but in this case the structure would be exactly as in the previous
theorem. We denote byi j the common label ofVj and Vj +1 , j = 1; : : : ; r � 1 and by V 0

s , for
s from an index setS, the remaining polymers attached to the rest of the structure by the
label i s. Note that by translation invariance the activity associated toV 0

s does not depend on
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in [27], this is just the following combinatorial identity interpreted as formal power series:

C�
n = ( C� )n BAF

n (C� ); (6.1)

whereC�
n , BAF

n respectively, denotes the set of connected, articulation point free respectively,
graphs with n special vertices. C� denotes the set of graphs with one special vertex, but
multiplied with the activity.
The casen = 1 has a more di�cult structure. Let us derive it in more detail; we have

� (1)
� (q1)

z
=

1
� � (z)

X

n� 1

zn� 1

(n � 1)!

Z

� n � 1
dq2 : : : dqne� �H � (q) ; (6.2)

wherez is the activity and � � (z) the grand-canonical partition function. Writing � �H � (q) =P
g2Gn

Q
f i;j g2E (g) f i;j , we split the graph and the integral over the connected components of

each graph. Recalling the de�nition of the activity ~� �
� (g; q1; : : : ; qn ) given in (2.23), we get

that (6.2) equals to

1
� � (z)

X

n� 1

1
(n � 1)!

X

k� 1

1
k!

X

(P0 ;:::Pk )2 �(2 ;:::;n )

0

@zjP0 j
X

g
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recalling that

� � ;m :=
1

m!

X

g2B 1;m +1

Z

� m

Y

f i;j g2E (g)

(e� �V (qi � qj ) � 1)dq2 : : : dqm+1 ; q1 �xed ; (6.6)

is the virial coe�cient and F� (� ) :=
P

m� 1
1

m+1 � � ;m � m+1 .
This is exactly the combinatorial identity given in [27], Theorem 1:1. The above calculation
is also one of the motivations to de�ne (following [48]):

h(1) (q1) := log( � (q1)) � log(z) =
X

m� 1

� m (� (q1))m ; (6.7)

in the thermodynamic limit. Note that because of translation invariance bothh(1) (q1) and
� (q1) are constant. This is also closely related to the Legendre transform giving the equiva-
lence of ensembles between pressure and free energy at the thermodynamic limit:

p(z) = sup
�

f � logz � f (� )g; f (� ) = sup
z

f � logz � p(z)g:

In the �rst case the sup is attained at logz = f 0(� ) and hence

h(1) = log � � f 0(� ) = F 0(� ); (6.8)

whereF (� ) = � (log � � 1)� f (� ) is the free energy corresponding to the \interaction" between
the particles.

We conclude this section by noting that the OZ equation corresponds to the following easy
combinatorial fact. For the second correlation functions the expansion in the density is given
by the sum over all graphs free of articulation vertices. Hence the block graph associated
to such a graph is actually a chain connecting the two white vertices. The OZ equation is
nothing more than an iterative representation of this fact.

7. Application to liquid state theory in the gas regime

The rigorous expansions that we present in this paper can serve as a tool for quantifying
the error in existing theories which are extensively used in the liquid state, as well as for
suggesting systematic error-improving schemes. However, this is only possible in the gas
regime where all these expansions are valid. Extending these results to the liquid state
regime is a highly nontrivial problem, if even possible. We give here a �rst glimpse of this.
To start, we recall that the Ornstein-Zernike equation (2.16) is not a closed equation as it
involves both correlation functionsh(2) (q1; q2) and c(q1; q2). One suggestion for a closure is
the Percus-Yevick (PY) equation [40] that we describe below. Starting from the OZ equation
for h(2) (r ) and c(r ), following [49], one �rst introduces a new functiont as follows:

t(r ) := c � h(2) (r ); (7.1)

where we use the convolution:c � h(2) (r ) := �
R

c(r 0)h(2) (r � r 0)dr0. Then the OZ equation
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Note that all involved functions (h(2) , c and t) are analytic functions in � . Furthermore, c(r )
can be written as

c(r ) = f (r )(1 + t(r )) + m(r ); (7.3)

where f (r ) := e� �V (r ) � 1 is a known function of the potentialV(r ). The relation (7.3) is
essentially the de�nition of m(r ) which is an analytic function of� as well. Following [49] the
function m can be expressed as a sum over two connected graphs which upon removal of the
direct link f connecting the white vertices (if it is present) it is two-connected (no articulation
and no nodal points). For example, the �rst term ofm(r ) is the graph 1� 3 � 2 � 4 � 1.
However, in [49],\the manipulations involved in obtaining these in�nite sums ... have been
carried out in a purely formal way and we have not examined the important but di�cult
questions of convergence and the legitimacy of the rearrangement of terms". The present
paper establishes this convergence with respect tof -bonds. The convergence allows to
quantify the error after truncating these terms. For example,m is of order� 2. Furthermore,
a future plan is to investigate whether another suggestion could be made, relating some of
the terms in m(r ) with respect to t(r ), or by introducing another function (instead oft(r ))
as a candidate for a good choice for \closing" OZ equation. Combining (7.1) with (7.2) and
(7.3) we obtain:

t = [ f (1 + t) + m] � [f (1 + t) + m] + [ f (1 + t) + m] � t: (7.4)

One version of PY equation is settingm(r ) � 0 and obtaining a closed equation fort(r ).
Alternatively, using (7.2) and (7.3) one can introduce the functionsy(r ) and d(r ) by

g(2) (r ) = e� �V (r )(1 + t(r )) + m(r ) =: e� �V (r )y(r ); y(r ) =: 1 + t(r ) + d(r ); (7.5)

and hencem(r ) = e� �V d(r ). Thus, we can rewrite (7.4) as

y = 1 + d + [ f y + d] � [e� �V y � 1]: (7.6)

Again, setting d(r ) � 0 we obtain another version of PY equation. All involved functions are
analytic in � and our results imply that the formal order in � of d coincides with the actual
order. Now, one can investigate a method of systematically improving the PY equation,
by adding some terms fromd (or from m for hard-core potentials). For example, in [49]
it was suggested to setd equal to the �rst order term in its expansion, since this gives a
\PY approximation that it leads to an approximateg that is exact through terms of order
� 2 in its virial expansion". A partial goal of the analysis in the present paper is to provide
a framework in which one can further investigate such closure schemes and estimate the
relevant error.
Other closures include theHypernetted Chain(HNC) equation, the Born-Green-Yvon (BGY)
hierarchy and many others for which we could investigate the validity of the corresponding
graphical expansions. We conclude by mentioning that another direction that has attracted
considerable interest is the construction of exact solutions of the PY equation, which however
usually cannot be expressed as truncations of convergent series. But still, several sugges-
tions have been made for models of rigid spheres; see [10] and the references therein for a
comparison of the di�erent methods.
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