
 
 

 
 

 

Department of Mathematics  and Statistics 
 

Preprint MPCS-2017-03 
 
 

9 March 2017 
 
 
 

The eigenvalue problem for the 
�f -







THE EIGENVALUE PROBLEM FOR THE 1 -BILAPLACIAN 3

(up to a multiplicative constant) and strictly positive (or negative) inside 
. Fur-
thermore, as a straightforward application of Talenti's symmetrisation principle [T],
which we recall in our second Appendix, a Faber-Krahn type inequality holds true:
among all domains with �xed volume, the �rst eigenvalue is minimised by the ball
up to perhaps rigid motions.

On the other hand, the clamped eigenvalue problem presents several interesting
features already in the case ofp = 2, which make its study a highly nontrivial
matter. Indeed, the �rst eigenfunction might be sign-changing, even for relatively
simple domains such as squares or elongated ellipses [Co]. Moreover, some domains
admit more than one �rst eigenfunction, as shown in [CD]. However, if 
 is a
ball, the �rst eigenfunction is unique and strictly positive (see for instance [GGS,
Theorem 3.7]). The Faber-Krahn inequality has been shown to hold true only
in dimensions n = 2 [N] and n = 3 [AB], while it still remains a challenging
open problem in higher dimensions. The limiting casep = 1 has been studied
by the second author jointly with Ruf and Tarsi in [PRT1, PRT2], wherein results
analogous to the casep = 2 were obtained. However, in the clamped case, positivity
of the �rst eigenfunction in a ball and the Faber-Krahn inequality were shown to
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Then, there exists a sequence of exponents(p` )1
` =1 tending to in�nity, such that

8
>>>>>>>><

>>>>>>>>:

(up` ; � p` ) �! (u1 ; � 1 ); in C1(
) �
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of L 1 functionals and of their associated analogues of Euler-Lagrange equations
is known as Calculus of Variations in L 1 . Variational problems for �rst order
functionals

(1.11) E1 (u; O) = ess sup
x 2O

H
�
x; u(x); Du(x)

�
; u 2 W 1;1 (
) ; O 2 L (
) ;

together with the associated equations, �rst emerged in the work of Aronsson in the
1960s ([A1]{[A3]). The area is now well developed and the relevant bibliography
is vast; for a pedagogical introduction accessible to non-experts, we refer to [K8]
(see also [C]). The vectorial case of (1.11) for mapsu : Rn � 
 �! RN is a
rapidly developing contemporary topic which �rst emerged in the work of the �rst
author in the early 2010s (see [K1]{[K7], [K9]{[K12] as well as the joint contribution
with Abugirda, Ayanbayev, Croce, Kristensen, Manfredi, Moser, Pisante and Pryer
[AK, AyK, KM, KMo, CKP, KK, KP, KP2, KP3]).

Higher order L 1 variational problems have only very recently begun to be inves-
tigated and are still poorly understood. In the most recent paper [KP2], the �rst
author jointly with Pryer considered second order variational problems and their
relevant equations, focusing on functional of the form

E1 (u; O) = ess sup
x 2O

H
�
D2u(x)

�
; u 2 W 2;1 (
) ; O 2 L (
) :

In the model case of H being the Euclidean norm onRn � n , the relevant PDE
playing the role of the Euler-Lagrange equation is the so-called1 -Polylaplacian

� 2
1 u :=

�
D2u

� 
 3
:
�
D3u

� 
 2
= 0

which is a fully nonlinear equation of third order. Subsequently, in the joint pa-
per with Moser [KMo] the case of dependence on second derivatives through the
Laplacian was considered, focusing on the model case of so-called1 -Bilaplacian :

(1.12) � 2
1 u :=

�
� u I

� 
 3
:
�
D3u

� 
 2
= 0 :

These papers were partly motivated by problems arising in applied disciplines like
Data Assimilation in the geosciences, PDE-constrained optimisation, etc. (see e.g.
[K9] and references therein), as well as by curvature minimisation problems arising
in Riemannian geometry previously studied by Moser-Schwetlick [MS] and Sakel-
laris [S] which relate to the Yamabe problem. In particular, our Theorem 1 draws
heavily on methods successfully deployed to relevant but di�erentL 1 settings in
[MS, S, KMo].

In the light of the above generalL 1 framework, we see the quantities �H1 (
) and
� C

1 (
) as the �rst eigenvalues of the 1 -Bilaplacian under the respective (hinged
or clamped) boundary conditions and the parametric system (1.9) as the analogue
of the constrained Euler-Lagrange equations for the minimisation problems (1.3)-
(1.4). However, there does exist a more conventional PDE arising in the formal
limit of the Dirichlet problems (1.7)-(1.8) as p ! 1 : by exploiting the relation

� 2
pu = ( p � 1)j� ujp� 2� 2u + ( p � 1)(p � 2)j� ujp� 4� ujD(� u)j2

and performing similar computations as in [JLM], one can see that any putative
1 -eigenfunction u1 has to satisfy

min
�

j� uj � � 1 juj ; � 2
1 u

	
= 0 ;

where � 2
1 is the 1 -Bilaplacian given by (1.12). Notwithstanding, this is merely

a formal claim, since we can not expect the solutions to be classical, and, to the
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best of our knowledge, there does not exist any analogue of the theory of viscosity
solutions for the higher order problem at hand which is equally stable under lim-
iting processes. However, this is not an issue because for the particular problem
herein, the method ofL p-approximations constructs second order1 -eigenfunctions
with �ner structure. This renders the direct study of the formal third order PDE
redundant, whilst we obtain also a selection principle of the numerous possible1 -
eigenfunctions realising the in�ma in (1.3)-(1.4). A similar phenomenon has already
arisen in the paper [KMo], wherein the authors proved existence and uniqueness of
(absolute) minimisers to u 7! k � ukL 1 (
) by solving the parametric system

(1.13)
�

� u� = � � sgn(f � ) a.e. in 
 ;
� f � = 0 a.e. in 
 ;

for any given prescribed boundary valuesu� = g and Du� = D g on @
. In (1.13),
\sgn" is the usual single-valued sign function. In particular, (1.13) implies that
j� u� j = � � a.e. in 
 and any such u� is the unique minimising 1 -Biharmonic
function solving (1.12) in the appropriate sense ofD-solutions, a new theory of
generalised solutions for fully nonlinear systems recently introduced in [K9, K10];
The fact that u� solves (1.12) if it solves (1.13) can be readily seen formally by
recasting (1.12) as � u jD

�
j� uj2)j2 = 0.

2. Existence, structure and p-approximation to the eigenproblem for
the 1 -Bilaplacian

Let 
 � Rn be a given domain with C1;1 boundary @
. In this section we
establish Theorem 1. Its proof consists of several lemmas and, as in the statement,
we tackle both cases simultaneously. To this end, it su�ces to consider only the
case of hinged boundary conditions, because if we obtain the desired existence-
compactness-approximation conclusion by requiring the weaker condition \u = 0
on @
" for the L p approximating sequences of eigenfunctions, then it most certainly
holds under the stronger requirement \u = jDuj = 0 on @
" of clamped boundary
conditions. Also, the putative limit eigenfunction u1 will be in the respective space
because

W 2;1 (
) � W 2;1
H (
) � W 2;1

C (
)

and the hinged/clamped functional spaces are closed in their super-space

W 2;1 (
) :=
\

1<p< 1

n
u 2 W 2;p (
) : � u 2 L 1 (
)

o
:

For technical convenience in the proof we modify our notation slightly, as follows:
for p 2 [1; 1 ], we consider the normalisedL p norm with respect to the probability
measure� = L n =L n (
) 2 P (
), that is

(2.1) kf kL p (
 ;� ) :=

8
><

>:

�
�
�



jf jp

� 1=p

; 1 � p < 1 ;

kf kL 1 (
) ; p = 1 ;

and, given a �xed p 2 (1; 1 ), we also consider the constrained variational problem
of �nding up 2

�
W 2;p \ W 1;p

0

�
(
) with kupkL p (
 ;� ) = 1 such that

(2.2) k� upkL p (
 ;� ) = � p;
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where

(2.3) � p := inf
n

k� vkL p (
 ;� ) : v 2
�
W 2;p \ W 1;p

0

�
(
) ; kvkL p (
 ;� ) = 1

o
:

By standard weak compactness, lower semicontinuity and Lagrange multiplier ar-
guments (see e.g. the relevant arguments for the Laplacian in [E]), one easily sees
that for any p 2 (1; 1 ) there indeed exists a desired minimiserup of (2.2)-(2.3)
which solves weakly the Dirichlet problem

(2.4)

(
� 2

p up = (� p)p jup jp� 2up in 
 ;

up = 0 on @
 :

Note that we refrain from stating the natural boundary condition \� up = 0 on
@
" which is also satis�ed weakly in the hinged case only, because we do not utilise
it in any way in the foregoing reasoning which applies to both cases.

We begin with the next lemma.

Lemma 3. Let f (up; � p) : 1 < p < 1g be the family of eigenfunctions and eigen-
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Since @
 is of class C1;1, by the Calderon-Zygmund global L k -estimate (see e.g.
[GT, Lemma 9.17, p. 242]), it follows that there exists a constantC = C(k; 
) > 0
such that

(2.6) kupkW 2;k (
) � C(k; 
) k� upkL k (
 ;� ) :

By (2.2),(2.3) and H•older inequality, for any p � k we have

(2.7) k� upkL k (
 ;� ) � k � upkL p (
 ;� ) = � p

and hence by (2.5)-(2.6) we infer that

(2.8) kupkW 2;k (
) �
2C(k; 
) k� � kL 1 (
)

k� kL 1 (
)
; p � k:

By (2.8), the sequence (up)1
1 is bounded in W 2;k (
) for any k 2 N. By passing

to a further subsequence if necessary, by Morrey's theorem and a standard weak
compactness diagonal argument there exists

u1 2
\

1<p< 1

W 2;p (
) \ C1(
)

such that up �! u1 strongly in C1(
) and D 2up �� * D2u1 weakly in
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Proof of Lemma 4. By (1.1) we have that W 2;1
H (
) �

�
W 2;p \ W 1;p

0

�
(
) for all

p 2 (1; 1 ). Hence, by (2.2)-(2.3) and minimality, we have

� p � k � vkL p (
 ;� ) ; v 2 W 2;1
H (
) ; kvkL p (
 ;� ) = 1 :

By �xing v and letting p ! 1 , by Lemma 3 we obtain

k� u1 kL 1 (
) = �̂ 1 � k � vkL 1 (
) ; v 2 W 2;1
H (
) ; kvkL 1 (
) = 1 :

By taking in�mum over all such v, we deduce the equality�̂ 1 = � 1 , as claimed.
Finally, recall that we already know 0 � � 1 < 1 . Suppose for the sake of
contradiction that � 1 = 0. Then, the constraint ku1 kL 1 (
) = 1 contradicts the
uniqueness of solutions to the Dirichlet problem for the Laplace equation because
� u1 = 0 in 
 and u1 = 0 on @
. The lemma has been established. �

Next, we prepare towards the construction of the functionf 1 2 L 1(
) \ BVloc (
)
and the signed measure� 1 2 M (
) associated with the 1 -eigenpair (u1 ; � 1 )
which was constructed in Lemmas 3-4 above.

Lemma 5. Let (up)1
1 be the subsequence of theL p minimisers (satisfying for each

p the equalities (2.2)-(2.3) and solving the Dirichlet problem(2.4)) along which the
conclusion of Lemmas 3-4 hold. We de�ne the measurable functionsf p; gp : 
 �! R
by

f p :=
j� up jp� 2� up

(� p)p ;(2.11)

gp := jup jp� 2up:(2.12)

Then, we have

(2.13) � f p = gp in D0(
) ;

and if p0 = p=(p � 1), we also have

kf pkL p 0(
 ;� ) =
1

� p
;(2.14)

kgpkL p 0(
 ;� ) = 1 :(2.15)

Proof of Lemma 5. The proof is elementary, but we provide it anyway for the
sake of completeness. Letf p; gp be given by (2.11)-(2.12). We begin by noting that
(2.13) is a consequence of (2.4) and the de�nitions. For (2.14), by (2.1)-(2.3) we
have

kf pkL p 0(
 ;� ) =
1

(� p)p

�
�
�




�
� j� up jp� 2� up

�
�

p
p � 1

� p � 1
p

=
1

(� p)p

�
�
�



j� up jp

� p � 1
p

=
1

(� p)p (� p)p� 1

=
1

� p
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and similarly, in view of (2.3) we have

kgpkL p 0(
 ;� ) =
�

�
�




�
� jup jp� 2up

�
�

p
p � 1

� p � 1
p

=
�

�
�



jup jp

� p � 1
p

= 1 :

The lemma ensues. �

Lemma 6. In the setting of Lemma 5, there exist a functionf 1 2 L 1(
) \ BVloc (
)
and a signed Radon measure� 1 2 M (
) associated with the1 -eigenpair (u1 ; � 1 )
such that

f p �! f 1 ; in L q
loc (
) for all q 2

h
1;

n
n � 1

�
;

f p
��� * f 1 ; in BVloc (
) ;

gp L n ��� * � 1 ; in M (
) ;

along perhaps a further subsequence asp ! 1 . Moreover, f 1 is a distributional
solution to the Poisson equation with right hand side� 1 :

� f 1 = � 1 in D0(
) :

Proof of Lemma 6. By Lemmas 3 and 6, we have that the sequences (f p)1
1 ,

(gp)1
1 are uniformly bounded in L 1(
) and for each p along a subsequence they

satisfy
� f p = gp in D0(
) :

By Lemma 17 and Corollary 18 in our �rst Appendix, we have that ( f p)1
1 is

bounded in L n= (n � 1)
loc (
) \ BVloc (
) and there exists a limit function f 1 such that

the desired modes of convergence hold true. Moreover, since the absolutely continu-
ous measures (gp L n )1

1 � M (
) have bounded total variation, there exists a signed
Radon measure� 1 such that the desired weak* convergence holds true as well. By
passing to the weak* limit in (2.13) as p ! 1 along an appropriate subsequence,
we obtain � f 1 = � 1 on 
 in the sense of distributions.

It remains to show that f 1 2 L 1(
). Indeed, �x a compact set K � 
 with
positive measure. Sincef p �! f 1 as p ! 1 strongly in L 1

loc (
) and ( f p)1
1 is

bounded in L 1(
), by (2.14) and (2.1) we have

kf 1 kL 1 (K ) = lim
p!1

kf pkL 1 (K ) � limsup
p!1

kf pkL 1 (
) �
L n (
)

� 1
:

We conclude by invoking the upper continuity properties of the measurekf 1 kL 1 ( �)

on 
. �

Now we show the validity of the desired di�erential inclusion which the 1 -
eigenpair (u1 ; � 1 ) satis�es.

Lemma 7. Let the quadruple(u1 ; � 1 ; f 1 ; � 1 ) be as in Lemmas 3-6. Then, we
have

� u1 (x) = � 1
f 1 (x)
jf 1 (x)j

; a.e. x 2 
 n f f 1 = 0g:
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Proof of Lemma 7. By (2.11
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Then, the 1 -eigenpair (u1 ; � 1 ) satis�es

� u1 (x) 2 � 1 Sgn
�
f 1 (x)

�
a.e. x 2 
 :

We complete the proof of Theorem 1 by showing that in the case of hinged
boundary condition, the di�erential inclusion reduces to just the Poisson equation
with constant right hand side. This result reconciles with the more general �ndings
on (absolute) minimisers of second order functionals in Calculus of Variations in
L 1 in the papers ([MS, S, KP2, KMo]).

Proposition 9. Let 
 � Rn be a bounded domain. Thenu1 2 W 2;1
C (
) is a

minimiser for � H
1 (
) if and only if it is a multiple of the solution to

(2.19)
�

� � v = 1 in 
 ;
v = 0 on @
 :

In particular, u1 is strictly positive (or strictly negative) in 
 , and unique up to a
nonzero multiplicative constant.

Note that for this last part of the proof of the theorem, we do not need any
boundary regularity.

Proof of Proposition 9. Let u1 be a minimiser realising the in�mum in (1.3).
By a rescaling, we may assume thatk� u1 kL 1 (
) = 1 and by replacing u1 by
� u1 , we may assume that

ku1 kL 1 (
) = ess sup



u1 :

Set g := � � u1 and suppose for the sake of contradiction thatg 6� 1 on 
, keeping
in mind that � 1 � g � 1 a.e. on 
. To this end, let v be the solution of (2.19). We
have that (

� �( v � u1 ) = 1 � g in 
 ;

v � u1
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3. The Faber-Krahn inequality for the 1 -Bilaplacian and
1 -eigenpairs in the case of the ball

In this section we establish the proof of Theorem 2 in the case of hinged and
clamped boundary conditions, whilst we also calculate the eigenvalues and the
eigenfunctions in the case that the domain is a Euclidean ball.

The case of hinged boundary conditions. We begin with the simpler case of
hinged boundary conditions. In this section we will be using the symbolisation! n

for the volume of the unit ball in Rn , whilst B R will stand for the open ball in Rn

of radius R > 0, allowing ourselves the convenient exibility to mean either centred
at the origin, or at any other point. The meaning will be clear from the context
and in any case the invariance of the1 -eigenvalue problem under rigid motions
will not entail any rami�cations.

Proposition 10 (The Faber-Krahn inequality in the hinged case). Let 
 � Rn be
a bounded domain withC1;1 boundary and letBR be a ball with radius

R :=
�

L n (
)
! n

� 1=n

namely, such thatL n (
) = L n (BR ). Let � H
1 (
) be given by(1.3). Then,

� H
1 (
) � � H

1 (BR );

and equality holds if and only if 
 coincides with the ballBR up to a rigid motion
in Rn .

Proof of Proposition 10. By a rescaling argument, we may assume without loss
of generality that L n (
) = L n (B1) = ! n . Let u be a positive minimiser for � H

1 (
).
By Talenti's symmetrisation principle (see e.g. Kesavan [Ke1, Theorem 3.1.1]), ifv
is the solution of the problem

�
� � v = 1 in B 1;

v = 0 on @B1;

we obtain that 0 � u� � v in B1, where u� is the Schwarz symmetrisation ofu.
Therefore, we deduce that

kukL 1 (
) = ku� kL 1 (
) � k vkL 1 (
) ;

which implies � H
1 (
) � � H

1 (B1). By the results of [Ke2], it follows that equality
holds if and only if 
 coincides with B 1, up to rigid motions. �

The next lemma, which is a direct consequence of Proposition 9 of the previous
section, completes the picture in the case of hinged boundary conditions.

Corollary 11 (The 1 -eigenpairs in the hinged case). Let BR be the ball of radius
R in Rn centred at the origin. Then every minimiser is a nonzero multiple of the
function de�ned as

u1 (x) :=
1

2n
(R2 � j xj2)

and we also have

� H
1 (BR ) =

2n
R2 :



14 NIKOS KATZOURAKIS AND ENEA PARINI

The case of clamped boundary conditions. We continue with the more
complex case of clamped boundary conditions. Let us begin by noting that, if
u 2 W 2;1

C (
), then �



� u = 0 ;

as a consequence of the Gauss-Green theorem. Nonetheless, the converse is not
true in general for a function u 2 W 2;1 (
) (satisfying u = 0 on @
), unless 
 is a
ball BR and u is radially symmetric. In this case,

0 =
�



� u =

�

@

Du � � d H n � 1 = u0(R) H n � 1(@BR )

which implies that u0(R) = 0 and hence indeedu 2 W 2;1
C (
) as claimed. In the

above argument,H n � 1 denotes then � 1-Hausdor� measure restricted to @
 and
� the outwards pointing normal vector �eld on @
.

Before proving the Faber-Krahn inequality, we need some technical preparation
which is the content of the next lemma.

Lemma 12. Let R 2 (0; 1], and BR � Rn be the ball of radiusR centred at the
origin. Let f be de�ned on B1 as

f (x) :=

(
1; for jx j � 2� 1

n ;

� 1; for 2� 1
n < jx j < 1;

and let f R be the restriction of f to BR . Let wR be the solution to the problem
(

� � wR = f R in BR ;

wR = 0 on @BR :

Then, when n = 2 , wR is given by

wR (x) =
1
4

(R2 � j x j2)

if R � 2� 1
2 , and

wR (x) =

8
>><

>>:

1
4

�
R2

4
+

ln R
2

+
ln 2
4

�
jx j2

4
; for jx j � 2� 1

2

jx j2

4
�

ln jx j
2

�
R2

4
+

ln R
2

; for 2� 1
2 < jx j < R;

otherwise. If n � 3, wR is given by

wR (x) =
1

2n
(R2 � j x j2)

if R � 2� 1
n , and

wR (x) =

8
>>><

>>>:

2� 2
n

n
�

R2

2n
�

R2� n

n(n � 2)
+

21� 2
n

n(n � 2)
�

jfor jx
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(ii) wR is radially symmetric and radially decreasing;
(iii) for R = 1 , w1 belongs toW 2;1

C (B1);
(iv) the function R 7! k wR kL 1 (
) , de�ned on (0; 1], attains a strict maximum

for R = 1 .

The proof of this result is a computation exercise on the use of derivatives in
polar coordinates and therefore we refrain from providing the tedious details of it.
Now we have:

Proposition 13 (The Faber-Krahn inequality in the clamped case). Let 
 � Rn

be a bounded domain withC1;1 boundary and letBR be a ball with radius

R :=
�

L n (
)
! n

� 1=n

namely, such thatL n (
) = L n (BR ). Let � C
1 (
) be given by(1.4). Then,

� C
1 (
) � � C

1 (BR );

and equality holds if and only if 
 coincides with the ballBR up to a rigid motion
in Rn .

Proof of Proposition 13. Without loss of generality, we may assume that
L n (
) = L n (B1) = ! n . Let u be a minimiser realising the in�mum in (1.4) for

, rescaled in a way that k� ukL L(
)
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wherev+ is the positive part of v. Let 
 + be the open setf v > 0g and suppose that
L n (
 + ) = ! n Rn . Clearly, we have that R 2 (0; 1]. By Talenti's symmetrisation
principle ([Ke1, Theorem 3.1.1], recalled in our second Appendix), if ewR is the
solution of the problem

(
� � ewR = ef � in BR ;

ewR = 0 on @BR ;

then

kv+ kL 1 (
) � k ewR kL 1 (
) :

Let f R and wR be the functions de�ned =



THE EIGENVALUE PROBLEM FOR THE 1 -BILAPLACIAN 17

is given by u(x) = w(x=R), where w
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(b) By the obtained estimate, the di�erence quotients (D 1;h uL n )h6=0 of u have
bounded total variation in the space of Radon measuresM (
 0) and hence by well
known arguments

D1;h uL n ��� * [Du] in M loc (
 ; Rn );

as h ! 0. The estimate follows from the weak* lower semi-continuity of the total
variation norm and the Sobolev inequality in the BV-space ([EG, Ch. 5]). The
lemma ensues. �

Proof of Corollary 18. The result is an immediate consequence of the Fr�echet-
Kolmogorov strong compactness theorem (see e.g. [B, Ch. 4]), the Vitali conver-
gence theorem ([FL, Ch. 2]) via an equi-integrability argument similar to that em-
ployed in Lemma 7 and standard results on the weak* compactness of the spaces
of BV functions and Radon measures ([EG, Ch. 5]). �

5. Appendix: Some useful results

In this appendix we collect some useful results which have been utilised earlier
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In particular, by the above result it follows that

kukL 1 (
) � k vkL 1 (
) :

Further, by a result of Kesavan [Ke2], equality kukL 1 (
) = kvkL 1 (
) holds true if
and only if 
 = 
 � , and f is radially symmetric.

The Bathtub principle. In our proofs we have also used the following simple
measure-theoretic fact, whose proof is a special case of a more general result (see
[LL, Theorem 1.14]).

Proposition 20. Let 
 � Rn be a bounded domain andf 2 L 1(
) a function such
that, for every t 2 R, the level setf f = tg is a Lebesgue null set. Leta, b, ‘ 2 R be
�xed and such that a � ‘ � b, and consider the set of functions

C :=
�

g 2 L 1 (
) : a � g � b in 
 ; �
�



g(x) dx = ‘

�
:

Then the supremum in the maximisation problem

sup
g2C

�



f (x)g(x) dx

is attained at a functionx1 =gkdx

https://arxiv.org/pdf/1509.01811.pdf
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