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traces, quotients, restriction of functions de�ned on a larger subset, . . . ). On Lipschitz open sets
(de�ned e.g. as in [23, 1.2.1.1]), many of these di�erent de�nitions lead to the same Sobolev spaces
and to equivalent norms. But, as we shall see, the situation is more complicated for spaces de�ned
on more general subsets ofRn .





paper we consider the following de�nitions, which are equivalent only under certain conditions on

 and



s-nullity. In x3.3 we introduce the concept ofs-nullity, a measure of the negligibility of a set in
terms of Sobolev regularity. This concept will play a prominent role throughout the paper, and
many of our key results relating di�erent Sobolev spaces willbe stated in terms of the s-nullity



or intersection of an in�nite sequence of simpler, nested \prefractal" sets. In x3.8 we determine
which of the Sobolev spaces de�ned on the limiting set naturally emerges as the limit of the spaces
de�ned on the approximating sets. This question is relevantwhen the di�erent spaces on the limit
set do not coincide, e.g. wheneH s(
) $ H s



. In this case the correct function space setting depends

on whether the limiting set is to be approximated from \insid e" (as a union of nested open sets), or
from the \outside" (as an intersection of nested closed sets).

Boundary integral equations on fractal screens. x4 contains the major application of the
paper, namely the BIE formulation of acoustic (scalar) wavescattering by fractal screens. We show
how the Sobolev spacesH s(
) ; eH s(
) ; H s

F all arise naturally in such problems, pulling together
many of the diverse results proved in the other sections of the paper. In particular, we study the
limiting behaviour as j ! 1



we say that (H ; I ) is a unitary realisation of





and the solution is bounded independently of the choice ofV , by kuV kH � c� 1kf kH . Furthermore,
given closed, nested subspacesV1 � V2 � H , C�ea's lemma gives the following standard bound:

kuV1 � uV2 kH �
C
c

inf
v12 V1

kv1 � uV2 kH : (7)

Consider increasing and decreasing sequences of closed, nested subspaces indexed byj 2 N,

V1 � � � � � Vj � Vj +1 � � � � � H and H � W1 � � � � � Wj � Wj +1 � � � � ;

and de�ne the limit spaces V :=
S

j 2 N Vj and W :=
T

j 2 N Wj . C�ea's lemma (7) immediately gives
convergence of the corresponding solutions of (6) in the increasing case:

kuVj � uV kH �
C
c

inf
vj 2 Vj

kvj � uV kH
j !1
���! 0: (8)

In the decreasing case the following analogous result applies.

Lemma 2.4. With f Wj g1
j =1 and W de�ned as above, it holds thatkuW j � uW kH ! 0 as j ! 1 .

Proof. The Lax{Milgram lemma gives that kuW j kH � c� 1kf kH , so that (uW j )1
j =1 is bounded and

has a weakly convergent subsequence, converging to a limitu� . Further, for all w 2 W , (6) gives

a(uW ; w) = hf; w i = a(uW j ; w) ! a(u� ; w);

as j ! 1 through that subsequence, so thatu� = uW . By the same argument every subsequence
of (uW j )1

j =1 has a subsequence converging weakly touW , so that (uW j )1
j =1 converges weakly touW .

Finally, we see that

ckuW j � uW k2
H � j a(uW j � uW ; uW j � uW )j = jhf; u W j i � a(uW j ; uW ) � a(uW ; uW j � uW )j ! 0

as j ! 1 , by the weak convergence of (uW j )1
j =1 and (6).

3 Sobolev spaces�



3.1.2 Sobolev spaces on Rn

We de�ne the Sobolev spaceH s(Rn ) � S� (Rn ) by

H s(Rn ) := J � s
�
L 2(Rn )

�
=

�
u 2 S� (Rn ) : J su 2

�
L 2(Rn )

�	
;

equipped with the inner product (u; v)H s (Rn ) := ( J su; J sv)L 2 (Rn )



3.1.4 Sobolev spaces on closed and open subsets of Rn


H s(Rn )=Hs





Lemma 3.2. Let 
 be any non-empty open subset ofRn , and s 2 R. Then

H � s

 c =

�
eH s



The dual of is isomorphic to via the isomorphism

H s(Rn ) H � s(Rn ) I s

eH s(
) (H � s

 c )? Î s

H � s(
) I s

H � s(Rn )=(H � s

 c ) �I s

H s(
) eH � s(
) I �
� s

H s

 c ( eH � s(
)) ? ~I s

(H s

 c )? eH � s(
) Î �

� s� eH s(
)
� ? H � s


 c
~I �

� s

H s
0(
) ( eH � s(
) \ H � s

@
 )? ; eH � s (
)



D(
) D(Rn ) S(Rn ) L 2(Rn )

eH s(
)
�

H s(
) H s



H s(Rn ) = ( H s

 c )? � H s


 c S� (Rn )

H s
0(
) H s(
) D � (
)

�
H � s(
)

� � H � s(Rn )
�
H � s(Rn )

� � � eH � s(
)
� � �

( eH � s(
)) ?
� �



where H d is the d-dimensional Hausdor� measure onRn and B r (x) is the open ball of radius r
centred at x. Condition ( 22



Theorem 3.11 ( [25, Proposition 2.11]). Let F1; F2 be closed subsets ofRn , and let s 2 R. Then
the following statements are equivalent:

(i) F1 	 F2 is s-null.

(ii) F1 n F2 and F2 n F1 are both s-null.

(iii) H s
F1 \ F2

= H s
F1

= H s
F2

= H s
F1[ F2

.

By combining Theorem 3.11 with the duality result of Theorem 3.3 one can deduce a corre-
sponding result about spaces de�ned on open subsets. The following theorem generalises [34, Theo-
rem 13.2.1], which concerned the case 
1 � 
 2 = Rn . The special case whereRn n 
 1 is a d-set was
considered in [57]. (That result was used in [25] to prove item (xv) in Lemma 3.10 above.)

Theorem 3.12. Let 
 1



Lemma 3.15 ( [36, Theorems 3.29, 3.21]). Let 
 � Rn be C0 and let s 2 R. Then eH s(
) =
�

H s(
) = H s



(with
�

H s(
) present only for s � 0).

When 
 is not C0



Proposition 3.18. Suppose that
 $ int( 
) and that int( 
) is C0. Then:

(i) eH s(
) = H s



for all s < � n=2.

(ii) If int( 
) n 
 is a subset of the boundary of a Lipschitz open set� , with int( 
) n 
 having non-
empty relative interior in @� , then eH s(
) = H s



if and only if s � 1=2. (A concrete example in

one dimension is where
 is an open interval with an interior point removed. An example in two
dimensions is where
 is an open disc with a slit cut out. Three-dimensional examples relevant
for computational electromagnetism are the \pseudo-Lipschitz domains" of [3, De�nition 3.1].)

(iii) If 0 < d := dim H(int( 
) n 
) < n then eH s(
) = H s



for all s < (n � d)=2 and eH s(
) $ H s



for all s > (n � d)=2.

(iv) If int( 
) n 
 is countable then eH s(
) = H s



if and only if s � n=2.

(v) If eH t (
) = H t



for some t 2 R then eH s(
) = H s



for all s < t . (Whether the assumption that
int( 
) is C0



for









Lemma 3.28. Let 
 � Rn be non-empty and open, and lets 2 R. Then H s
0(
) = H s(
) if and

only if eH � s(
) \ H � s
@
 = f 0g.

Proof. This follows from Theorem 3.3 and Lemma 3.7, which together imply that, by duality,
H s

0(
) = H s(
) if and only if ( eH � s(
) \ H � s
@
 )? ; eH � s (
) = eH � s(
), which holds if and only if

eH � s(
) \ H � s
@
 = f 0g.

Corollary 3.29. Let 
 � Rn



� For 2 � n 2 N the boundedC0 open set of [25, Lemma 4.1(vi)] satis�es s0



(vi) For s � 0, j
 : eH s(
) ! H s
0(
) is injective and has dense image; ifs 2 N0 then it is a unitary

isomorphism;

(vii) j
 : eH s(
) ! H s(
) is bijective if and only if j
 : eH � s(
) ! H � s(
) is bijective;

(viii) j
 : eH � s(
) ! H � s(
) is injective if and only if j
 : eH s(
) ! H s(
) has dense image; i.e. if
and only if H s

0(
) = H s(
) ;

(ix) The following are equivalent:

� j 
 : eH s(
) ! H s
0(
) is a unitary isomorphism;

�



 � j







H s (
) = k� kH s (Rd ) for all � 2 D(
) ;

� D(
) � (H s

 c )? ;

(x) If 
 is bounded, or
 c is bounded with non-empty interior, then the three equivalent statements
in ( ix) hold if and only if



Proposition 3.33. Suppose that
 =
S 1

j =1 
 j , where f 
 j g1
j =1 is a nested sequence of non-empty

open subsets ofRn satisfying 
 j � 
 j +1 for j = 1 ; 2; : : :. Then 
 is open and

eH s(
) =
1[

j =1

eH s(
 j ): (29)

Proof. We will show below that

D(
) =
1[

j =1

D(
 j ): (30)

Then (29) follows easily from (30) because

eH s(
) = D(
) =
1[

j =1

D(
 j ) =
1[

j =1

D(
 j ) =
1[

j =1

eH s(
 j ):

To prove (30), we �rst note that the inclusion

D (




have exactly one solution, and moreover the sequence(uVj;j )1
j =1 converges tou eH s (
) in the H s(Rn )

norm, because the sequence(Vj;j )1
j =1 is dense in eH s(
) . (Here we use Proposition3.33 and (8).)

As a concrete example, take
 � R2 to be the Koch snow
ake [20, Figure 0.2], 
 j the prefractal
set of levelj (which is a Lipschitz polygon with3�4j � 1 sides), s = 1 and a(u; v) =

R
B R

r u � r vdx the

sesquilinear form for the Laplace equation, which is continuous and coercive oneH s(BR ), where BR

is any open ball containing
 . The Vj;k spaces can be taken as nested sequences of standard �nite
element spaces de�ned on the polygonal prefractals. Then thesolutions uVj;j 2 Vj;j of the discrete
variational problems, which are easily computable with a �nite element code, converge in theH 1(R2)
norm to u eH 1 (
) , the solution to the variational problem on the right hand side in (31).

4 Boundary integral equations on fractal screens

This section contains the paper's major application, whichhas motivated much of the earlier the-
oretical analysis. The problem we consider is itself motivated by the widespread use in telecom-
munications of electromagnetic antennas that are designedas good approximations to fractal sets.
The idea of this form of antenna design, realised in many applications, is that the self-similar,
multi-scale fractal structure leads naturally to good and uniform performance over a wide range
of wavelengths, so that the antenna has e�ective wide band performance [



here is as de�ned inx1):

Find u 2 C2(R3 n �) \ W 1
2 (R3 n �) such that � u + k2u = 0 in R3 n � and

u = f 2 H 1=2(�) on � (Dirichlet) or
@u
@n

= g 2 H � 1=2(�) on � (Neumann) :

Where U+ := f x 2 R3 : x3 > 0g and U� := R3 n U+ are the upper and lower half-spaces, byu = f
on � we mean precisely that 
 � uj� = f , where 
 � are the standard trace operators
 � : H 1(U� ) =
W 1

2 (U� ) ! H 1=2(� 1 ). Similarly, by @u=@n = g on � we mean precisely that @�
n uj� = g, where

@�
n are the standard normal derivative operators@�

n : W 1
2 (U� ; �) ! H 1=2(� 1 ); here W 1

2 (U� ; �) =
f u 2 W 1

2 (U� ) : � u 2 L 2(U� )g, and for de�niteness we take the normal in the x3-direction, so that
@u=@n = @u=@x3.

These screen problems are uniquely solvable: one standard proof of this is via BIE methods
[44]. The following theorem, reformulating these screen problems as BIEs, is standard (e.g. [44]),
dating back to [51] in the case when � is C1 (the result in [51] is for k � 0, but the argument
is almost identical and slightly simpler for the case= (k) > 0). The notation in this theorem is
that [ u] := 
 + u � 
 � u 2 H 1=2

�
� H 1=2(� 1 ) and [@n u] := @+

n u � @�
n u 2 H � 1=2

�
� H � 1=2(� 1k





[25, Proposition 3.4, Remark 3.14]), the third from (34), and the second equality follows because
aD (�; � ) = adom (S�; S� ), for all � 2 eH � 1=2(�) (cf. the proof of [ 17, Theorem 2]).

We are interested in sequences of screen problems, with a sequence of screens �1; � 2; : : : converg-
ing in some sense to a limiting screen. We assume that there exists R > 0 such that the open set
� j � � R := f x 2 � 1 : jx j < R g for every j 2 N. Let a



Figure 5: The �rst �ve terms in the recursive sequence of prefractals converging to the standard
two-dimensional middle-third Cantor set (or Cantor dust).

where E = \ 1
j =0 E j is the middle-� Cantor set and E 2 is the associated two-dimensional Cantor

set (or \Cantor dust"), which has Hausdor� dimension dimH(E 2) = 2 log 2=log(1=� ) 2 (0; 2). It is
known that E 2 is s-null if and only if s � (dimH(E 2) � n)=2 (see [25, Theorem 4.5], whereE 2 is
denoted F (2)

2 log 2= log(1=� );1 ). Theorem 4.3 applied to this example shows that if1=4 < � < 1=2 then

there exists f 1 2 H 1=2(� 1 ) such that the limiting solution � 2 H � 1=2
F to the sequence of screen

problems is non-zero. On the other hand, if0 < � � 1=4 then the theorem tells us that the limiting
solution



By Proposition 3.33, V :=
S

j 2 N Vj = eH 1=2(�) : The �rst sentence of the following proposition is
immediate from (8), and the second sentence is clear.

Proposition 4.5.
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