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EXISTENCE OF 1D VECTORIAL ABSOLUTE MINIMISERS IN
L UNDER MINIMAL ASSUMPTIONS

HUSSIEN ABUGIRDA AND NIKOS KATZOURAKIS

Abstract. We prove the existence of vectorial Absolute Minimisers in the
sense of Aronsson to the supremal functional E; (u; 9= kL (;u;Du
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case of mapsu : R" I RN) together with its associated system of equations
begun in the early 2010s by the second author in a series of papers, see [K1]-[K6],
[K8]-[K12
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Theorem 1 generalises two respective results in the both the papers [BJW1] and
[K9]. On the one hand, in [BJW1] Theorem 1 was established under the extra
assumption C, = Cz = 0 which forcesL (x; ; 0) =0, forall (x; )2 R RN,
Unfortunately this requirement is incompatible with important applications of (1.1)
to problems of L' -modelling of variational Data Assimilation (4DVar) arising in
the Earth Sciences and especially in Meteorology (see [B, BS, K9]). An explicit
model of L is given by

1.7) L(x:P):= k(x) K()°+ P V(X )%

and describes the \error" in the following sense: consider the problem of nding
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spacesW, ™" ( ;RN) such that, for anys 1, u™ *u ' weaklyasm!1l in

Ws( ;RN) along a subsequence. Moreover,

(2.2) Ei(u';)= C = lim Cp:

By approximate minimiser we mean thatu™ satis es

(2.3) En(u™;) Cn < 2 m?.

Finally, for any A measurable of positive measure the following lower semi-

continuity inequality holds

1. i
(2.4) E1 (u™;A) I|rml|nf
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asm!1l along a subsequence. Now, recalling that ™ = u™ at the endpoints
f0;1g, and sinceu™ is an approximate minimiser of (2.1) oveerl;m( ;RN for
eachm 2 N, by utilising minimality, the additivity of the integral and Hblder
inequality, we get

Em U™;(0;1) Em ™ ;1) +2 ™
and hence
Em U™;(0;1) ™ Ep ™ (1) 7 42 M
E, ™ ;1) +2 ™

(2.6)

On the other hand, we have N

Ex ™01 =max Ei ™ ;(0;);
Ex ™ G1 ),
)
E: ™2 ;1
andsince ™ = Y on(;1 ), we have

E;, ™ :(0;1) max E; ™ ;(0;);E; 1:(01);
(2.7)
E: ™. ;1

Combining (2.5)-(2.7) and (2.4), we get
n

E; u';(0;1) liminf max E, mo.; ) ;E1 1:(0;1) ;
‘ 0
E: ™M@ ;1)
(2.8) n
max E; ;01 ;E;r Y05 );
o}
E. Y@ D)
Let us now denote the di erence quotient of a functionv: R ! RN as DYtv(x) :=
%[v(x +1t)  v(x)]. Then, we may write
D' (x)=D"% (0, x2(0;);
D' (x)=D% (1), x2@1 ;1)
Note now éhat
2 Ex  17i(0;) = max,
29) 0x @), x2@ ; . i
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The rest of the proof is devoted to establishing (2.10). Let us begin by recording
for later use thaé

2 max 1i(x) '@ ! 0 as ! 0
(2.11) N 0 |
T max ey @t o as !oo

Fix a genericu 2 W4t ( ;RV), x 2 [0;1] and 0<" < 1=3 and de ne

A-(x) =[x ";x+"]\ [0 1]
We claim that there exist an increasing modulus of continuity ! 2 C(0;1 ) with
I (0*) =0 such that

(2.12) E1 uA«(x) ess supL  x;u(x); Du(y) H(M):
y2A-(x)

Indeed for a.e.y 2 A-(x) we havejx
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