Department of Mathematics and Statistics

Preprint MPS-2016-05

15 April 2016

Existence of **D** vectorial Absolute

EXISTENCE OF 1D VECTORIAL ABSOLUTE MINIMISERS IN L ¹ UNDER MINIMAL ASSUMPTIONS

HUSSIEN ABUGIRDA AND NIKOS KATZOURAKIS

Abstract. We prove the existence of vectorial Absolute Minimisers in the sense of Aronsson to the supremal functional E_1 (u; θ) = kL (; u; Du

case of maps: R^n ! R^N) together with its associated system of equations begun in the early 2010s by the second author in a series of papers, see $[K1]$ - $[K6]$, [K8]-[K12

Theorem 1 generalises two respective results in the both the papers [BJW1] and $[K9]$. On the one handin $[BJW1]$ Theorem 1 was established under the extra assumption $C_2 = C_3 = 0$ which forces L $(x; ; 0) = 0$ for all $(x;) 2 R R$ ^N. Unfortunately this requirement is incompatible with important applications of (1.1) to problems o E^1 -modelling of variational Data Assimilation ϕ Var) arising in the Earth Sciences and especially in Meteorology (see [B, BS, K9]). An explicit model ofL is given by

(1.7)
$$
L(x; ; P) := k(x) K()^{2} + P V(x;)^{2};
$$

and describes the \error" in the following sense: consider the problem of nding

spaces $W^{1;qm}_{b}$ (;R^N) such that, for any s -1 , u^m \rightarrow u⁻¹ weakly asm ! 1 in $W^{1,s}$ (; R^N) along a subsequence. Moreover,

(2.2)
$$
E_1(u^1;) = C_1 = \lim_{m \downarrow 1} C_m
$$
:

By approximate minimiser we mean thatu^m satis es

(2.3)
$$
E_m(u^m;)
$$
 $C_m < 2^{m^2}$:

Finally, for any A measurable of positive measure the following lower semicontinuity inequality holds

(2.4)
$$
E_1(u^1; A)
$$
 $\lim_{m \downarrow 1} \inf$

as m ! 1 along a subsequence. Now, recalling that $v = u^m$ at the endpoints f Q 1g, and sinceu^m is an approximate minimiser of (2.1) ov $M_b^{1;m}$ (; R^N) for each m 2 N, by utilising minimality, the additivity of the integral and Holder inequality, we get

$$
E_m u^m
$$
; (Q, 1) E_m ^m; (Q, 1) + 2 m^2

and hence

(2.6)
$$
E_m u^m
$$
; (0, 1) $\frac{1}{m}$ E_m m ; (0, 1) $\frac{1}{m}$ + 2 m
 E_1 m ; (0, 1) + 2 m :

On the other hand, we have

$$
E_1 \quad m; \, ; (Q, 1) = max \quad E_1 \quad m; \, ; (Q,) ;
$$
\n
$$
E_1 \quad m; \, ; (1, 1) ;
$$
\n
$$
E_1 \quad m; \, ; (1, 1) ;
$$

and since $m_i = 1$ on (; 1), we have

$$
E_1 \quad m; \; ; (0,1) \quad \text{max} \; E_1 \quad m; \; ; (0, \;) \; ; E_1 \quad 1; (0,1) \; ;
$$
\n
$$
= m; \; (1, \; 1)
$$

$$
E_1 \quad \stackrel{m;}{\ldots} ; (1 \quad ; 1) \quad :
$$

Combining (2.5)-(2.7) and (2.4), we get E_1 u¹; (0, 1) liminf max n E_1 ^{m;} ; (Q) ; E_1 ¹ ; (Q 1) ; E_1 ^{m;} ; (1 ; 1) o max E_1 $^{-1}$; (Q, 1); E_1 $^{-1}$; ; (Q,); n E_1 ^{1;};(1;1) o : (2.8)

Let us now denote the di erence quotient of a function! R^N as $D^{1;t}v(x)$:= $\frac{1}{t}[v(x + t)$ v(x)]. Then, we may write

D ¹ ; (x) = D 1; ¹ (0), x 2 (0;); D ¹ ; (x) = D 1; ¹ (1), x 2 (1 ; 1),

Note now that 8

(2.9)
$$
\sum_{y=1}^{6} E_1
$$
 $\sum_{y=1}^{1}$; (0,) = max 1 (1), x 2 (1 ; $\sum_{y=1}^{x} E_1$

The rest of the proof is devoted to establishing (2.10). Let us begin by recording for later use that

(2.11)
\n
$$
\begin{array}{ccccccccc}\n\bullet & \text{max} & 1: (x) & 1 (0) & 1 & 0, \text{ as } 1 & 0, \\
\bullet & \text{max} & 1: (x) & 1 (1) & 1 & 0, \text{ as } 1 & 0\n\end{array}
$$

Fix a genericu 2 W^{1;1} (; R^N), x 2 [Q1] and $Ox'' < 1=3$ and de ne

$$
A \cdot (x) := [x \quad "; x + "] \setminus [0 1]
$$

We claim that there exist an increasing modulus of continuity $C(Q, 1)$ with $! (0) = 0$ such that

(2.12)
$$
E_1
$$
 u; $A_*(x)$ ess sup. x ; $u(x)$; $Du(y)$! ("):
\n_{y2A+(x)}

Indeed for a.e.y $2 A_r(x)$ we have x

References

- [A1] G. Aronsson, Minimization problems for the functional sup_x F (x; f (x); f ⁰(x)), Arkiv for Mat. 6 (1965), 33 - 53.
- [A2] G. Aronsson, Minimization problems for the functional sup_x F (x; f (x); f ⁰(x)) II, Arkiv for Mat. 6 (1966), 409 - 431.
- [A3] G. Aronsson, Extension of functions satisfying Lipschitz conditions , Arkiv for Mat. 6 (1967), 551 - 561.
- [A4] G. Aronsson, On the partial di erential equation u_x^2 $\frac{2}{x}$ u_{xx} $\frac{10}{x}$ Q