Department of Mathematics and Statistics

Preprint MPS-2016-05

15 April 2016

Existence of Dvectorial Absolute

EXISTENCE OF 1D VECTORIAL ABSOLUTE MINIMISERS IN L^1 UNDER MINIMAL ASSUMPTIONS

HUSSIEN ABUGIRDA AND NIKOS KATZOURAKIS

Abstract. We prove the existence of vectorial Absolute Minimisers in the sense of Aronsson to the supremal functional E_1 (u; ⁰) = kL (;u; Du

case of maps: $R^n ! R^N$) together with its associated system of equations begun in the early 2010s by the second author in a series of papers, see [K1]-[K6], [K8]-[K12]

Theorem 1 generalises two respective results in the both the papers [BJW1] and [K9]. On the one handin [BJW1] Theorem 1 was established under the extra assumption $C_2 = C_3 = 0$ which forces L (x; ; 0) = Q for all (x;) 2 R R^N. Unfortunately this requirement is incompatible with important applications of (1.1) to problems ot L^1 -modelling of variational Data Assimilation4QVar) arising in the Earth Sciences and especially in Meteorology (see [B, BS, K9]). An explicit model of L is given by

3

(1.7)
$$L(x; ; P) := k(x) K()^{2} + P V(x;)^{2};$$

and describes the \error" in the following sense: consider the problem of nding

 $spacesW^{1;qm}_b(\ ;R^N\,)$ such that, for any $s=1,\ u^m=^*u^{-1}$ weakly asm $!\ 1$ in $W^{1;s}(\ ;R^N\,)$ along a subsequence. Moreover,

(2.2)
$$E_1(u^1;) = C_1 = \lim_{m \ge 1} C_m:$$

By approximate minimiser we mean that u^m satis es

(2.3)
$$E_m(u^m;) C_m < 2^{m^2}$$
:

Finally, for any A measurable of positive measure the following lower semicontinuity inequality holds

(2.4)
$$E_1(u^1;A) \liminf_{m \ge 1}$$

as $m \mid 1$ along a subsequence. Now, recalling that $= u^m$ at the endpoints f Q, 1g, and since u^m is an approximate minimiser of (2.1) ov $\Delta f_b^{1,m}$ (; \mathbb{R}^N) for each $m \ge N$, by utilising minimality, the additivity of the integral and Holder inequality, we get

$$E_m u^m$$
; (Q, 1) $E_m {}^{m;}$; (Q, 1) + 2 ${}^{m^2}$

and hence

(2.6)
$$\begin{array}{c} \mathsf{E}_{\mathsf{m}} \; \mathsf{u}^{\mathsf{m}}; (0,1) \stackrel{1}{\overset{\mathsf{m}}{\mathsf{m}}} \quad \mathsf{E}_{\mathsf{m}} \quad \stackrel{\mathsf{m};}{\overset{\mathsf{m};}{\mathsf{m}}}; (0,1) \stackrel{1}{\overset{\mathsf{m}}{\mathsf{m}}} + 2 \stackrel{\mathsf{m}}{\mathsf{m}} \\ \mathsf{E}_{1} \quad \stackrel{\mathsf{m};}{\overset{\mathsf{m};}{\mathsf{m}}}; (0,1) + 2 \stackrel{\mathsf{m};}{\mathsf{m}}; \end{array}$$

On the other hand, we have

$$\begin{array}{rcl} & & & & & & \\ \mathsf{E}_1 & & ^{\mathsf{m};} & ; (\mathsf{Q}, 1) & = & & & \\ & & & \mathsf{E}_1 & & ^{\mathsf{m};} & ; (\mathsf{Q}, \) & ; \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

and since m; = 1 on (; 1), we have

(2.7)
$$E_{1} \stackrel{m;}{=} ; (Q, 1) \max E_{1} \stackrel{m;}{=} ; (Q,); E_{1} \stackrel{1}{=} ; (Q, 1); \\E_{1} \stackrel{m;}{=} ; (1 ; 1) :$$

Combining (2.5)-(2.7) and (2.4), we get

$$E_1 \quad u^1$$
; (Q, 1) $\liminf_{m!1} \max_{m} E_1 \quad m;$; (Q,); $E_1 \quad 1;$ (Q, 1)
(2.8) n
 $\max_{m} E_1 \quad 1;$ (Q, 1); $E_1 \quad 1;$; (Q,);
 $E_1 \quad 1;$; (Q, 1); $E_1 \quad 1;$; (Q,);
 $E_1 \quad 1;$; (1, ; 1) n :

Let us now denote the di erence quotient of a function \mathbb{R}^N as $D^{1,t}v(x) :=$ $\frac{1}{t}[v(x + t) \quad v(x)]$. Then, we may write

$$D^{1}; (x) = D^{1}; {}^{1}(0), x 2 (0,);$$

$$D^{1}; (x) = D^{1}; {}^{1}(1), x 2 (1 ; 1),$$

Note now that

(2.9)

$$\epsilon = E_1 + \frac{1}{3}; (0, 1) = \max_{\substack{0 \in X \\ 0 \in X}} 1 = 1; x = 1$$

;

The rest of the proof is devoted to establishing (2.10). Let us begin by recording for later use that

(2.11)
$$\begin{array}{c} \mathbf{x} \\ \mathbf{$$

Fix a genericu 2 W $^{1;1}$ ($\ ;R^{N}$), x 2 [Q 1] and O< " < $\$ 1=3 and de ne

$$A_{"}(x) := [x "; x + "] \setminus [Q 1]:$$

We claim that there exist an increasing modulus of continulary C(Q,1) with ! (Ot) = 0 such that

(2.12)
$$E_1 u; A_{"}(x) \underset{y \ge A_{-}(x)}{\text{ess supL}} x; u(x); Du(y) ! ("):$$

Indeed for a.e.y 2 $A_{i}(x)$ we have jx

References

- [A1] G. Aronsson, Minimization problems for the functional $\sup_x F(x; f(x); f^0(x))$, Arkiv for Mat. 6 (1965), 33 53.
- [A2] G. Aronsson, Minimization problems for the functional $\sup_x F(x; f(x); f^0(x))$ II, Arkiv for Mat. 6 (1966), 409 431.
- [A3] G. Aronsson, Extension of functions satisfying Lipschitz conditions , Arkiv fer Mat. 6 (1967), 551 561.
- [A4] G. Aronsson, On the partial di erential equation $u_x^2 u_{xx} #Q$