

Department of Mathematics and Statistics

Preprint MPS -2016- 0 4

15 April 2016

Solutions of vectorial Hamilton-Jacobi equations are rankone Absolute Minimisers in L ∞

by

Nikos Katzourakis

SOLUTIONS OF VECTORIAL HAMILTON-JACOBI EQUATIONS ARE RANK-ONE ABSOLUTE MINIMISERS IN $L¹$

NIKOS KATZOURAKIS

Abstract. Given the supremal functional E_1 (u;

Rⁿ, the respective PDE is the 1 - Laplace equation

(1.3)
$$
1 \, u := Du \, Du : D^2 u = \sum_{i:j=1}^{X^2} D_i u D_j u D_{ij}^2 u = 0:
$$

Despite the importance for applications and the deep analytical interest of the area, the vectorial case ofN 2 remained largely unexplored until the early 2010s. In particular, not even the correct form of the respective PDE systems associated to L^1 variational problem was known. A notable exception is the early vectorial con-tributions [[BJW1,](#page-10-0) [BJW2\]](#page-11-0) wherein (among other deep results) L¹ versions of lower semi-continuity and quasiconvexity were introduced and studied and the existence of Absolute Minimisers was established in some generality with depending onu itself but for min f n; N g

di erent sets of variations. In $K2$ we proved the following variational characterisation in the class of classical solutions. AC^2 map u : $\qquad \qquad R^n$! $\qquad R^N$ is a solution to

(1.5)
$$
Du Du : D^2u = 0
$$

if and only if it is a Rank-One Absolute Minimiser on , namely when for all D b , all scalar functions g 2 $C_0^1(D)$ vanishing on @Dand all directions -2 R^N, u is a minimiser on D with respect to variations of the form $u + g$ (Figure 1):

Further, if rk(D u) const., u is a solution to

(1.7)
$$
jDuj^2[Duj^2 \t u = 0
$$

if and only if u() has 1 -Minimal Area , namely when for all D b , all scalar functions h 2 $C^1(\overline{D})$ (not vanishing on @D and all vector elds $-$ 2 $C^1(D; R^N)$ which are normal to u(), u is a minimiser on D with respect to normal free variations of the form $u + h$ (Figure 2):

Figure 2.

We called a map 1 -Minimal with respect to functional $kD()k_{L^+ (.)}$ when it is a Rank-One Absolute Minimiser on and u() has 1 -Minimal Area.

Perhaps the greatest di culty associated to (1.1) and (1.4)

In this paper we consider the obvious generalisation of the rank-one minimality notion of (1.6) adapted to the functional (1.1) . To this end, we identify a large class of rank-one Absolute Minimisers: for anyc 0, every solution u : R^n ! R^N to the vectorial Hamilton-Jacobi equation

$$
(1.9) \t\t H x; Du(x) = c; x 2 ;
$$

actually is a rank-one absolute minimiser. Namely, for any 0 b, any 2 $W_0^{1,1}$ ($\overline{0}$ and any 2 R^N, we have

$$
\text{ess}\underset{x_2}{\text{supH}}\quad x;\,\text{Du}(x)\qquad\underset{x_2}{\text{ess}}\underset{0}{\text{supH}}\quad x;\,\text{Du}(x)+\qquad \text{D}\ \ (x)\ :
$$

For the above implication to be true we need the solutions to be inC¹(; R^N) and not just in $\mathsf{W}_{\mathsf{loc}}^{1;1}$ (; R^N). This is not a technical di culty: it is well known even in the scalar case that if we allow only for 1 non-di erentiability point, strong solutions of the Eikonal equation jDuj = 1 are not absolutely minimising for the L^1 norm of the gradient (e.g. the cone functionx $7!$ j xj). However, due to regularity results which available in the scalar case, it su ces to assume everywhere di erentiability (see [CEG, [CC](#page-11-1)]).

Our only hypothesis imposed onH is that for any x 2 the partial function H(x;): R^{N-n} ! R is rank-one level-convex This means that for any t 0, the sublevel sets $H(x;)$ t are rank-one convex sets ir R^{N-n} . A set C R^{N-n} is called rank-one convex when for any matrice A ; B 2 C with $rk(A \ B)$ 1, the convex combination $A + (1)$ B is in C for any 0 1. An equivalent way to phrase the rank-one level-convexity of $H(x;)$ is via the inequality

H x; A + (1)B max H (x; A); H (x; B) x ;

Theorem 1. Let R^n be an open setn; N 2 N and H : R^{N-n} ! [0;1) a continuous function, such that for all $x 2$, $P 7!$ H $(x; P)$ is rank-one levelconvex, that is

 $H(x;)$ t is a rank-one convex in R^{N-n} , for all t 0; x 2 :

Let u 2 C^1 (; R^N) be a solution to the vectorial Hamilton-Jacobi PDE

$$
H(j, Du) = c \text{ on } j
$$

for some c 0. Then, u is a rank-one Absolute Minimiser of the functional

$$
E_1
$$
 (u; 0) = ess supH x; Du(x) ; 0 b ; u 2 W_{loc}^{1;1} (; R^N):

In addition, the following marginally stronger result holds true: for any 0 b, any 2 $W_0^{1,1}$ (\degree) and any 2 R^N, we have

$$
E_1 \ (u; \ {}^0) \qquad \inf_{B2B \ (\ ; \ {}^0)} E_1 \ u + \ ; \ B
$$

where B(; 9

We illustrate the idea by assuming rst in addition that $2 \text{ W}_u^{1;1}$ (${}^0; \mathsf{R}^{\mathsf{N}}$) \ C^1 (β , R^N). In this case, the point x is a critical point of (u) and we have D (u) $(x) = 0$. Hence,

D(u)(x) = [] > D(u)(x) + [] ? D(u)(x) = D (u) (x) + D [] ? (u) (x) = 0

because $\left[\begin{matrix} \end{matrix}\right]^2$ $\left[\begin{matrix} \end{matrix}\right]^2$ u on $\left[\begin{matrix} 0 & 0 \\ 0 & \end{matrix}\right]$ Thus,

E₁ (u;
$$
^0
$$
) = c = H(x; Du(x))
= H x; D(u)(x) + []² Du(x)

and hence

(2.2)
\n
$$
E_1 (u; 0) = H x; D() (x) + []^? D (x)
$$
\n
$$
= H(x; D (x))
$$
\n
$$
= H(x; D (x))
$$
\n
$$
= H(x; D (y))
$$
\n
$$
= E_1 ; B (x)
$$

for any B (x) B $($ u); 0 , whence the conclusion ensues.

Now we return to the general case of $2 \, W_u^{1,1}$ ($\,^0$, R^N). We extend by u on n ⁰ and consider the sets

(2.3)
$$
k := \begin{cases} 8 \\ k = 2 \\ 0 \end{cases} \text{ x 2 } 0 : dist(x; \text{ @ } 9 > \frac{d_0}{k} \text{ ; } k 2 \text{ N};
$$

$$
k = 0;
$$

where $d_0 > 0$ is a constant small enough so that $_1 6$; We set

(2.4) $V_k := k n k_1; k 2 N$

and consider a partition of unity ($_k$) $_{k=1}^1$ C_c^1 (9 over

 0 so that 0 .398 w 0 0 m 22.295 0 l S Q BT. $/$.398 w 0 0 m 22.295 0 I S Q BT /
.

=

|
|
|

!

j j = 1, we have
\nk
\nk
\nk
\n
$$
k
$$

\n k
\n k

whilst, for $l = 1$ we similarly have

(2.8)
$$
k
$$
 $k_{C(\overline{V_1})}$ $2 \max_{k=1,2}$ ${}^{n=k}$ $C(\overline{v_1})$

By the standard properties of molliers, we have that the function

(2.9)
$$
\qquad \qquad \vdots (t) := \sup_{0 < t} \qquad \qquad \text{or} \qquad \qquad c \, (\overline{}\,0) : 0 < t < d \, \, 0;
$$

is an increasing continuous modulus of continuity with ! $(0^+) = 0$. By (2.7) (2.7) - (2.9) , we have that $\overline{1}$

(2.10)
$$
k^{-1}
$$
 $k_{C(\overline{V_1})}$ $\begin{array}{c} 3! \\ 2! \ \end{array} \begin{array}{c} 1 \\ 1 \end{array}$; $1 \ \ 2; \\ 1 = 1: \ \end{array}$

Since the $C¹$ regularity of $\overline{}$ is obvious (becauseu by assumption is such and $\left[\begin{array}{cc} \end{array}\right]^2$ $\left[\begin{array}{cc} \end{array}\right]^2$ u), the claim has been established.

Note now that since $u 2 W_0^{1,1}$ (\degree , R^N), the set B (

our continuity assumption and the $W^{1,1}$ regularity of imply that there exists a positive increasing modulus of continuity! $_1$ with $!$ $_1(0^+)$ = 0 such that on the ball $B = 2(x_0)$ we have

$$
H(.D") = H ; \qquad \begin{array}{c} \n\mathsf{X} \\ \n\mathsf{K} \\ \n\mathsf{X} \\ \n\mathsf{X} \\ \n\mathsf{X} \\ \n\mathsf{K} \\ \n\mathsf{X} \\ \n\math
$$

By further restricting $" < = 2$, we may arrange

(2.14)
$$
\begin{array}{c|c}\n & \text{B}_{r}(x) & \text{B}(x_{0}) \\
& x_{2B_{z_{2}}(x)}\n\end{array}
$$

and by $(2.4)-(2.5)$ $(2.4)-(2.5)$ $(2.4)-(2.5)$, there exists K () 2 N such that

(2.15)
$$
B(x_0) \qquad \qquad \frac{1}{V_k:}
$$

This implies that for any $x 2 B (x_0)$,

(2.16)
$$
\frac{1}{2} k(x) = \frac{k(x)+1}{2} k(x) = 1
$$

forming a convex combination. We now recall for immediate use right below the following Jensen-like inequality for level-convex functions (see e.[g. \[BJW](#page-10-0)1, [BJW](#page-11-0)2]): for any probability measure on an open setU \mathbb{R}^n and any -measurable function f : U R^n ! [0; 1), we have Z

$$
\begin{array}{cccc}\n(2.17) & f(x) d(x) & \text{ess sup } f(x) ; \\
& \bigcup\limits_{U} & x2U\n\end{array}
$$

when : R^n ! R is any continuous level-convex function. Further, by our rankone level-convexity assumption or H and if is as above, for anyx 2 and 2 R^N with $j = 1$, the function

(2.18)
$$
(p) := H x; \quad p + []^? D (x) ; \quad p 2 R^n;
$$

is level-convex. Indeed, giverp; $q2 \, R^n$ and t 0 with (p); (q) t, we set

$$
\begin{pmatrix}\n P := p + []^2 D (x);\n\end{pmatrix}
$$
\nQ := q + []^2 D (x):

Then, P $Q =$ (p q) and hence rk(P Q) 1. Moreover, $H(x; P) = (p)$ t and $H(x; Q) = (q)$ t which gives

$$
p + (1)
$$
 $q = H x$; $P + (1)$ Q t

for any $2 [0; 1]$, as desired.

Now, by using [\(2.4](#page-6-0))-[\(2.5](#page-6-1)), [\(2.14](#page-8-0))-[\(2.16](#page-8-1)) and the level-convexity of the function of ([2.18\),](#page-8-2) for any $x 2 B_{-2}(x_0)$ we have the estimate

$$
A(x) = H \, \mathbb{Q}_X; \quad {}^{k}K(x) + 1 \quad # \quad 1
$$
\n
$$
A(x) = H \, \mathbb{Q}_X; \quad {}^{k=1}K(x) \quad D(1) \quad {}^{k=k}K(x) + [1]^2 D (x)A
$$
\n
$$
= \mathbb{Q} \, K(x) + 1 \quad 1
$$
\n
$$
= \mathbb{Q} \, K(x) + 1 \quad 1
$$
\n
$$
= \max_{k=1 \text{ min: } K \, (1) + 1} D(1) \quad {}^{k=k}K(x)
$$
\n
$$
= \max_{k=1 \text{ min: } K \, (1) + 1} D(1) (y) \quad {}^{k=k}K(x) = 1
$$

Since for anyx and "; k , the map

$$
:= \nightharpoonup^{n=k} (jx \quad j \quad) \mathsf{L}^n
$$

is a probability measure on the ball $B_{r_{=k}}(x)$ which is absolutely continuous with respect to the Lebesgue measureⁿ, in view of (2.17) , (2.19) gives !

$$
A(x) \qquad \max_{k=1;\dots;K} \text{ess sup } D() (y)
$$
\n
$$
= \max_{k=1;\dots;K} \text{ess sup H } x; \qquad D() (y) + []^{?} D (x)
$$
\n
$$
= \max_{k=1;\dots;K} \text{ess sup H } x; \qquad D() (y) + []^{?} D (x)
$$
\n
$$
\text{ess sup H } x; \qquad D() (y) + []^{?} D (x) :
$$

By the continuity of H and Du, there is a positive increasing modulus of continuity $!_{2}$ with $!_{2}(0^{+})=0$ such that 8

$$
= H(x; P) H(y; Q) 1_2 jx yj + jP Qj ;
$$

: Du(x) Du(y) 1_2 jx yj ;

for all x; y 2 B (x₀) and jPj; jQj k D k_{L¹(\circ) + 1. By using that [][?]} [] $^?$ u on $\,^0$, [\(2.20](#page-9-1)) and the above give

$$
A(x) \quad \underset{y2B^{2}}{\text{ess sup}} H \quad x; \quad [\]^{>} D \quad (y) + [\]^{?} D \quad (x)
$$
\n
$$
\underset{y2B^{2}}{\text{ess sup }} H \quad y; \quad [\]^{>} B^{88(0f)]TJ/F119.9626 \text{ Tf 89.385 0 Td} \quad [(H)]TJ/F89.9626 \text{ Tf 11.961 0 Td} \quad [(and)-288(D)]TJ/F119.9626 \text{ Tf 26.532 0 Td} \quad [(H)]^{2} J/F19.9626 \text{ Tf 11.961 0 Td} \quad [(and)-288(D)]TJ/F119.9626 \text{ Tf 26.532 0 Td} \quad [(H)]^{2} J/F10.9626 \text{ Tf 11.961 0 Td} \quad [(and)-288(D)]TJ/F119.9626 \text{ Tf 26.532 0 Td} \quad [(H)]^{2} J/F10.9626 \text{ Tf 11.961 0 Td} \quad [(and)-288(D)]TJ/F119.9626 \text{ Tf 26.532 0 Td} \quad [(H)]^{2} J/F119.9626 \text{ Tf 11.961 0 Td} \quad [(and)-288(D)]TJ/F119.9626 \text{ Tf 26.532 0 Td} \quad [(H)]^{2} J/F119.9626 \text{ Tf 11.961 0 Td} \quad [(and)-288(D)]^{2} J/F119.9626 \text{ Tf 26.532 0 Td} \quad [(H)]^{2} J/F10.9626 \text{ Tf 11.961 0 Td} \quad [(and)-288(D)]^{2} J/F119.9626 \text{ Tf 26.532 0 Td} \quad [(H)]^{2} J/F119.9626 \text{ Tf 11.961 0 Td} \quad [(and)-288(D)]^{2} J/F119.9626 \text{ Tf 26.532 0 Td} \quad [(H)]^{2} J/F119.9626 \text{ Tf 11.961 0 Td} \quad [(and)-288(D)]^{2} J/F11
$$

By [\(2.14\)](#page-8-0), [\(2.21\)](#page-9-2) gives

```
A(x) ess sup
        y2 B" (x )
               H y; D (y) + sup
                                \sup_{y \geq B^+(x)} ! _2 jx yj + Du(y) Du(x)
        ess sup
       ess supH y; D (y) + ! 2 " + ! 2("); j
```
VECTORIAL SOLUTIONS OF H-J PDE ARE RANK-ONE ABSOLUTE MINIMISERS 11

- BJW2. E. N. Barron, R. Jensen, C. Wang, Lower Semicontinuity of L^1 Functionals Ann. I. H. Poincare AN 18, 4 (2001) 495 - 517.
- CC. L.A. Caarelli, M.G. Crandall, Distance Functions and Almost Global Solutions of Eikonal Equations , Communications in PDE 03, 35, 391-414 (2010).
- C. M. G. Crandall, A visit with the 1 -Laplacian , in Calculus of Variations and Non-Linear Partial Di erential Equations , Springer Lecture notes in Mathematics 1927, CIME, Cetraro Italy 2005.
- CEG. M. G. Crandall, L. C. Evans, R. Gariepy, Optimal Lipschitz extensions and the innity Laplacian , Calc. Var. 13, 123 - 139 (2001).
- CIL. M. G. Crandall, H. Ishii, P.-L. Lions, User's Guide to Viscosity Solutions of 2nd Order Partial Di erential Equations , Bulletin of the AMS 27, 1-67 (1992).
- D. B. Dacorogna, Direct Methods in the Calculus of Variations , 2nd Edition, Volume 78, Applied Mathematical Sciences, Springer, 2008.
- DM. B. Dacorogna, P. Marcellini, Implicit Partial Dierential Equations , Progress in Nonlinear Di erential Equations and Their Applications, Birkhauser, 1999.
- E. L.C. Evans, Partial Dierential Equations , AMS, Graduate Studies in Mathematics Vol. 19, 1998.
- K1. N. Katzourakis, L¹ -Variational Problems for Maps and the Aronsson PDE system, J. Differential Equations, Volume 253, Issue 7 (2012), 2123 - 2139.
- K2. N. Katzourakis, 1 -Minimal Submanifolds , Proceedings of the AMS, 142 (2014) 2797-2811.
- K3. N. Katzourakis, On the Structure of 1 -Harmonic Maps , Communications in PDE, Volume 39, Issue 11 (2014), 2091 - 2124.
- K4. N. Katzourakis, Explicit 2D 1