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NIKOS KATZOURAKIS

Abstract. Given the supremal functional E1 (u;
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Rn , the respective PDE is the1 -Laplace equation

(1.3) � 1 u := D u 
 Du : D2u =
nX

i;j =1

Di u Dj u D2
ij u = 0 :

Despite the importance for applications and the deep analytical interest of the area,
the vectorial case ofN � 2 remained largely unexplored until the early 2010s. In
particular, not even the correct form of the respective PDE systems associated to
L 1 variational problem was known. A notable exception is the early vectorial con-
tributions [BJW1, BJW2] wherein (among other deep results) L 1 versions of lower
semi-continuity and quasiconvexity were introduced and studied and the existence
of Absolute Minimisers was established in some generality withH depending onu
itself but for min f n; N g
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di�erent sets of variations. In [K2] we proved the following variational characteri-
sation in the class of classical solutions. AC2 map u : 
 � Rn �! RN is a solution
to

(1.5) Du 
 Du : D2u = 0

if and only if it is a Rank-One Absolute Minimiser on 
, namely when for all D b 
,
all scalar functions g 2 C1

0 (D ) vanishing on @Dand all directions � 2 RN , u is a
minimiser on D with respect to variations of the form u + �g (Figure 1):

(1.6) kDukL 1 (D ) �

 Du + � 
 Dg




L 1 (D ) :

Figure 1.

Further, if rk(D u) � const., u is a solution to

(1.7) jDuj2[Du]? � u = 0

if and only if u(
) has 1 -Minimal Area , namely when for all D b 
, all scalar
functions h 2 C1(D ) (not vanishing on @D) and all vector �elds � 2 C1(D; RN )
which are normal to u(
), u is a minimiser on D with respect to normal free
variations of the form u + h� (Figure 2):

(1.8) kDukL 1 (D ) �

 Du + D( h� )




L 1 (D ) :

Figure 2.

We called a map 1 -Minimal with respect to functional kD(�)kL 1 (
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In this paper we consider the obvious generalisation of the rank-one minimality
notion of (1.6) adapted to the functional (1.1). To this end, we identify a large class
of rank-one Absolute Minimisers: for anyc � 0, every solution u : 
 � Rn �! RN

to the vectorial Hamilton-Jacobi equation

(1.9) H
�
x; Du(x)

�
= c; x 2 
 ;

actually is a rank-one absolute minimiser. Namely, for any 
0 b 
, any � 2
W 1;1

0 (
 0) and any � 2 RN , we have

ess sup
x 2 
 0

H
�
x; Du(x)

�
� ess sup

x 2 
 0
H

�
x; Du(x) + � 
 D� (x)

�
:

For the above implication to be true we need the solutions to be inC1(
 ; RN ) and
not just in W 1;1

loc (
 ; RN ). This is not a technical di�culty: it is well known even in
the scalar case that if we allow only for 1 non-di�erentiability point, strong solutions
of the Eikonal equation jDuj = 1 are not absolutely minimising for the L 1 norm
of the gradient (e.g. the cone functionx 7! j xj). However, due to regularity results
which available in the scalar case, it su�ces to assume everywhere di�erentiability
(see [CEG, CC]).

Our only hypothesis imposed onH is that for any x 2 
 the partial function
H (x; �) : RN � n �! R is rank-one level-convex. This means that for any t � 0, the
sublevel sets

�
H (x; �) � t

	
are rank-one convex sets inRN � n . A set C � RN � n is

called rank-one convex when for any matricesA; B 2 C with rk( A � B ) � 1, the
convex combination �A + (1 � � )B is in C for any 0 � � � 1. An equivalent way
to phrase the rank-one level-convexity ofH (x; �) is via the inequality

H
�

x; �A + (1 � � )B
�

� max
�

H (x; A ); H (x; B )
	

x ;
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Theorem 1. Let 
 � Rn be an open set,n; N 2 N and H : 
 � RN � n �! [0; 1 )
a continuous function, such that for all x 2 
 , P 7�! H (x; P ) is rank-one level-
convex, that is

�
H (x; �) � t

	
is a rank-one convex inRN � n , for all t � 0; x 2 
 :

Let u 2 C1(
 ; RN ) be a solution to the vectorial Hamilton-Jacobi PDE

H (�; Du) = c on 
 ;

for some c � 0. Then, u is a rank-one Absolute Minimiser of the functional

E1 (u; 
 0) = ess sup
x 2 
 0

H
�
x; Du(x)

�
; 
 0 b 
 ; u 2 W 1;1

loc (
 ; RN ):

In addition, the following marginally stronger result holds true: for any 
 0 b 
 ,
any � 2 W 1;1

0 (
 0) and any � 2 RN , we have

E1 (u; 
 0) � inf
B2B ( �; 
 0)

E1
�
u + ��; B

�

whereB(�; 
 0)
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We illustrate the idea by assuming �rst in addition that  2 W 1;1
u (
 0; RN ) \

C1(
 0; RN ). In this case, the point x is a critical point of � � ( � u) and we have
D

�
� � ( � u)

�
(x) = 0. Hence,

D( � u)(x) = [ � ]> D( � u)(x) + [ � ]? D( � u)(x)

= � 
 D
�
� � ( � u)

�
(x) + D

�
[� ]? ( � u)

�
(x)

= 0

because [� ]?  � [� ]? u on 
 0. Thus,

E1 (u; 
 0) = c = H (x; Du(x))

= H
�

x; � 
 D(� � u)(x) + [ � ]? Du(x)
�

and hence

E1 (u; 
 0) = H
�

x; � 
 D(� �  )(x) + [ � ]? D (x)
�

= H (x; D (x))

� ess sup
y2 B� (x )

H (y; D (y))

= E1
�
 ; B� (x)

�

(2.2)

for any B� (x) � B
�
� � ( � u); 
 0

�
, whence the conclusion ensues.

Now we return to the general case of 2 W 1;1
u (
 0; RN ). We extend  by u on


 n 
 0 and consider the sets

(2.3) 
 k :=

8
><

>:

�
x 2 
 0 : dist(x; @
 0) >

d0

k

�
; k 2 N;

; ; k = 0 ;

where d0 > 0 is a constant small enough so that 
1 6= ; . We set

(2.4) Vk := 
 k n 
 k � 1; k 2 N

and consider a partition of unity ( � k )1
k=1 � C1

c (
 0) over 
 0 so that. W0
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j� j = 1, we have

k " �  kC (Vl ) = sup
Vl

�
�
�
�
�
� �

 
1X

k=1

� k
�
 � � "=k ) �  

1X

k=1

� k

! �
�
�
�
�

� sup
Vl

1X

k=1

� k
�
�  � � "=k �  

�
�

= sup
Vl

l +1X

k= l � 1

� k
�
�  � � "=k �  

�
�

� 3 max
k= l � 1;l;l +1


  � � "=k �  




C (
 0) ;

(2.7)

whilst, for l = 1 we similarly have

k " �  kC (V1 ) � 2 max
k=1 ;2


  � � "=k �  




C (
 0) :(2.8)

By the standard properties of molli�ers, we have that the function

(2.9) ! (t) := sup
0<�<t


  � � � �  




C (
 0) ; 0 < t < d 0;

is an increasing continuous modulus of continuity with ! (0+ ) = 0. By (2.7)-(2.9),
we have that

(2.10) k " �  kC (Vl ) �

(
3 !

� "
l � 1

�
; l � 2;

2 ! (" ); l = 1 :

Since the C1 regularity of  " is obvious (becauseu by assumption is such and
[� ]?  � [� ]? u), the claim has been established.

Note now that since  � u 2 W 1;1
0 (
 0; RN ), the set B

�
� � (
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our continuity assumption and the W 1;1 regularity of  imply that there exists a
positive increasing modulus of continuity ! 1 with ! 1(0+ ) = 0 such that on the ball
B�= 2(x0) we have

H (�; D " ) = H

 

� ; � 


"
1X

k=1

� k

� �
D(� �  )

�
� � "=k

�

+
1X

k=1

D� k
�
(� �  ) � � "=k �

#

+ [ � ]? D 

!

� H

 

� ; � 


"
1X

k=1

� k
�
D(� �  ) � � "=k �

#

+ [ � ]? D 

!

+ ! 1

 �
�
�
�
�

1X

k=1

D� k
�
(� �  ) � � "=k )

�
�
�
�
�

!

=: A + B:

(2.13)

By further restricting " < �= 2, we may arrange

(2.14)
[

x 2 B�= 2 (x )

B" (x) � B� (x0)

and by (2.4)-(2.5), there existsK (� ) 2 N such that

(2.15) B� (x0) �
[

k=1 ;:::;K ( � )

Vk :

This implies that for any x 2 B� (x0),

(2.16)
1X

1

� k (x) =
K ( � )+1X

1

� k (x) = 1

forming a convex combination. We now recall for immediate use right below the
following Jensen-like inequality for level-convex functions (see e.g. [BJW1, BJW2]):
for any probability measure � on an open setU � Rn and any � -measurable function
f : U � Rn �! [0; 1 ), we have

(2.17) �
� Z

U
f (x) d� (x)

�
� � � ess sup

x 2 U
�

�
f (x)

�
;

when � : Rn �! R is any continuous level-convex function. Further, by our rank-
one level-convexity assumption onH and if  is as above, for anyx 2 
 and � 2 RN

with j� j = 1, the function

(2.18) 	( p) := H
�

x ; � 
 p + [ � ]? D (x)
�

; p 2 Rn ;

is level-convex. Indeed, givenp; q 2 Rn and t � 0 with 	( p); 	( q) � t, we set
(

P := � 
 p + [ � ]? D (x);

Q := � 
 q + [ � ]? D (x):

Then, P � Q = � 
 (p� q) and hence rk(P � Q) � 1. Moreover,H (x; P ) = 	( p) � t
and H (x; Q) = 	( q) � t which gives

	
�
�p + (1 � � )q

�
= H

�
x; �P + (1 � � )Q

�
� t
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for any � 2 [0; 1], as desired.
Now, by using (2.4)-(2.5), (2.14)-(2.16) and the level-convexity of the function

	 of (2.18), for any x 2 B�= 2(x0) we have the estimate

A(x) = H

0

@x ; � 


" K ( � )+1X

k=1

� k (x)
� �

D(� �  )
�

� � "=k
�

(x)

#

+ [ � ]? D (x)

1

A

= 	

0

@
K ( � )+1X

k=1

� k (x)
� �

D(� �  )
�

� � "=k
�

(x)

1

A

� max
k=1 ;:::;K ( � )+1

	
� ��

D(� �  )
�

� � "=k �
(x)

�

= max
k=1 ;:::;K ( � )+1

	

 Z

B"=k (x )
D(� �  )(y) � "=k (jx � yj) dy

!

:

(2.19)

Since for anyx and "; k , the map

� := � "=k (jx � �j ) L n

is a probability measure on the ball B"=k (x) which is absolutely continuous with
respect to the Lebesgue measureL n , in view of (2.17), (2.19) gives

A(x) � max
k=1 ;:::;K ( � )+1

 

ess sup
y2 B"=k (x )

	
�

D(� �  )(y)
�

!

= max
k=1 ;:::;K ( � )+1

 

ess sup
y2 B"=k (x )

H
�

x ; � 
 D(� �  )(y) + [ � ]? D (x)
�

!

� ess sup
y2 B" (x )

H
�

x ; � 
 D(� �  )(y) + [ � ]? D (x)
�

:

(2.20)

By the continuity of H and Du, there is a positive increasing modulus of continuity
! 2 with ! 2(0+ ) = 0 such that

8
<

:

�
�
�H (x; P ) � H (y; Q)

�
�
� � ! 2

�
jx � yj + jP � Qj

�
;

�
�Du(x) � Du(y)

�
� � ! 2

�
jx � yj

�
;

for all x; y 2 B� (x0) and jP j; jQj � k D kL 1 (
 0) + 1. By using that [ � ]?  � [� ]? u
on 
 0, (2.20) and the above give

A(x) � ess sup
y2 B" (x )

H
�

x; [� ]> D (y) + [ � ]? D (x)
�

� ess sup
y2 B" (x )

(

H
�

y; [� ]>88(of)]TJ/F11 9.9626 Tf 89.385 0 Td [(H)]TJ/F8 9.9626 Tf 11.961 0 Td [(and)-288(D)]TJ/F11 9.9626 Tf 26.532 0 Td [(u)]TJ/F8 9.9626 Tf 5.703 6f 5.703 6f 5.703 6f 5.706 Tf 4.817 0 Td [(])]TJ/F13 6.9738 Tf 2.7 9.w9626 Tf 7.282 25.864 Td [(2.767 4051)]TJ/F14 9.9626 Tf5. 6.725J/F43 6.97381(u71.993 Td [(1)]TJ/F7 =1)]5
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By (2.14), (2.21) gives

A(x) � ess sup
y2 B" (x )

H
�
y; D (y)

�
+ sup

y2 B" (x )
! 2

�
jx � yj +

�
�Du(y) � Du(x)

�
�
�

� ess sup
y2 B� (x 0 )

H
�
y ; D (y)

�
+ ! 2

�
" + ! 2(" )

�
;j
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