

Department of Mathematicand Statistics

Preprint MPS201604

15 April 2016

Solutions of vectorial Hamilton-Jacobi equations are rankone Absolute Minimisers in L^{∞}

by

Nikos Katzourakis

SOLUTIONS OF VECTORIAL HAMILTON-JACOBI EQUATIONS ARE RANK-ONE ABSOLUTE MINIMISERS IN $$\rm L^1$$

NIKOS KATZOURAKIS

Abstract. Given the supremal functional E1 (u;

Rⁿ, the respective PDE is the1 -Laplace equation

(1.3)
$$_{1} u := D u \quad D u : D^{2} u = \sum_{i;j=1}^{N} D_{i} u D_{j} u D_{ij}^{2} u = 0:$$

Despite the importance for applications and the deep analytical interest of the area, the vectorial case of N 2 remained largely unexplored until the early 2010s. In particular, not even the correct form of the respective PDE systems associated to L¹ variational problem was known. A notable exception is the early vectorial contributions [BJW1, BJW2] wherein (among other deep results) L¹ versions of lower semi-continuity and quasiconvexity were introduced and studied and the existence of Absolute Minimisers was established in some generality wittH depending onu itself but for min f n; N g

di erent sets of variations. In [K2] we proved the following variational characterisation in the class of classical solutions. AC^2 map u : R^n ! R^N is a solution to

(1.5)
$$Du \quad Du : D^2u = 0$$

if and only if it is a Rank-One Absolute Minimiser on , namely when for all D b , all scalar functions g 2 $C_0^1(D)$ vanishing on @Dand all directions 2 R^N , u is a minimiser on D with respect to variations of the form u + g (Figure 1):

Further, if rk(D u) const., u is a solution to

(1.7)
$$jDuj^2[Du]^2$$
 $u = 0$

if and only if u() has 1 -Minimal Area, namely when for all D b , all scalar functions h 2 $C^{1}(\overline{D})$ (not vanishing on @D and all vector elds 2 $C^{1}(D; \mathbb{R}^{N})$ which are normal to u(), u is a minimiser on D with respect to normal free variations of the form u + h (Figure 2):

Figure 2.

We called a map 1-Minimal with respect to functional $\,kD(\,)k_{L^{\,1}\,(\,)}$ when it is a Rank-One Absolute Minimiser on $\,$ and $\,u(\,)$ has $\,1$ -Minimal Area.

Perhaps the greatest di culty associated to (1.1) and (1.4

In this paper we consider the obvious generalisation of the rank-one minimality notion of (1.6) adapted to the functional (1.1). To this end, we identify a large class of rank-one Absolute Minimisers: for any c 0, every solution u : \mathbb{R}^n ! \mathbb{R}^N to the vectorial Hamilton-Jacobi equation

(1.9)
$$H x; Du(x) = c; x 2;$$

actually is a rank-one absolute minimiser. Namely, for any 0 b , any 2 $W_0^{1;1}$ ($^0\!)$ and any 2 R^N , we have

ess supH x; Du(x) ess supH x; Du(x) + D (x) :
$$x_2 = 0$$

For the above implication to be true we need the solutions to be inC¹(; R^N) and not just in $W_{loc}^{1;1}$ (; R^N). This is not a technical di culty: it is well known even in the scalar case that if we allow only for 1 non-di erentiability point, strong solutions of the Eikonal equation jDuj = 1 are not absolutely minimising for the L¹ norm of the gradient (e.g. the cone functionx 7! j xj). However, due to regularity results which available in the scalar case, it su ces to assume everywhere di erentiability (see [CEG, CC]).

Our only hypothesis imposed on H is that for any x 2 the partial function $H(x;): \mathbb{R}^{N-n}$! R is rank-one level-convex This means that for any t 0, the sublevel sets H(x;) t are rank-one convex sets ir \mathbb{R}^{N-n} . A set C \mathbb{R}^{N-n} is called rank-one convex when for any matrices A; B 2 C with rk(A B) 1, the convex combination A + (1)B is in C for any 0 1. An equivalent way to phrase the rank-one level-convexity of H(x;) is via the inequality

H x; A + (1) B max
$$H(x; A); H(x; B)$$
 x;

Theorem 1. Let R^n be an open set, $N \ge N$ and $H : R^{N-n} \ge [0; 1)$ a continuous function, such that for all $x \ge P = 7!$ H(x; P) is rank-one level-convex, that is

H(x;) t is a rank-one convex in \mathbb{R}^{N-n} , for all t 0; x 2 :

Let u 2 C¹(; R^N) be a solution to the vectorial Hamilton-Jacobi PDE

for some c 0. Then, u is a rank-one Absolute Minimiser of the functional

$$E_1$$
 (u; ⁰) = ess supH x; Du(x) ; ⁰b ; u 2 W^{1;1}_{loc} (; R^N):

In addition, the following marginally stronger result holds true: for any $~^0$ b ~ , any ~2 $W_0^{1;1}$ ($~^0\!\!$) and any ~2 R^N , we have

$$E_1(u; ^{0}) = \inf_{B2B(; ^{0})} E_1 u + ; B$$

where $B(; ^{0})$

We illustrate the idea by assuming rst in addition that $C^1(\ ^0, R^N)$. In this case, the point x is a critical point of $(\ ^u)$ and we have D $(\ ^u)$ (x) = 0. Hence,

$$D(u)(x) = []^{>} D(u)(x) + []^{?} D(u)(x)$$

= D (u) (x) + D [][?] (u) (x)
= 0

because []? []? u on ⁰. Thus,

$$E_1$$
 (u; ⁰) = c = H (x; Du(x))
= H x; D(u)(x) + [][?] Du(x)

and hence

(2.2)
$$E_{1}(u; ^{0}) = H x; D()(x) + []^{?} D(x)$$
$$= H(x; D(x))$$
$$\operatorname{ess supH}_{y^{2}B(x)}(y; D(y))$$
$$= E_{1}; B(x)$$

for any B (x) B (u); 0 , whence the conclusion ensues.

Now we return to the general case of $2 W_u^{1;1}$ (${}^0, R^N$). We extend by u on n 0 and consider the sets

(2.3)
$$k := \begin{cases} \stackrel{\stackrel{\scriptstyle >}{\scriptstyle <}}{\scriptstyle > \quad ;;} \\ \stackrel{\scriptstyle >}{\scriptstyle > \quad ;;} \\ \stackrel{\scriptstyle >}{\scriptstyle > \quad ;;} \end{cases} : dist(x; @ ^{0}) > \frac{d_{0}}{k} ; k 2 N; \\ \stackrel{\scriptstyle >}{\scriptstyle > \quad ;;} \\ k = 0; \end{cases}$$

where $d_0 > 0$ is a constant small enough so that $\frac{1}{1} \in$; We set

(2.4) $V_k := k n \overline{k_1}; k 2 N$

and consider a partition of unity $\begin{pmatrix} k \\ k \end{pmatrix}_{k=1}^{1}$ C_{c}^{1} $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ over 0 so that

9 .398 w 0 0 m 22.295 0 I S Q BT ،

6

j j = 1, we have

$$k^{"} \quad k_{C(\overline{V_{i}})} = \sup_{\substack{V_{i} \\ k=1}} k^{"=k}) \frac{1}{k} k^{!}$$
(2.7)

$$k^{(2.7)} = \sup_{\substack{V_{i} \\ k=1}} k^{*=k} k^{*=k} k^{*=k} k^{*=k} k^{*} k$$

whilst, for I = 1 we similarly have

(2.8)
$$k'' k_{C(\overline{V_1})} 2 \max_{k=1;2} "=k_{C(\overline{V_1})}$$

By the standard properties of molli ers, we have that the function

(2.9) ! (t) :=
$$\sup_{0 < t} c_{(-0)}; 0 < t < d_{0};$$

is an increasing continuous modulus of continuity with ! $(0^+) = 0$. By (2.7)-(2.9), we have that 1

(2.10) k
$$k = k_{C(\overline{V_1})}$$
 $3! \frac{3!}{11}; 12;$
 $2! ("); 1 = 1:$

Since the C¹ regularity of ["] is obvious (because by assumption is such and []? []? u), the claim has been established. Note now that since $u \ge W_0^{1;1}$ (${}^0, R^N$), the set B (

our continuity assumption and the W^{1;1} regularity of imply that there exists a positive increasing modulus of continuity ! 1 with ! $_1(0^+) = 0$ such that on the ball $B_{=2}(x_0)$ we have

By further restricting " < = 2, we may arrange

(2.14)
$$\begin{array}{c} {}^{L} B_{*}(x) & B_{(x_{0})} \\ {}^{x_{2}B_{-2}(x)} \end{array}$$

and by (2.4)-(2.5), there exists K () 2 N such that ${\ensuremath{\mathsf{I}}}$

(2.15) B
$$(x_0)$$
 $V_{k=1}$ (2.15)

This implies that for any $x \ge B(x_0)$,

(2.16)
$$X = \frac{k(x) + 1}{k(x) = 1}$$

forming a convex combination. We now recall for immediate use right below the following Jensen-like inequality for level-convex functions (see e.g. [BJW1, BJW2]): for any probability measure on an open set $U = \mathbb{R}^n$ and any -measurable function $f : U = \mathbb{R}^n + [0; 1]$, we have Z

(2.17)
$$f(x) d(x) = \underset{x \ge U}{\text{ess sup } f(x)} f(x);$$

when : R^n ! R is any continuous level-convex function. Further, by our rankone level-convexity assumption orH and if is as above, for anyx 2 and 2 R^N with j j = 1, the function

(2.18) (p) := H x;
$$p + []^{?} D(x)$$
; $p 2 R^{n}$;

is level-convex. Indeed, giverp; $q \ge R^n$ and t 0 with (p); (q) t, we set

$$P := p + []^{?} D (x);$$

$$Q := q + []^{?} D (x):$$

Then, P Q = $(p \ q)$ and hence rk(P Q) 1. Moreover, H $(x; P) = (p) \ t$ and H $(x; Q) = (q) \ t$ which gives

$$p + (1) q = H x; P + (1) Q t$$

for any 2 [0; 1], as desired.

Now, by using (2.4)-(2.5), (2.14)-(2.16) and the level-convexity of the function of (2.18), for any $x \ 2 B_{=2}(x_0)$ we have the estimate

$$A(x) = H @x; k(x) D() =k (x) + []? D (x)^{A}$$

$$= 0 k(x) + [] = 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

$$= 1 1$$

Since for any x and "; k, the map

÷

$$:= (jx \ j) L^n$$

is a probability measure on the ball $B_{=k}(x)$ which is absolutely continuous with respect to the Lebesgue measureⁿ, in view of (2.17), (2.19) gives !

$$\begin{array}{rcl} A(x) & \max_{k=1 ; :::;K () + 1} & \operatorname{ess \ sup}_{y 2 \ B_{=k} (x)} & D()(y) \\ \\ (2.20) & = & \max_{k=1 ; :::;K () + 1} & \operatorname{ess \ sup}_{y 2 \ B_{=k} (x)} & x; & D()(y) + []^{?} \ D(x) \\ & & \operatorname{ess \ sup}_{y 2 \ B_{-} (x)} & x; & D()(y) + []^{?} \ D(x) : \end{array}$$

By the continuity of H and Du, there is a positive increasing modulus of continuity $\binom{1}{2}$ with $\binom{1}{2}(0^+) = 0$ such that $\binom{3}{4}$ H(x; P) H(y; Q) $\binom{1}{2}$ ix yi + iP Qi :

for all x; y 2 B (x₀) and jPj; jQj k D $k_{L^1 (0)}$ + 1. By using that []? []? u on 0 , (2.20) and the above give

A(x) ess supH x;
$$[]^{D}$$
 (y) + $[]^{P}$ D (x)
y² B·(x)
(
ess sup H y; $[]^{88(of)}$ TJ/F11 9.9626 Tf 89.385 0 Td [(H)]TJ/F8 9.9626 Tf 11.961 0 Td [(and)-288(D)]TJ/F11 9.9626 Tf 26.532 0 Td
y² B·(x)

By (2.14), (2.21) gives

10

VECTORIAL SOLUTIONS OF H-J PDE ARE RANK-ONE ABSOLUTE MINIMISERS 11

- BJW2. E. N. Barron, R. Jensen, C. Wang, Lower Semicontinuity of L¹ Functionals Ann. I. H. Poincae AN 18, 4 (2001) 495 517.
- CC. L.A. Ca arelli, M.G. Crandall, Distance Functions and Almost Global Solutions of Eikonal Equations, Communications in PDE 03, 35, 391-414 (2010).
- C. M. G. Crandall, A visit with the 1 -Laplacian, in Calculus of Variations and Non-Linear Partial Di erential Equations , Springer Lecture notes in Mathematics 1927, CIME, Cetraro Italy 2005.
- CEG. M. G. Crandall, L. C. Evans, R. Gariepy, Optimal Lipschitz extensions and the in nity Laplacian , Calc. Var. 13, 123 139 (2001).
- CIL. M. G. Crandall, H. Ishii, P.-L. Lions, User's Guide to Viscosity Solutions of 2nd Order Partial Di erential Equations , Bulletin of the AMS 27, 1-67 (1992).
- D. B. Dacorogna, Direct Methods in the Calculus of Variations , 2nd Edition, Volume 78, Applied Mathematical Sciences, Springer, 2008.
- DM. B. Dacorogna, P. Marcellini, Implicit Partial Di erential Equations , Progress in Nonlinear Di erential Equations and Their Applications, Birkhauser, 1999.
- E. L.C. Evans, Partial Di erential Equations , AMS, Graduate Studies in Mathematics Vol. 19, 1998.
- K1. N. Katzourakis, L¹ -Variational Problems for Maps and the Aronsson PDE system , J. Differential Equations, Volume 253, Issue 7 (2012), 2123 2139.
- K2. N. Katzourakis, 1 -Minimal Submanifolds , Proceedings of the AMS, 142 (2014) 2797-2811.
- K3. N. Katzourakis, On the Structure of 1 -Harmonic Maps , Communications in PDE, Volume 39, Issue 11 (2014), 2091 2124.
- K4. N. Katzourakis, Explicit 2D 1