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A SUB-RIEMANNIAN SANTAL �O FORMULA WITH APPLICATIONS
TO ISOPERIMETRIC INEQUALITIES AND FIRST DIRICHLET

EIGENVALUE OF HYPOELLIPTIC OPERATORS

DARIO PRANDI 1, LUCA RIZZI 2 , AND MARCELLO SERI 3

Abstract. Sub-Riemannian geometry is a generalization of Riemannian one, to include
nonholonomic constraints. In this paper we prove a nonholonomic version of the classical
Santal�o formula: a result in integral geometry that descri bes the intr

a compact domain M with piecewise C2 boundary. Moreover, we prove a universal
(i.e. curvature independent) lower bound for the �rst Diric hlet eigenvalue � 1(M ) of the
intrinsic sub-Laplacian,

� 1(M ) �
k� 2

L 2
;

in terms of the rank k of the distribution and the length L of the longest reduced sub-
Riemannian geodesic contained in M . All our results are sharp for the sub-Riemannian
structures on the hemispheres of the complex and quaternionic Hopf �brations:

S1 ,! S2d+1 p
�! CPd ; S3 ,! S4d+3 p

�! HPd ; d � 1;

where the sub-Laplacian is the standard hypoelliptic opera tor of CR and quaternionic
contact geometries, L = � and k = 2 d or 4d, respectively.

1. Introduction and results

Let (M; g) be a compact Riemannian manifold with boundary @M. Santal�o formula
[19, 43] is a classical result in integral geometry that describes the Liouville measure� of
the unit tangent bundle UM in terms of the geodesic ow � t : UM ! UM . Namely, for
any measurable functionF : UM ! R we have

(1)
Z

U � M
F � =

Z

@M

" Z

U+
q @M

 Z ` (v)

0
F (� t (v))dt

!

g(v; nq)� q(v)

#

� (q);

where � is the surface form on@Minduced by the inward pointing normal vector n, � q
is the Riemannian spherical measure onUqM , U+

q @Mis the set of inward pointing unit
vectors at q 2 @Mand `(v) is the exit length of the geodesic with initial vector v. Finally,
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and r p; Rp : M ! R are
1

Rp(q)
:=

Z

U �
q M r

1
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@M

above:q

# �

q

M

Figure 2. Visibility angle on a 2D Riemannian manifold. Only the
geodesics with tangent vector in the dashed slice go to@M.

where diamH denotes the horizontal diameter of the Carnot group.

In particular, if M is the metric ball of radius R, we obtain � 1(M ) � k� 2=(2R)2. Clearly
(9) is not sharp, as one can check easily in the Euclidean case.

1.5. Isoperimetric-type inequalities. In this section we relate the sub-Riemannian
area and perimeter of M with some of its geometric properties. SinceM is compact,
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We can apply Proposition 7 to Carnot groups equipped with theHaar measure. In this
case# � = ~# � = 1 and ` = diam r(M ) = diam H (M ). Moreover, ! is the Lebesgue volume
of Rn and � is the associated perimeter measure of geometric measure theory [16].

Corollary 9. Let M be a compactn-dimensional submanifold with piecewiseC2 boundary
of a Carnot group of rank k, with the Haar volume. Then,

� (@M)
! (M )

�
2� jSk� 1j

jSk j diamH (M )
;

where diamH (M ) is the horizontal diameter of the Carnot group.

This inequality is not sharp even in the Euclidean case, but it is very easy to compute
the horizontal diameter for explicit domains. For example, if M is the sub-Riemannian
metric ball of radius R, then diamH (M ) = 2 R.

1.6. Remark on the change of volume. Fix a sub-Riemannian structure (N; D; g), a
compact set M with piecewise C2 boundary and a complementV such that (H1 ) holds.
Now assume that, for some choice of volume form! , also (H2 ) is satis�ed, so that we
can carry on with the reduction procedure and all our resultshold. One can derive the
analogous of Propositions 2, 3, 4, 7 for any other volume! 0 = e' ! , with ' 2 C1 (M ). In
all these results, it is su�cient to multiply the r.h.s. of th e inequalities by the volumetric
constant 0 < � � 1 de�ned as � := min e'

max e' , and indeed replace! with ! 0 = e' ! in
Propositions 2 and 3,
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Furthermore, the
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Remark 4. This construction gives a canonical way to de�ne a measure onU � M and its
�bers in the general sub-Riemannian case, depending only onthe choice of the volume!
on the manifold M . It turns out that this measure is also invariant under the Hamiltonian
ow. Notice though that in the sub-Riemannian setting, �ber s have in�nite volume.

3.3. Invariance. Here we focus on the case of interest whereE � T � M is a rank k vector
sub-bundle andE 0 � E is a corank 1 sub-bundle as de�ned in Section 3.2. We stress that
E 0 is not necessarily a vector sub-bundle, but typically its �b ers are cylinders or spheres.

Recall that the sub-Riemannian geodesic ow� t : T � M ! T � M is the Hamiltonian
ow of H : T � M ! R. Moreover, in our picture, M � N is a compact submanifold with
boundary @Mof a larger manifold N , with dim M = dim N = n.

De�nition 2. A sub-bundle E � T � M is invariant if � t (� ) 2 E for all � 2 E and t such
that � t (� ) 2 T � M is de�ned. A volume form 
 2 � n+ k (E ) is invariant if L ~H 
 = 0.

Our de�nition includes the case of interest for Santal�o formula, where sub-Riemannian
geodesics may cross@M6= ; . In other words, E is invariant if the only way to escape from
E through the Hamiltonian ow is by crossing the boundary � � 1(@M). Moreover, if 
 is
an invariant volume on an invariant sub-bundle E, then � �

t 
 = 
.

Lemma 12 (Invariant induced measures). Let E � T
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Writing XY u(x) = r (Y u)(x) � X (x), where v � w is the Euclidean scalar product of
v; w 2 Rn , proves the claim.

The above implies that the bracket [X; Y ] is tangent to @M a.e. on C(@M) for any
X; Y 2 �( D). In particular, this contradicts the bracket-generating assumption (11). �

4.2. (Sub-)Riemannian Santal �o formula. For any covector � 2 U �
q M , the exit length

`(� ) is the �rst time t � 0 at which the corresponding geodesic � (t) = � � � t (� ) leaves
M crossing its boundary, while ~̀(� ) is the smallest between the exit and the cut length
along  � (t). Namely

`(� ) = sup f t � 0 j  � (t) 2 M g;
~̀(� ) = sup f t � `(� ) j  � j[0;t ] is minimizingg:

We also introduce the following subsets of the unit cotangent bundle � : U � M ! M :

U+ @M= f � 2 U � M j@M j h�; ni > 0g;

U �
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Remark 5. Even if M is compact and hence~̀< + 1 , in general ~U � M ( U � M . Moreover,
if also ` < + 1 (that is, all geodesics reach the boundary ofM in �nite time), then
U � M = U � M . Thus, our statement of Santal�o formula contains [19, Theorem VII.4.1].

Remark 6. If @Mis only Lipschitz and C(@M) has positive measure, the above Santal�o
formulas still hold by removing on the left hand side from U � M and ~U � M the set f � t (� ) j
� (� ) 2 C(@M) and t � 0g. Nothing changes on the right hand side as� (C(@M)) = 0 by
de�nition of n.

Proof. Let A � [0; + 1 ) � U+ @M be the set of pairs (t; � ) such that 0 < t < ` (� ). By
Lemma 15 it follows that A is measurable. Let alsoZ = � � 1(@M) � U � M which clearly
has zero measure inU � M . De�ne � : A ! U � M n Z as � (t; � ) = � t (� ). This is a smooth
di�eomorphism, whose inverse is� � 1( �� ) = ( � � ` (� �� )(� �� ); `(� �� )). In particular, U � M is
measurable. Then, using Lemma 17 (see below),

(17)
Z

U � M
F � =

Z

� (A )
F � =

Z

A
(F � � ) � � � =

=
Z

@M

" Z

U+
q @M

 Z ` (� )

0
F (� t (� ))dt

!

h�; nqi � q(� )

#

� (q):

by Fubini Theorem. Analogously, with ~A = f (t; � ) j 0 < t < ~̀(� )g and ~Z = Z [ f � ~̀(� ) (� ) j

� 2 U+ @Mg the map � : ~A ! ~U � M n ~Z is a di�eomorphism with the same inverse. Then,
the same computations as (17) replacingA with ~A and Z with ~Z yield (16). �

Lemma 17. The following local identity of elements of� 2n� 1(R � U+ @M) holds

� � � j(t;� ) = h�; nqi dt ^ � ^ �; � 2 U+ @M;

where, in canonical coordinates(p; x) on T � M

� = �e�; � =
1

! (x)
dp; � = �n !; ! = ! (x)dx:

Proof. For any (t; � ) 2 R � U+ @Mlet f @t ; v1; : : : ; v2n� 2g be a set of independent vectors
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Putting together (18), (19), and (20) completes the proof of the statement. �

4.3. Reduced Santal �o formula. The following reduction procedure replaces the non-
compact setU � M in Theorem 16 with a compact subset that we now describe.

To carry out this procedure we �x a transverse sub-bundleV � T M such that T M =
D�V . We assume thatV is the orthogonal complement ofD w.r.t. to a Riemannian metric
g such that gjD coincides with the sub-Riemannian one and the associated Riemannian
volume coincides with! . In the Riemannian case, whereV is trivial, this forces ! = ! R , the
Riemannian volume. In the genuinely sub-Riemannian case there is no loss of generality
since this assumption is satis�ed for any choice of! .

De�nition 3. The reduced cotangent bundleis the rank k vector bundle � : T � M r ! M
of covectors that annihilate the vertical directions:

T � M r := f � 2 T � M j h�; v i = 0 for all v 2 Vg :

The reduced unit cotangent bundleis U � M r := U � M \ T � M r.

Observe that U � M r is a corank 1 sub-bundle ofT � M r, whose �bers are spheresSk� 1. If
T � M r is invariant in the sense of De�nition 2, we can apply the construction of Section 3.3.
The Liouville volume � on T � M induces a volume onT � M r as follows.

Let X 1; : : : ; X k and Z1; : : : ; Zn� k be local orthonormal frames forD and V, respectively.
Let ui (� ) := h�; X i ) and vj (� ) := h�; Z j i smooth functions on T � M . Thus

T � M r = f � 2 T � M j v1(� ) = : : : = vn� k(� ) = 0 g:

For all q 2 M where the �elds are de�ned, (u; v) : T �
q M ! Rn are smooth coordinates on

the �ber and hence @u1 ; : : : ; @uk ,@v1 ; : : : ; @vn � k are vectors onT� (T �
q M ) � T� (T � M ) for all

� 2 � � 1(q). In particular, the vector �elds @v1 ; : : : ; @vo formula.
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Lemma 18 (Explicit reduced vertical measure). Let q0 2 M and �x a set of canonical
coordinates (p; x) such that q0 has coordinatesx0 and

� f @x1 ; : : : ; @xk gq0 is an orthonormal basis ofDq0 ,
� f @xk +1 ; : : : ; @xn gq0 is an orthonormal basis ofVq0 .

In these coordinates! jx0 = dxjq0 . Then � r
q0

= vol Rk and � r
q0

= vol Sk � 1 . In particular,
Z

U �
q0

M r
� r

q0
= jSk� 1j; 8q0 2 M;

wherejSk� 1j denotes the Lebesgue measure ofSk� 1 and
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q reach the whole Euclidean planeq ?f z = 0g (the left-translation of R2d � R2d+1 ). At
q = ( x; z) this is the plane orthogonal to the vector

�
1
2Jx; 1

�
w.r.t. the Euclidean metric.

5.2.
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5.2.1. Riemannian submersions. A Riemannian submersion� : (M; g) ! ( �M; �g) is triv-
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The orthogonal complementD := V? with the restriction gjD of the round metric de�ne
the standard sub-Riemannian structure on the complex Hopf �brations. In real coordi-
nates, as subspaces ofR2d+2 , the hemisphere and its boundary are

M = S2d+1
+ :=

( dX

i =0

x2
i + y2

i = 1 j x0 � 0

)

; @M=

( dX

i =0

x2
i + y2

i = 1 j x0 = 0

)

:

A di�erent set of coordinates we will use is the following

(#; w1; : : : ; wd) 7!

 
ei#

p
1 + jwj2

;
w1ei#

p
1 + jwj2

; : : : ;
wdei#

p
1 + jwj2

!

;

where # 2 (� �; � ) and w = ( w1; : : : ; wd) 2 Cd. In particular ( w1; : : : ; wd) are inohomge-
neous coordinates forCPd given by wj = zj =z0 and # is the �ber coordinate. The north
pole corresponds to# = 0 and w = 0. The hemisphere is characterized by# 2 [� �

2 ;
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Consider the subsetD = U+ @Mr \ f ` < + 1g . Let f � (t) := f (� � � t (� )). For � 2 D we
have f � (0) = f � (`(� )) = 0 and the one-dimensional Poincar�e inequality (25) gives

(27)
Z ` (� )

0
h� t (� ); r H f i 2dt =

Z ` (� )

0
f 0

� (t)2dt �
� 2

`2(� )

Z ` (� )

0
f � (t)2dt:

Indeed we can replacè with L , which is � t -invariant. Then

jSk� 1j
k

Z

M
jr H f (q)j2! (q) � � 2

Z

@M

"
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Proof of Proposition 4. With L := sup � 2 U � M r L(� ), the Hardy inequality (4) can be fur-
ther simpli�ed into

Z

M
jr H f j2! �

k� 2

L 2

Z

M
f 2!:

By the min-max principle (13), whenever any f 2 C1
0 (M ) such that

R
M f 2! = 1, we have

�� 1(M ) �
Z

M
jr H f j2! �

k� 2

L 2 :

Proof of Proposition 5. Fix a north pole q0 and the hemisphereM
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De�nition 7. The sub-Riemanniandiameter and reduced diameterare:

diam(M ) := sup f d(x; y) j x; y 2
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Denote @v = ( @v1 ; : : : ; @vn � k ) and @u = ( @u1 ; : : : ; @uk ) and @x = ( @x1 ; : : : ; @xn ). Recall
that � r(@u ; @x ) = �( @u ; @v ; @x ) = ( � 1)k(n� k) �( @v ; @u ; @x ). Then, using twice (L ~H � )(w) =
~H (� (w)) � � (L ~H (w)) for any `-form � and `-uple w, we obtain

(L ~H � r)(@u ; @x ) = ~H (� r(@u ; @x )) � � r(L ~H (@u ; @x ))

= ( � 1)k(n� k)
h

~H (�( @v ; @u ; @x )) � �( @v ; L ~H (@u ; @x ))
i

= ( � 1)k(n� k)
h
(L ~H �)( @v ; @u ; @x ) + �( L ~H (@v); @uH (�( @9(7184 -20 10.909Td
[(@)2.90039]TJ
/RT Td
[1Tf
011 Tf
10.5598 -1T Td
[(9)
-2.03984 -2.75
[(u)0.9091 Tf
4.2 0 Td
[(6)-0.422722]TJ
/R57 1
-2.03984 -2 10.Td
[(�)-9091 T
[(~) 10.901091 Tf
5.5199f
4 Td
[(6)-08 Td
[(u)-2.13811]TJ
]TJ
-1.56016 -2.03984 Td
[(H)-0.422722]TJ
/R57 10.9091 Tf
8.16016 3.96016 Td
[(�)-3.22266())3�(6

http://www.cmap.polytechnique.fr/subriemannian/
http://www.newton.ac.uk/event/pep
http://www.esi.ac.at/activities/events/2015/modern-theory-of-wave-equations
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