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Abstract

For a particular family of long-range potentialsV , we prove that the eigenvalues of the
inde�nite Sturm{Liouville operatorA = sign( x)( � � + V (x)) accumulate to zero asymptotically
along speci�c curves in the complex plane. Additionally, we relate the asymptotics of complex
eigenvalues to the two-term asymptotics of the eigenvalues of associated self-adjoint operators.

1 Introduction

Given a real-valued potentialV such that

V 2 L 1 (R); lim
x!�1

V(x) = 0 ; lim sup
x!�1

x2V(x) < �
1
4

; (1)

consider a one-dimensional Schr•odinger operator inL 2(R)

T := TV := �
d2

dx2 + V(x);

Dom(T) :=
n

f 2 L 2(R) j f; f 0 2 AC (R); T f 2 L 2(R)
o

:
(2)

It is well known that in this case the spectrumSpec(T) is bounded from below, the essential
spectrumSpecess(T) = [0 ; 1 ), and the negative spectrumSpec(T)\ (�1 ; 0) consists of eigenvalues
accumulating to zero from below.

Let J := sign( x) be the multiplication operator by� 1 on R� . In what follows we consider the
point spectrum of the operator

A := AV := JTV ; Dom(A) = Dom( T): (3)

This operator is not self-adjoint (and not even symmetric) onL 2(R), and its spectrum need not
therefore be real. However, asJ � = J � 1 = J , A can be treated as a self-adjoint operator in the
Krein space(L 2(R); [�; �]) with inde�nite inner product

[f; g ] := hJf; g i L ( R) =
Z

R
f (x)g(x) sign(x)dx
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or equivalently as aJ -self-adjoint operator [AzIo]. Operators of type (3) have been studied both
in the framework of operator pencils, cf. [DaLe, Ma], and of inde�nite Sturm{Liouville problems
[BeKaTr, BeTr, KaTr, La].

In both settings the literature is extensive, starting mostly with Soviet contributions in the
1960s, including those by Krein, Langer, Gohberg, Pontryagin and Shkalikov. We refer to [Ma, La]
for reviews and bibliographies. In particular due to its many applications, for example in control
theory, mathematical physics and mechanics, the �eld is still very active, with recent works on
the theoretical,as well as numerical, aspects, (see e.g. [DaLe, ElLePo, HiTrVD, Ve] and references
therein).

In the special case of inde�nite Sturm{Liouville operators, it is well known that for positive
potentials, V � 0, the spectrum ofAV is real and the operatorAV is similar to a self-adjoint
operator [CuLa, CuNa, Py, Ko]. At a very basic level, this can be seen from the following abstract
construction: if R and S are self-adjoint operators withR > 0, then, under mild restrictions, the
spectrum ofR� 1S is the same as the spectrum of the self-adjoint operatorR� 1=2SR� 1=2, and is
therefore real.

The caseV 2 L 1(R; (1 + jxj)dx)



Figure 1: A numerical example showing accumulation to0 of complex eigenvalues (red diamonds)
of the operatorA  ,  = 2 :5. The magenta and white circles on the negative real axis are the
eigenvalues ofT corresponding to the eigenfunctions which are even or odd with respect to zero,
cf. [BeKaTr].

Proposition 1(e)(i) holds. Moreover we also prove (Theorem 6) that the complex eigenvalues of

T = T := TV

accumulate to zero asymptotically along speci�c curves in the complex plane, and that the explicit
asymptotics of complex eigenvalues ofT can be obtained from the asymptotics of eigenvalues of
the self-adjoint operator

A = A  := AV (5)

(or, more precisely, from the eigenvalues of its restriction on either even or odd (with respect to
zero) subspace). We also extend these results to the more general non-symmetric potentials

V � ; + (x) =

8
><

>:

�
 +

1 + jxj
if x > 0

�
 �

1 + jxj
if x < 0

;  + ;  � 2 R+ : (6)



with account of multiplicities. Let� � #
n ( ) denote the eigenvalues ofT#

 , # = D or N , ordered
increasingly. In what follows we often drop the explicit dependence on .

It is well-known that � � #
n < 0 and � � N

n < � � D
n < � � N

n+1 for all n 2 N, and also that
� � #

n ! 0� as n ! 1 .
Before stating our main results, we need some additional notation.

De�nition 2. Let F denote the class of piecewise smooth functionsF : R+ ! R which have a
discrete set of singularities (with no �nite accumulation points). At each singularity both one-sided
limits of F are�1 and di�er by sign. Assume for simplicity that0 is not a singularity ofF , and that
F (0) = 0 . For F 2 F we denote by� F (x) the continuous branch of the multi-valuedArctan( F (x))
such that � F (0) = 0 .

Remark 3. Away from the singularities ofF , the function � F (x) can be written in terms of the
ordinaryarctan(F (x)) (which takes the values in

�
� �

2 ; �
2

�
) and thetotal signed indexof F on [0; x],

which we denote byZF (x), and which is de�ned as the total number of jumps from+ 1 to �1
on [0; x] minus the total number of jumps in the opposite direction:

ZF (x) :=

0

B
B
@

X

f � 2 (0;x ]j lim
t ! � �

F (t)=+ 1g

�
X

f � 2 (0;x ]j lim
t ! � �

F (t)= �1g

1

C
C
A 1: (7)

Then
� F (x) = arctan( F (x)) + �Z F (x): (8)

Obviously,� � F (x) = � � F (x).
Our �rst result gives sharp two-term asymptotics of eigenvalues (accumulating to zero) of the

self-adjoint op9091 Tf-atrd N[())]TJ/F49 10.9091 Tf 4.243 0 Td [(.)]TJ -140.064 -13.549 Td [(Our)-376(�rst)-376(result)-376(gives)-376(sha701 Tf ieu TfTd [68 10.0.9097fsha)53 4-376(result)-376[())-284(an62.76222(+)]TJAF49 10.9091 Tf 12.121 5. 12.[(as)]TJ/F53 10.9091 Tf 13.06 0 8d [(n)]TJ/F55 10.9091 [())-284(an[(!)-9Td [(])]TJ/F40.9091 Tf 82.585 0 299 ie�94000)]TJ/F53 10.9091 Tf 8.485 0 Td [0 T05)]TJ/F23 7.97017.20



Figure 2: R1( ) and R0( )



Before proceeding to the proofs, we want to discuss the statements of Theorem 6 in more detail.

Remark 7. (a) It is immediately seen from (10) and (13) that

�(  ) = Im � � ( ) = Im � + ( ):

(b) If we introduce two functions� � : R+ ! C by

� � (t) = t + � � t3=2;

then
Im � � (t) = Im � + (t) = � t3=2;





4.3 The Jost solutions of (16)

It is well known, see e.g. [OlLoBoCl, 13.7.1 and 13.7.2], that the �rst order asymptotic behaviour
of the Kummer Hypergeometric Functions is given, asjwj ! 1 , by

U(a; b; w) � w� a; �
3�
2

< arg(w) <
3�
2

;

M (a; b; w) �
ewwb� a

�( a)
+

e� iaw� a

�( b� a)
; �

�
2

� arg(w) <
3�
2

; a; b� a 62 �N [ f 0g;

where�( �) stands for the usual Gamma function.
For � 2 C n R+ , we have�

p
� � � f z 2 C j Rez < 0g, and therefore

U
�

1 �


2
p

� �
; 2; 2y

p
� �

�
�

�
2y

p
� �

� 
2

p
� �

� 1 ;

and

M
�

1 �


2
p

� �
; 2; 2y

p
� �

�
�

(2y
p

� � )


2
p

� �
+1

�
�
1 � 

2
p

� �

� e2y
p

� �

as y ! 1 .
This in turn implies that thef � and g�



control their oscillations. A quick took at (25) and (26) shows that we require asymptotic formulas,
as � ! 0+ , for

U
�

�


2
p

�
; c; 2

p
�

�
; c 2 f 0; � 1g; (27)

Unfortunately, it is a di�cult task | the corresponding formulas, are not, in fact, in the standard
references. We rely, instead, on the results from the forthcoming book [Te] which we summarise
and adapt in the Appendix.

5.2 Asymptotic solutions of a transcendental equation

A crucial element of our analysis is the investigation of the large� -roots of the equation

tan( � ) = G(�;  ) (28)

where is treated as a parameter, and whereG depends analytically on� in the vicinity of � = 1
and, to leading order, is of classF as a function of . The required results are summarised in the
following

Lemma 8. Let G(�;  ) be an analytic function of� around� = 1 such that

G(�;  ) = G0( )
�
1 + O(� � 1)

�
; as � ! 1 ;

G0 2 F , and the O terms are regular in . Then the solutions� n ( ), ordered increasingly, of the
equation(28), are given, asn ! 1 , by

� n ( ) =
�n


+
1


� G0 ( ) + O(n� 1): (29)

The proof of Lemma 8 is in fact immediate as soon as we recall De�nition 2 of� and the fact
that tan is � -periodic.

Considering additional terms in the expansion ofG one can get additional terms in the expansion
of � n . This is in fact what we do in more detail in Section 6.2.

5.3 Approximation of Dirichlet eigenvalues

We can use the asymptotic approximation obtained in (A.8) to reduce (25) to the simpler form

cos
�

�

2
p

�

�
(J1 (2

p
 ) + O(� )) + sin

�
�

2
p

�

�
(Y1 (2

p
 ) + O(� )) = 0 : (30)

This in turn can be rewritten as

tan
�

�

2
p

�

�
= �

J1
�
2
p


�

Y1
�
2
p


� + O(� ): (31)

Applying Lemma 8 with

� =
1

2
p

�
; G0( ) = �

J1
�
2
p


�

Y1
�
2
p


� = � R1( );

we obtain, after a minor e�ort,

� n =
 2� 2

4
(n� � � G0 ( )) � 2 + O(n� 4)

=
 2

4n2

�
1 +

2
�n

� G0 ( ) + O(n� 2)
�

(32)

=
 2

4n2

�
1 �

2
�n

� R1 ( ) + O(n� 2)
�

(33)

as n ! + 1 , thus proving the �rst part of Theorem 4.

9



5.4 Approximation of Neumann eigenvalues

The analysis for Neumann eigenvalues is slightly more complicated. Again we can use (A.8) to
reduce (26) to

tan
�

�

2
p

�

�
= �

P(; � )
Q(; � )

(34)

where

P(; � ) :=
p

 (5
p

� � 8)(
p

� + 1) J1 (2
p

 ) + (11
p

� � 8 )(2
p

� �  )J2 (2
p

 )

� 8
p


p

� (2
p

� �  )J3 (2
p

 ) + O(� 3=2);

Q(; � ) :=
p

 (5
p

� � 8)(
p

� + 1) Y1 (2
p

 ) + (11
p

� � 8 )(2
p

� �  )Y2 (2
p

 )

� 8
p


p

� (2
p

� �  )Y3 (2
p

 ) + O(� 3=2):

Applying once again Lemma 8 with

� =
1

2
p

�
; G0( ) = �

P(; 0)
Q(; 0)

= �
J0

�
2
p


�

Y0
�
2
p


� = � R0( );

we quickly arrive at

� n =
 2

4n2

�
1 +

2
�n

� G0 ( ) + O(n� 2)
�

=
 2

4n2

�
1 �

2
�n

� R0 ( ) + O(n� 2)
�

(35)

as n ! 1 , thus proving the second part of Theorem 4.

6 Proof of the asymptotic results of the non-self-adjoint operator

6.1 Eigenvalues and the Jost solutions

Lemma 9. The eigenvalues of(5) are the zeroes of the determinant

M (� ) = M  (� ) = ' 0
� (; 0) ' � � (; 0) + ' 0

� � (; 0) ' � (; 0): (36)

Proof. Suppose that� 2 C is an eigenvalue ofA  , and that g� (x) 2 L 2(R) is a corresponding
eigenfunction. Theng� solves the di�erential equation

�
d2

dx2 g� (x) �


1 + jxj
g� (x) = sign( x)�g � (x):

If g� denote the restrictions ofg� on R+ and R� , then by integrability we must have

g+ (x) = C+ ' � (; x ); g� (� x) = C� ' � � (; x ); x 2 R+ ;

where' � (; x ) is the Jost solution (24).
As an eigenfunction should be continuously di�erentiable at zero, we obtain

(
C+ ' � (; 0) � C� ' � � (; 0) = 0 ;

C+ ' 0
� (; 0) + C� ' 0

� � (; 0) = 0 ;

which has a non-trivial solution if and only ifM  (� ) = 0 .

Remark 10. (a)



(b) By [BeTr, Proposition 4.6] one can instead look for the eigenvalues of (3) as the zeroes of the
m-function

m (� ) =
' 0

� (; 0)

' � (; 0)
+

' 0
� � (; 0)

' � � (; 0)
: (37)

The use of half-line m-functions is natural and has been already suggested elsewhere, and
described in great generality for inde�nite Sturm-Liovuille problems with turning point at0 in
[KaTr] (see also references therein).

(c) In what follows we assume that� is in the upper half planeC+ and look for the eigenvalues
on the �rst quadrant. The �nal result will follow by symmetry (see Proposition 1(a) and
Proposition 1(f)).

6.2 The determinant

We can use (24) and the known relations [OlLoBoCl,x13.3] between Kummer hypergeometric
functions to rewrite (36) as

M (� ) =
 2p

� � e�
p

� � �
p

�

8� 5=2

"
�


p
� � + 2 �

�
U

�
�


2
p

� �
; � 1; 2

p
� �

�



where we have dropped the lower order terms.
Simplifying, writingS� = T� K � , and collecting terms inK � , we get

K +

n
(1 + i) j 2

1
p

 (
p

� � (1 + i))
�
64i 2 � 40(1 + i) 

p
� + 25�

�

+ T� y1

�
� 8i 2 + (5 + 16i) 

p
� � 10�

�
(j 2 (8 � 11

p
� ) + 8 j 3

p


p
� )

� j 1

h
� 16ij 3

p


p
�

�
4(1 + i)  2 � 5

p
� + 5(1 � i) �

�

+ 2 j 2

�
64 3 � 128(1� i)  2p

� � 135i� + 55(1 + i) � 3=2
�

+ T� (8 � 5
p

� )
�
(1 + i)

p
 (

p
� � (1 + i)) (8  + 5i

p
� ) y1

+ (  + 2i
p

� ) (8
p


p

�y 3 + y2 (� 11
p

� + 8i  ))
�io

� K �

n
y1

h
8j 3

p


p
�

�
� 8i 2 + (16 + 5i) 

p
� � 10�

�

+ j 2

�
64 3 � (40 � 216i) 2p

� � (176 + 135i)� + 110� 3=2
�

+ (1 + i) T�

� p
 (

p
� � (1 + i))

�
64 2 � 40(1 � i) 

p
� � 25i�

�
y1

+ 8(1 � i)
p


p

�y 3

�
4(1 + i)  2 � 5

p
� + 5(1 � i) �

�

+ y2

�
64(1 + i)  3 � 256 2p

� + 135(1 � i) � + 110i� 3=2
� �i

+ j 1 (8 + 5i
p

� )
�

(k � 2
p

� ) (y2 (8 � 11
p

� ) + 8
p


p

�y 3)

+ (1 � i)
p



We want to derive a similar expansion fortanh
�

�

2
p

� + �� 3=2+ �� 2

�
. We use

tanh( t1 � t2) =
sinh(t2) + cosh(t2) tanh( t1)
cosh(t2) � sinh(t2) tanh( t1)

with t1 := �
2
p

�
and t2 := �

4

�
� +

�
� � 3� 2

4

� p
� + O(� )

�
.

As tanh( �= 2
p

� ) = 1 for � ! 0 modulo exponentially small terms, we get (again up to
exponentially small errors)

tanh

0

@ �

2
q

� + �� 3=2 + �� 2

1

A =
sinh(t2 tanh





7 Generalizations and other remarks

Figure 5: Approximated eigenvalues ofA( + ;  � ) for  � = 1 :5,  + = 5 .

The procedure used to prove Theorem 6 can be repeated in a completely similar way to obtain
a result for the operator

A( + ;  � ) = JTV ; V (x) =

8
<

:

 +
1+ jxj if x > 0

 �
1+ jxj if x < 0

;  + ;  � 2 R+ :

In this case the m-function is of the form

M (� ) =
' 0

�; +
(0)

' �; + (0)
+

' 0
� �; �

(0)

' � �; � (0)
:

The curves in the upper (resp. lower) half plane are no more symmetric w.r.t.iR, however for the
left quadrants and right quadrants we can extend Theorem 6. The only di�erence is that now the
� � and � + are now functions of both + and  � .

Let �; � 2 R+ . Set

f � (�; � ) :=
J 2

1 (2
p

� ) + J 2
0 (2

p
� )

J 2
1 (2

p
� ) + J 2

0 (2
p

� )

�
i � �

p
�

�
J0(2

p
� )J1(2

p
� ) + Y0(2

p
� )Y1(2

p
� )

� �

� �
p

� (J0(2
p

� )J1(2
p

� ) + Y0(2
p

� )Y1(2
p

� )) ;

f + (�; � ) :=
J 2

1 (2
p

� ) + J 2
0 (2

p
� )

J 2
1 (2

p
� ) + J 2

0 (2
p

� )

�
i + �

p
�

�
J0(2

p
� )J1(2

p
� ) + Y0(2

p
� )Y1(2

p
� )

� �

+ �
p

� (J0(2
p

� )J1(2
p

� ) + Y0(2
p

� )Y1(2
p

� )) :

Then the two factor multiplying the termRe� 3=2 are given by

� � ( + ;  � ) :=
4
�

(
 � 1

� arctan(1=f � ( + ;  � )) if Re� > 0

 � 1
+ arctan(1=f � ( � ;  + )) if Re� < 0

;

� + ( + ;  � ) :=
4
�

(
 � 1

� arctan(1=f + ( + ;  � )) if Re� > 0

 � 1
+ arctan(1=f + ( � ;  + )) if Re� < 0

:

One can immediately see that the asymmetry appearing w.r.t.iR is reected in the asymmetric
dependence on + and  � .
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It is interesting to observe that forRe� > 0 the e�ect of  � is much stronger than the one
of  + (the latter appears only in the cotangent term, its contribution is bounded, while the former
additionally appears as an inverse prefactor). The situation is opposite whenRe� < 0.

The expressions for� � ( � ;  + ) are more involved than the ones for� � ( ) but, as expected,
they simplify to (43) and (44) for + =  � . As that case, it is possible to use the standard results
on Bessel functions to show that the two constants have non-zero real and imaginary part for any
 � > 0.

To answer the general question posed in [Be13] for a wider class of potentials one would need
good estimates of the Jost functions in a complex half ball containing the origin and the positive
and negative real axis. To our knowledge, the best result of this kind is contained in a paper by
Yafaev [Ya]. In that work, however, the author needed to exclude two cones containing the real axis
for his estimates to hold. Additionally he could get only the �rst term in the asymptotic expansion,
whereas for our result we would need at least the �rst two.



Figure 6: Plot of real part (left) and imaginary part (right) ofU
�
� 

2
p

� � ; c; 2
p

� �
�

(black) and
its approximation given by (A.8) (dashed red) for small values of� and  = 2 :5.

and Re(az) = Re( =a ).
Observe that for 2 R+ , Re(az) > 0 i� Re(a) > 0.
The coe�cients A0 and B0 also have explicit expressions that can be derived using some sym-

metry properties and L'Ĥopital rule, see [Te, (27.4.74)]):

A0 =
�

�
2 sin(� )

� c
s

2
�

tan � cos(c� )

B0 =
�

�
2 sin(� )

� c
s

2
�

tan �
sin(c� )

�

where� = � 1
2 iw0.

The computation ofAn and Bn for n � 0 is quite involved, however we will need onlyA1. One
can exploit the procedure to computeA0 and B0, and the recursive de�nition of the coe�cients to
get a Taylor approximation in negative powers ofa for c 2 f 0; � 1g. We get

if c = 0 ; A0
0 = 1 + O(a� 2); A0

1 = �
5
16

+ O(a� 2); �B 0
0 = 0 ; (A.6)

if c = � 1; A � 1
0 = 1 + O(a� 4); A � 1

1 = �
11
16

+ O(a� 2); �B � 1
0 = �

p


2a
+ O(a� 3): (A.7)

With these, (A.2) can be re-written

U
�

� a; c;

a

�
�

� p


a

� 1� c
2

�( a+1) e


2a

�
~Cc� 1(a;  ) ( ~Ac

0 + ~Ac
1) + ~Cc� 2(a;  ) ~B c

0 + O(a� 2)
�

(A.8)

where
~C� (a;  ) := cos(�a )J� (2

p
 ) + sin( �a )Y� (2

p
 ) (A.9)

and ~Ac
0, ~Ac

1 and ~B c
0 are obtained dropping the error term in the appropriate coe�cient in (A.6) and

(A.7).

Remark A.1. Here the error is in factO(=a 2), we may thus expect the improvement in the precision
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