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Abstract Models for which the likelihood function can
be evaluated only up to a parameter-dependent un-
known normalizing constant, such as Markov random
�eld models, are used widely in computer science, stat-
istical physics, spatial statistics, and network analysis.
However, Bayesian analysis of these models using stand-
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ulation based" methodssuch as approximate Bayesian
computation (ABC) (Grelaud et al 2009) do not de-
pend upon such a decomposition and can be applied
more generally: to situation 1 in Picchini and Forman
(2013); situations 2 and 3 (e.g. Everitt (2012)) and situ-
ation 4 (e.g. Wilkinson (2013)).

This paper considers the problem of Bayesian model
comparison in the presence of an INC. We explore both
exact and simulation-based methods, and �nd that ele-
ments of both approaches may also be more generally
applicable. Speci�cally:
{ For exact methods we �nd that approximations are

required to allow practical implementation, and this
leads us to investigate the use of approximate weights
in importance sampling (IS) and sequential Monte
Carlo (SMC). We examine the use of bothexact-
approximate approaches (as in Fearnhead et al (2010))
and also \
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of a sequence ofK targets, which in Murray et al (2006)
are chosen to be

f k (�j �; b�; y ) /  k (�j �; b�; y )

=  (�j � )(K +1 � k )=(K +1) qu (�j �; y )k=(K +1) (3)

betweenf (�j � ) and qu (�j �; y ). After the initial draw uK +1 �
f (�j � ), the auxiliary point is taken through a sequence of
K MCMC moves which successively have target
f k (�j �; b�; y ) for k = K : 1. The resultant IS estimator is
given by

d1
Z (� )

=
1

M

MX

m =1

KY

k=1

 k (u(m )
k � 1j�; b�; y )

 k � 1(u(m )
k � 1j�; b�; y )

: (4)

This estimator has a lower variance (although at a higher
computational cost) than the corresponding IS estima-
tor. We note that AIS can be viewed as a particular
case of SMC without resampling and one might expect
to obtain additional improvements at negligible cost by
incorporating resampling steps within such algorithms
(see Zhou et al (2015) for an illustration of the potential
improvement and some discussion); we do not pursue
this here as it is not the focus of this work.

1.1.2 Exchange algorithms

An alternative approach to avoiding the ratio of INCs
in equation (1) is given by Murray et al (2006), in which
it is suggested to use the acceptance probability

min
�

1;
q(� j� � )
q(� � j� )

p(� � )
p(� )

 (yj� � )
 (yj� )

 (uj� )
 (uj� � )

�
;

where u � f (�j � � ), motivated by the intuitive idea that
 (uj� )= (uj� � ) is a single point IS estimator of
Z (� )=Z(� � ). This method is shown to have the correct
invariant distribution, as is the extension in which AIS
is used in place of IS. A potential extension might seem
to be using multiple importance points f u(m ) gM

m =1 �
f (�j � � ) to obtain an estimator of Z (� )=Z(� � ) that has
a smaller variance, with the aim of improving the sta-
tistical e�ciency of estimators based on the resultant
Markov chain. This scheme is shown to work well em-
pirically in Alquier et al (2015). However, this chain
does not have the desired target as its invariant dis-
tribution. Instead it can be seen as part of a wider
class of algorithms that use a noisy estimate of the
acceptance probability: noisy Monte Carlo algorithms
(also referred to as\inexact approximations" in Giro-
lami et al (2013)). Alquier et al (2015) shows that under
uniform ergodicity of the ideal chain, a bound on the
expected di�erence between the noisy and true accep-
tance probabilities can lead to bounds on the distance
between the desired target distribution and the iterated

noisy kernel. It also describes additional noisy MCMC
algorithms for approximately simulating from the pos-
terior, based on Langevin dynamics.

1.1.3 Russian Roulette and other approaches

Girolami et al (2013) use series-based approximations
to intractable target distributions within the
exact-approximation framework, where \Russian Roul-
ette" methods from the physics literature are used to
ensure the unbiasedness of truncations of in�nite sums.
These methods do not require exact simulation from
f (�j � � ), as do the SAV and exchange approaches de-
scribed in the previous two sections. However, SAV and
exchange are often implemented in practice by generat-
ing the auxiliary variables by taking the �nal point of a
long \internal" MCMC run in place of exact simulation
(e.g Caimo and Friel (2011)). For �nite runs of the in-
ternal MCMC, this approach will not have exactly the
desired invariant distribution, but Everitt (2012) shows
that under regularity conditions the bias introduced by
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in (2); and using AIS, rather than simple IS, for esti-
mating 1=Z(� (p) ) as in (4) (giving an algorithm that we
refer to as multiple auxiliary variable IS (MAVIS), in
common with the terminology in Murray et al (2006)).
Using qu (�j �; y ) = f (�j b� ), as described in section 1.1.1,
and  k as in (3), we obtain

d1
Z (� )

=
1

Z (b� )
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(a) A box plot of the log of the estimated BF divided by
the true BF.
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Consequently, the mean squared error of this estimate
is:
1
P

�
Varq [w(� ) + b(� )] + Eq[�� 2

� ]
	

+ Eq[b(� )]2:

If we compare such a biased estimator with a second es-
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1=Z used). In section 2.6 we saw that there can be ad-
vantages of using biased, but lower variance estimates
in place of standard IS.

The main weakness of all of the methods described
in this section is that they are all based on standard IS
and are thus not practical for use when� is high dimen-
sional. In the next section we examine the use of SMC
samplers as an extension to IS for use on triply intract-
able problems, and in this framework discuss further
the e�ect of inexact approximations.

3 Sequential Monte Carlo approaches

SMC samplers (Del Moral et al 2006) are a general-
isation of IS, in which the problem of choosing an ap-
propriate proposal distribution in IS is avoided by per-
forming IS sequentially on a sequence of target distri-
butions, starting at a target that is easy to simulate
from, and ending at the target of interest. In standard
IS the number of Monte Carlo points required in order
to obtain a particular accuracy increases exponentially
with the dimension of the space, but Beskos et al (2011)
show (under appropriate regularity conditions) that the
use of SMC circumvents this problem and can thus be
practically useful in high dimensions.

In this section we introduce SMC algorithms for
simulating from doubly intractable posteriors which have
the by-product that, like IS, they also produce estim-
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In order that this approach may be implemented
we might consider, in the spirit of the approximations
suggested in section 2, using an estimate of the ratio
term Z t � 1(� (p)

t � 1)=Zt (�
(p)
t � 1). For example, an unbiased IS

estimate is given by

\
Z t � 1(� (p)

t � 1)

Z t (�
(p)
t � 1)

=
1

M

MX

m =1

 t � 1(u(m;p )
t j� (p)

t � 1)

 t (u
(m;p )
t j� (p)

t � 1)
; (13)

whereu(m;p )
t � f t (�j �

(p)
t � 1). Although this estimate is un-

biased, we note that the resultant algorithm does not
have precisely the same extended space interpretation
as the methods in Del Moral et al (2006). Appendix B
gives an explicit construction for this case, which incor-
porates a pseudomarginal-type construction (Andrieu
and Roberts 2009).

Data point tempering For the SMC approach to be e�-
cient we require that the sequence of distributionsf � t g
be chosen such that� 0 is easy to simulate from,� T is
the target of interest and the intermediate distributions
provide a \route" between them. For the applications
in this paper we found the data tempering approach of
Chopin (2002) to be particularly useful. Suppose that
the data y consists of N points, and that N is ex-
actly divisible by T for ease of exposition. exposit686(e)(osit11 s-23Sk14(fou9.9626 Tf -11.695 -8Td 82 Td [(the)-517/F7 6.9738 Tf 5.679 -1.494 Td [(0)]TJ/F8 9.9626 Tf 8.069 1.494 Td [(()]TJ/F11 9.9626 Tf 3.874 0 Td [(�)]TJ/F7 6.97386 Tf 3.508 1.175 Td0]TJ/F11 9.9626 Tf 2.768 0 Td [(�)]TJ 9.9626 Tf 10.39 0 5(wh())]TJ/F10 ]TJ 0= 9.9626 Tf 111.456 07.91p)]TJ/F7 6.9738 Tf 10.39 0 5(01())]TJ/F11 9.9626 Tf 3.874 0 Td [(�)]TJ/F7 6.97388Tf 3.508 1.175 Td0]TJ/F1/F10 ]T563(Rob)-563(eas9.9626 Tf 43.505 0  [(9Td0]TJ/F1 9.9626 Tf 3.507 1.6.7[(F)83(or)= ]TJ 01 9.9626 Tf 10.169 9.5d [Td0]TJ/F1;38767(:::T50A94J/F10 6.9738 Tf 5.679 -12Td 61Td [(t)]TJ/F8 9.9626 Tf 3.508 1.494 Td [(()]TJ/F11 9.9626 Tf 3.874 0 Td [(�)]TJ/F7 6.97386 Tf 3.508 1.175 Td0]TJ/F11 9.9626 Tf 2.768 0 Td [(�)]TJ 9.9626 Tf 10.39 0 5(wh())]TJ/F10 ]TJ 0= 9.9626 Tf 111.456 07.91p)]TJ/F7 6.9738 Tf 10.39 0 5(01())]TJ/F11 9.9626 Tf 3.874 0 Td [4�)]TJ/F7 6.97388Tf 3.508 1.175 4))]TJ/F10 6.9738 Tf 3.874 0 Td [4�)]TJ0 6.9738 Tf 4.878 -1.494 Td [(t)]TJ/F8 9.9626 Tf 3.507 1.494 Td [(()]TJ/F11 9.9626 Tf 3.874 0 Td [(�)]TJy6.97386 Tf 3.508 1.5(wh())]TJ1 9.9626 Tf 2.768 0 Td [7�)]TJ/F7 6.97388Tf 3.508 1.175 4))]TJ/F10 6.94 -1Td 2 Tdd [(w)28(e)-38(d 9.9626 Tf 2.768 0 0 Td [(g)]TJ/F80 6.9738 Tf 4.878 -1.494 Td [(t)]TJ/F8 9.9626 Tf 3.507 1.494 Td [(()]TJ/F14 9.9626 Tf 3.874 0 Td [(�)]TJy6.97386 Tf 3.508 1.5(wh())]TJ1 9.9626 Tf 2.768 0 Td [7�)]TJ/F7 6.97388Tf 3.508 1.175 4))]TJ/F10 -279(= 9.9626 Tf 111.456 07.157�)]TJ0 6.9738Tf 75.677 0 d [1.494700)]TJ/F7 6.97386 Tf 4.981 0 Td52 Td494700)]TJy6.9738 Tf 4.106 0 Td885Td [7m)]TJ/F71: 6.9738 Tf 6.8 -1.494 [(1)]TJ/F8N3870TJ =T 9.9626 Tf 20.267 2.4542Td [7m
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3.2 Application to precision matrices

In this section we examine the performance of the SMC
sampler, with MCMC proposal and data-tempered tar-
get distributions, for estimating the evidence in an ex-
ample in which � is of moderately high dimension. We
consider the case in which� = � � 1 is an unknown
precision matrix, f (yj� ) is the d-dimensional multivari-
ate Gaussian distribution with zero mean and p(� ) is
a Wishart distribution W(�; V ) with parameters � � d
and V 2 Rd� d. Suppose we observen i.i.d. observations
y = f yi g

n
i =1 , where yi 2 Rd. The true evidence can be

calculated analytically, and is given by

p(y) =
1

� nd= 2

� d( � + n
2 )

� d( �
2 )

�
�
�
�
V � 1 +

P n
i =1 yi yT

i

� � 1
�
�
�

� + n
2

jV j
�
2

;

(18)

where � d denotes the d-dimensional gamma function.
For ease of implementation, we parametrise the preci-
sion using a Cholesky decomposition� � 1 = LL 0 with
L a lower triangular matrix whose (i; j )'th element is
denoted aij .

As in section 2.3, we writef (yj� ) as  (yj� )=Z(� ) as
follows

f
�
f yi g

n
i =1 j � � 1�

= j2�� j � n= 2 exp

 

�
1
2

nX

i =1

y0
i �

� 1yi

!

;

where in some of the experiments that follow,Z (� ) =
j2�� jn= 2 is treated as if it is an INC. In the Wishart
prior, we take � = 10 + d and V = I d.

Taking d = 10, n = 30 points were simulated using
yi � MVN (0d; 0:1 � I d). The parameter space is thus
55-dimensional, motivating the use of an SMC samplerTJ/F8 9.9626 Tf 5.016an SMC samplerTJ33(matrices)]TJ 0 -24 Tf354 312(samp2plerTr9Tf 63.tatio3ng)]0,iTd [(V)]7i-,78.32h0 -5.977s 1.495 Td1.38 0 Ts [(V)]7]TJhe= d:
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Fig. 3: Box plots of the results of population exchange
and random weight SMC.

the results produced by this method in comparison with
those from Friel (2013).

We observe that the median of the random weight
SMC estimates is more accurate than that of the popu-
lation exchange estimates - the bias introduced through
using an internal Gibbs sampler in place of an exact
sampler does not appear to accumulate su�ciently to
a�ect the results (this issue is explored further in the
following section). However, it has slightly higher vari-
ance than population exchange (much higher than SAVIS
and MAVIS). This high variance can be attributed to
two factors:

1. Since the SMC sampler begins with points sampled
from the prior, larger changes in � are considered
than in the IS approaches, thus the estimates of the
ratio of the normalising constants require more im-
portance points to be accurate - the results suggest
that the budget of 200 Gibbs sweeps is insu�cient.
This is the opposite situation to that encountered
in section 2.6.2, where the changes in� are small
and the estimates of the ratio of the normalising
constants are accurate with small numbers of im-
portance points.

2. It's been frequently observed (cf. Lee and Whiteley
(2015)) that, as suggested by the asymptotic vari-
ance expansion, in some instances the �rst few iter-
ations of an SMC sampler contribute substantially
to the ultimate error. This issue arises since the for-
getting of the sampler doesn't suppress the terms
that the initial errors contribute to the asymptotic
variance enough to compensate for the fact that
they're much larger than the �nal ones. This is due,
when using data point tempering in the manner we

have here, to the much larger relative discrepancy
between the �rst few distributions in the sequence
than between later distributions.

We conclude that the random weight SMC method
is a viable approach to estimating Bayes' factors for
these models, but that care should be taken in tuning
the weight estimates and choosing the sequence of SMC
distributions.

3.4 Biased Weights in SMC

3.4.1 Error bounds

We now examine the e�ect of using inexact weights on
estimates produced by SMC samplers. By way of theo-
retical motivation of such an approach, we demonstrate
that under strong, but standard (cf. Del Moral (2004)),
assumptions on the mixing of the sampler, if the ap-
proximation error is su�ciently small, then this error
can be controlled uniformly over the iterations of the
algorithm and will not accumulate unboundedly over
time (and that it can in principle be made arbitrarily
small by making the relative bias small enough for the
desired level of accuracy). We do not here consider the
particle system itself, but rather the sequence of distri-
butions which are being approximated by Monte Carlo
in the approximate version of the algorithm and in
the idealised algorithm being approximated. The Monte
Carlo approximation of this sequence can then be un-
derstood as a simple mean �eld approximation and its
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ployed but this formalism allows for a straightforward
statement of the result):

A1 (Bounded Relative Approximation Error) There ex-
ists  < 1 such that:

sup
t 2 N

sup
x

jGt (x) � eGt (x)j
eGt (x)

� :

A2 (Strong Mixing; slightly stronger than a global Doe-
blin condition) There exists � (M ) > 0 such that:

sup
t 2 N

inf
x;y

dM t (x; �)
dM t (y; �)

� � (M ):

A3 (Control of Potential) There exists � (G) > 0 such
that:

sup
t 2 N

inf
x;y

Gt (x)
Gt (y)

� � (G):

The �rst of these assumptions controls the error intro-
duced by employing an inexact weighting function; the
others ensure that the underlying dynamic system is
su�ciently ergodic to forget it's initial conditions and
hence limit the accumulation of errors. We demonstrate
below that the combination of these properties su�ces
to transfer that stability to the approximating system.

We consider the behaviour of the distributions � p

and ~� p which correspond to the target distributions
at iteration p of the exact and approximating algo-
rithms, prior to reweighting, at iteration p in the fol-
lowing proposition, the proof of which is provided in
Appendix C, which demonstrates that if the approxi-
mation error,  , is su�ciently small then the accumu-
lation of error over time is controlled:

Proposition 1 (Uniform Bound on Total-Variation
Discrepancy). If A1, A2 and A3 hold then:

sup
n 2 N

k� n � e� n kTV �
4 (1 � � (M ))

� 3(M )� (G)
:

This result is not intended to do any more than
demonstrate that, qualitatively, such forgetting can pre-
vent the accumulation of error even in systems with \bi-
ased" importance weighting potentials. In practice, one
would wish to make use of more sophisticated ergod-
icity results such as those of Whiteley (2013), within
this framework to obtain results which are somewhat
more broadly applicable: assumptions A2 and A3 are
very strong, and are used only because they allow sta-
bility to be established simply. Although this result is,
in isolation, too weak to justify the use of the approx-
imation schemes introduced here in practice, together
with the empirical results presented below, it does sug-
gest that further investigation of such approximations
is warranted particularly in settings in which unbiased
estimators are not available.
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Fig. 4: The estimated bias in the log evidence estimates
of the true (black solid), unbiased random weight (black
dashed), biased random weight (grey solid) SMC algo-
rithms using MCMC kernels, and the estimated bias
when using the biased random weight algorithm with
perfect mixing (grey dashed).

gorithm with true weights, and only a small bias is ob-
served in the unbiased random weight sampler (this bias
is likely to be due to the relatively small number of repli-
cations). Bias does accumulate in the biased random
weight sampler, but we note that the level of bias ap-
pears to stabilise. This accumulation of bias means that
one should exercise caution in the use of SMC samplers
with biased weights. However, we observe that perfect
mixing substantially decreases the bias in the evidence
estimates from the algorithm. Also, in this case we ob-
serve that the bias does not accumulate su�ciently to
give poor estimates of the evidence. Here the standard
deviation of the �nal log evidence estimate over the ran-
dom weight SMC sampler runs is approximately 0.4, so
the bias is not large by comparison.

3.5 Discussion

In section 2.6 we observed clearly that the use of biased
weights in IS can be useful for estimating the evidence
in doubly intractable models, but we have not observed
the same for SMC with biased weights. When applied
to the precision example in section 3.2, an inexact sam-
pler (using the bridge estimator) did not outperform
the exact sampler, despite the mean square error of the

results for the exact algorithm indicate that the variance of
the evidence estimates we use is su�ciently small that this
e�ect is negligible.

Fig. 5: The estimated MSE in the log evidence estimates
of the four SMC samplers (same key as �gure 4).

biased bridge weight estimates being substantially im-
proved compared to the unbiased IS estimate. Over 10
runs the mean square error in the log evidence was 0.34
for the inexact sampler, compared to 0.28 for the exact
sampler. This experience suggests that samplers with
biased weights should be used with caution: weight es-
timates with low variance do not guarantee good per-
formance due to the accumulation of bias in the SMC.

However, the theoretical and empirical investigation
in this section suggests that this idea is worth further
investigation, possibly for situations involving some of
the other intractable likelihoods listed in section 1. Our
results suggest that improved mixing can help combat
the accumulation of bias, which may imply that there
may be situations where it is useful to perform many
iterations of a kernel at a particular target, rather than
the more standard approach of using many intermedi-
ate targets at each of which a single iteration of a kernel
is used. Other variations are also possible, such as the
calculation of fast cheap biased weights at each target
in order only to adaptively decide when to resample,
with more accurate weight estimates (to ensure accu-
rate resampling and accurate estimates based on the
particles) only calculated when the method chooses to
resample.

4 Conclusions

This paper describes several IS and SMC approaches for
estimating the evidence in models with INCs that out-
perform previously described approaches. These meth-
ods may also prove to be useful alternatives to MCMC
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for parameter estimation. Several of the ideas in the
paper are also applicable more generally, in particular
the use of synthetic likelihood in the IS context and the
notion of using biased weight estimates in IS and SMC.
We note that the bias in these biased weight methods
may be small compared to errors resulting from com-
monly accepted approximate techniques such as ABC.

For biased IS, in section 2.5 we show that the error of
estimates from low-variance biased methods can be less
than those from unbiased methods of higher variance.
This is comparable to a result for biased MCMC meth-
ods (Johndrow et al 2015), where it is shown that the
error of estimates from a computationally cheap biased
MCMC can be less than those from an expensive ex-
act MCMC. In both cases, given a �nite computational
budget, it is not always the case that this budget should
be spent on guaranteeing the exactness of the sampler
if minimizing approximation error is the objective.

A similar choice concerning the allocation of com-
putational resources arises in SMC. Here, one does need
to be especially careful about the use of biased SMC,
due to the possible accumulation of bias over SMC it-
erations. One might expect this accumulated bias to
outweigh any bene�ts a reduced variance may bring.
For this reason we advise caution in the use of biased
SMC in general. This paper does, however, indicate
that there may exist cases where biased SMC is useful,
through: the theoretical result that under strong mix-
ing conditions bias does not accumulate unboundedly;
the empirical evidence that fast mixing may reduce the
accumulation of bias; and the empirical results where
we observe (in a situation where the distance between
successive targets decreases) that the rate at which bias
accumulates decreases with time.

Acknowledgements The authors would like to thank
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f t (�j � t � 1 ) and that K t denotes the incremental proposal dis-
tribution at iteration t , just as in a standard SMC sampler.

In the absence of resampling, each particle has been sampled
from the following proposal distribution at time t :

e� t (ex t ) = � 0 (� 0 )
tY

s =1

K s (� s � 1 ; � s )
tY

s =1

MY

m =1

f s (um
s j � s � 1 )

and hence its importance weight, W t (ex t ), should be:

� t (� t )
Q t � 1

s =0 L s (� s +1 ; � s )

� 0 (� 0 )
Q t

s =1 K s (� s � 1 ; � s )
Q t

s =1
1

M

P M
m =1

h
f s � 1 (um

s j � s � 1 )
Q

q6= m f s (um
s j � s � 1 )

i

Q t
s =1

Q M
m =1 f s (um

s j � s � 1 )

=
� t (� t )

Q t � 1
s =0 L s (� s +1 ; � s )

� 0 (� 0 )
Q t

s =1 K s (� s � 1 ; � s )

tY

s =1

1

M

MX

m =1

f s � 1 (um
s j � s � 1 )

f s (um
s j � s � 1 )

= W t � 1 (ex t � 1 ) �
� t (� t )L t � 1 (� t ; � t � 1 )

� t � 1 (� t � 1 )K t (� t � 1 ; � t )

1

M

MX

m =1

f t � 1 (um
t ; � t � 1 )

f t (um
t j � t � 1 )

;

which yields the natural sequential importance sampling in-
terpretation. The validity of the incorporation of resampling
follows by standard arguments.

If one has that � t (� t ) / p(� t )f t (yj� t ) = p(� t ) t (yj� t )=Zt (� t )
and employs the time reversal of K t for L t � 1 then one arrives
at an incremental importance weight, at time t of:

p(� t )f t (yj� t � 1 )

p(� t � 1 )f t � 1 (yj� t � 1 )

1

M

MX

m =1

f t � 1 (um
t j � t � 1 )

f t (um
t j � t � 1 )

=

p(� t ) t (yj� t � 1 )

p(� t � 1 ) t � 1 (yj� t � 1 )

1

M

MX

m =1

 t � 1 (




	Cover_16_01
	z_model_choice_sc_revised2

