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A NEW CHARACTERISATION OF 1 -HARMONIC AND
p-HARMONIC MAPS VIA AFFINE VARIATIONS IN L 1

NIKOS KATZOURAKIS

Abstract. Let u : 
 � Rn �! RN be a smooth map and n; N 2 N. The
1-Laplacian is the PDE system

(1) � 1u :=
�

Du 
 Du + jDu j2 [Du ]?
 I
�

: D 2u = 0 ;

where [Du ]? := Proj R ( Du ) ? . (1) constitutes the fundamental equation of
vectorial Calculus of Variations in L 1, associated to the model functional

(2) E1(u; 
 0) =
jDu j2


L 1 (
 0) ; 
 0 b 
 :

We show that generalised solutions to (1) can be characterised in terms of (2)
via a set of designated a�ne variations. For the scalar case N = 1, we utilise
the theory of viscosity solutions of Crandall-Ishii-Lions. For the vectorial case
N � 2, we utilise the recently proposed by the author theory of D-solutions.
Moreover, we extend the result described above to the p-Laplacian, 1 < p < 1.

1. Introduction

Let n; N 2 N. Given a (smooth) map u : 
 � Rn �! RN de�ned on an open
set, let RNn and RNn 2

s denote respectively the space of matrices and the space of
symmetric tensors wherein the gradient matrix and the hessian tensor

Du(x) =
�
D i u� (x)

� � =1 ;:::;N
i =1 ;:::;n ; D 2u(x) =

�
D 2

ij u� (x)
� � =1 ;:::;N

i;j =1 ;:::;n

of u are valued. Obviously, D i � @=@xi , x = ( x1; :::; xn )> , u = ( u1; :::; uN )> . In
this paper we are primarily interested in the so-called1 -Laplacian which is the
following quasilinear 2nd order nondivergence system:

(1.1) � 1 u :=
�

Du 
 Du + jDu j2[Du ]? 
 I
�

: D 2u = 0 :

Here [Du]? denotes the orthogonal projection on the orthogonal complement of the
range of Du and jDu j is the Euclidean norm of Du on RNn . In index form (1.1)
reads

NX

� =1

nX

i;j =1

�
D i u� D j u� + jDu j2[Du ]?�� � ij

�
D 2

ij u� = 0 ; � = 1 ; :::; N;

[Du]? := Proj (R (Du )) ? :

We are also interested in the more classicalp-Laplacian for 1 < p < 1 , which is
the following divergence system:

(1.2) � pu := div
�
jDu jp� 2Duj
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The system (1.1) is the fundamental equation which arises in vectorial Calculus of
Variations in the space L 1 , that is in connection to variational problems for the
model functional

(1.3) E1 (u; 
 0) :=

 jDu j2




L 1 (
 0) ; 
 0 b 
 ; u 2 W 1;1
loc (
 ; RN ):

The scalar counterpart of (1.1) whenN = 1 simpli�es to

Du 
 Du : D 2u =
nX

i;j =1

D i u D j u D 2
ij u = 0

and �rst arose in the work of G. Aronsson in the 1960s ([A1, A2] and for a pedagog-
ical introduction see [C, K8]) who pioneered the �eld of Calculus of Variations in
the spaceL 1 . The full system (1.1) �rst appeared in recent work of the author [K1]
who initiated the study of the vectorial case in a series of papers ([K1]-[K7]). On the
other hand, the p-Laplacian (1.2) is a classical model which arises in conventional
Calculus of Variations for integral functionals, in particular as the Euler-Lagrange
equation of

(1.4) Ep(u; 
 0) :=

 jDu jp




L 1 (
 0) ; 
 0 b 
 ; u 2 W 1;p
loc (
 ; RN ):

A standard di�culty in both the scalar and the vectorial case of (1.1) is that it
is nondivergence and since in general smooth solutions do not exist, the de�nition
of generalised solutions is an issue. In the vectorial case, an additional di�culty is
that the system has discontinuous coe�cients even if the solution might be smooth
(see [K2]). This happens because the projection [Du(x)]? \feels" the dimension of
the tangent spaceR(Du(x)) � RN .

In this paper we are concerned with the variational characterisation of appro-
priately de�ned generalised solutions to (1.1) and (1.2) in both the scalar and the
vectorial case in terms of the supremal functional (1.3). The main results of this
paper are contained in the statements of Theorems 9, 11 and 12 (and Corollaries
10, 13). Roughly speaking, these results claim that for 1< p � 1 we have

� pu = 0 on 
 ()

(
For all 
 0 b 
 and A 2 A p


 0(u);

E1 (u; 
 0) � E1 (u + A; 
 0)

where A p

 0(u) is a designated set ofa�ne mappings depending onu and on the

subdomain 
 0. This result is quite surprising in that both the 1 -Laplacian (1.1)
and the p-Laplacian (1.2) are associated to the respective supremal/integral func-
tionals (1.3), (1.4) (and not both associated to (1.3)) when the classes of variations
are
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We will systematically use the Alexandro� 1-point compacti�cation of the space
RNn 2

s . Its topology will be the one which makes it homeomorphic to the sphere of
dimensionNn(n + 1) =2 (via the stereographic projection which identi�es the north
pole with f1g ). We will denote it by

RNn 2

s := RNn 2

s [ f1g :

Then, the spaceRNn 2

s will be viewed as a metric vector space, isometrically con-
tained into its 1-point compacti�cation.

Young Measures. Let 
 � Rn be open. The Young measures can be identi�ed
with a subset of the unit sphere of a certainL 1 space of measure-valued maps and
this provides very useful properties, like compactness.

De�nition 1. The set of Young Measures from 
 to RNn 2

s is the subset of the unit
sphere of the spaceL 1

w �

�

 ; M

�
RNn 2

s

��
which contains probability-valued maps:

Y
�

 ; RNn 2

s

�
:=

n
# 2 L 1

w �

�

 ; M

�
RNn 2

s

��
: #(x) 2 P

�
RNn 2

s

�
; for a.e. x 2 


o
:

The spaceL 1
w �

�

 ; M

�
RNn 2

s

��
is a dual Banach space and consists of measure-

valued maps 
 3 x 7�! #(x) 2 M
�
RNn 2

s

�
which are weakly* measurable, in the

sense that for any Borel setU � RNn 2

s , the function 
 3 x 7�! [#(x)](U) 2 R is
measurable. The norm of the space is given by

k#kL 1
w � (
 ;M (RNn 2

s )) := ess sup
x 2 


k#(x)k
�
RNn 2

s

�

where \k � k" denotes the total variation. For background material on these spaces
we refer e.g. to [FL, Ed, V] and to [K9]-[K12]. The L 1

w � space above is the dual
space of the spaceL 1

�

 ; C0

�
RNn 2

s

��
of Bochner integrable maps. The points of

this L 1 space are the Carath�eodory functions � : 
 � RNn 2

s �! R which satisfy

k� kL 1 (
 ;C 0 (RNn 2
s )) :=

Z





 �( x; �)




C 0 (RNn 2
s ) dx < 1 :

It is well known that the unit ball of L 1
w � is sequentially weakly* compact. Hence,

for any bounded sequence (#m )1
1 � L 1

w � , there is a limit map # and a subsequence
of m's along which #m ��� * # as m ! 1 .

Remark 2 (Properties of Y.M.) . We note the following facts about Young measures
(proofs can be found e.g. in [FG]):

i) [Functions as Y.M.] The set of measurable mapsU : 
 � Rn �! RNn 2

s can
be identi�ed with a subset of the Young measures via the embeddingU 7! � U ,
� U (x) := � U (x ) .
ii) [ Weak* compactness of Y.M.] The set of Young measures is convex and sequen-
tially compact in the weak* topology induced from L 1

w � .

The next lemma is a minor variant of a classical result (see [FG, FL, K9]) but it
plays a fundamental role in our setting because it guarantees the compatibility of
classical/strong solutions with D-solutions.

Lemma 3. Let U � ; U1 : 
 � Rn �! RNn 2

s be measurable maps,� 2 N. Then, up
the passage to a subsequence, the following equivalence holds true:

� U �
�

�� * � U 1 in Y
�

 ; RNn 2

s

�
() U � �! U1 a.e. on 
 :
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The notion of D-Solutions to fully nonlinear 2nd order systems. Herein
we consider the special case of once di�erentiable solutions to second order systems
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not use this version herein, however. Note �rst that (2.2) can be rephrased as the
following di�erential inclusion for the support:

supp(D2u(x)) �
n

X 2 RNn 2

s :
�
�F

�
Du(x); X

� �
� = 0

o
[ f1g ; a.e. x 2 
 :

Then, for any compactly supported � 2 C0
c

�
RNn 2

s

�
o� in�nity and for a.e. x 2 
,

the continuous function

RNn 2

s 3 X 7�! �( X ) F
�
Du(x); X

�
2 RN

is well-de�ned on the compacti�cation and also vanishes on the support of any
di�use hessian measure. As a consequence, we have the statement

(2.3)
Z

RNn 2
s

�( X ) F
�
Du(x); X

�
d[D2u(x)](X ) = 0 ; a.e. x 2 
 ;

for any � 2 C0
c

�
RNn 2

s

�
and any di�use hessianD2u 2 Y

�

 ; RNn 2

s

�
. It can be easily

seen that the converse is true as well (see [K9]) and hence (2.3) is a restatement of
(2.2).

For more details on the material of this section (e.g. analytic properties, equiv-
alent formulations of De�nition 5, etc) we refer to [K9]-[K12].

The notion of Feeble Viscosity Solutions to fully nonlinear 2nd order
equations. The de�nitions of this paragraph are taken from [K5] (see also [JJ,
JLM] where the \feeble" counterparts of the \usual" viscosity notion �rst appeared)
but here we apply them only to the case of thep-Laplacian for 1
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If u 2 C1(
), then any pair ( P; X ) in J 2;�
0 u(x) satis�es P = Du(x). In this case

we will use the notation

D 2;� u(x) :=
n

X 2 Rn 2

s

�
�
� (Du(x); X ) 2 J 2;�

0 u(x)
o

and we will call D 2;� u(x) the set of feeble 2nd order sub/super derivatives ofu at
x 2 
.

3. Two elementary lemmas

In this brief section we isolate a couple of very simple technical results which
contain an essential common part of the proofs of the main results in both the
scalar and the vectorial case.

Lemma 7. Let 
 � Rn be open andu 2 C1(
 ; RN ). Given 
 0 b 
 , we set


 0(u) :=
n

x 2 
 0
�
�
� jDu(x)j = kDukL 1 (
 0)

o

Let further A : Rn �! RN be an a�ne map.

a) Suppose that for some
 0 b 
 and any � > 0, u satis�es

kDukL 1 (
 0) �

 Du + � DA




L 1 (
 0) :

Then, we have
max
z2 
 0

�
Du(z
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Lemma 8. Let 
 � Rn be open andu 2 C1(
 ; RN ). Given 
 0 b 
 , let 
 0(u) be
as in Lemma 7. Let further A : Rn �! RN be an a�ne map. We set

h(t) :=

 Du + t DA


 2

L 1 (
 0) � k Duk2
L 1 (
 0) ; t � 0:

Then, h is convex, h(0) = 0 and also the lower right Dini derivative of h at zero
satis�es

Dh(0+ ) := lim inf
t ! 0+

h(t) � h(0)
t

� max
y2 
 0(u )

�
2Du(y) : DA

	
:

Proof of Lemma 8. E�ectively, this is an application of Danskin's theorem [D],
but we may also prove it directly. By setting

H (t; y) :=
�
�Du(y) + t DA

�
�2

we have
h(t) = max

y2 
 0
H (t; y) � max

y2 
 0
H
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By applying Lemma 7 to u and A, we have

0 � max
z2 
 " (x )

�
Du(z) � DA

	

= max
z2 
 " (x )

�
Du(z) �

�
� X x : Du(x))

	

= max
z2 
 " (x )

�
�

�
X x : Du(x) 
 Du(z)

�	

�! �
�
X x : Du(x) 
 Du(x)

�
;

as " ! 0. Hence,Du
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a�ne variations. In view of the well known C1;� regularity results for p-Harmonic
mappings [U], the hypothesis that solutions areC1 is actually superuous.

Theorem 11 (p-Harmonic functions). Let 
 � Rn be open andu 2 C1(
) . Given

 0 b 
 , let 
 0(u) be as above and consider the sets of a�ne functions

A � ;p

 0 (u) :=

8
><

>:
A : Rn ! R

�
�
�
�
�
�
�

D 2A � 0 and there exist � 2 R� ;
x 2 
 0(u) and X x 2 D 2;� u(x) s. th.:

DA � �
�
(p � 2)X x + ( I :X x )I

�
Du(x)

9
>=

>;

[
R;

where p 2 (1; 1 ). Then, the following statements are equivalent:
(a) We have

div
�
jDu jp� 2Du

�



A NEW VARIATIONAL CHARACTERISATION OF 1 -HARMONIC MAPS 13

Fix also " > 0 and let 
 " (x) be as in Lemma 7 and note that for any � > 0,
�A 2 A + ;p


 " (x ) (u). Hence, by arguing as in Theorem 9 we have that

0 � Du(x) � DA

= Du(x) �
�

(p � 2)X x Du(x) + ( I : X x )Du(x)
�

=
�

(p � 2)Du(x) 
 Du(x) + jDu(x)j2I
�

: X x :

Hence,u is a feeble viscosity solution on 
.

Conversely, �x any 
 0 b 
 and x 2 
 0(u). If J 2;+
0 u(x) 6= ; , then any A 2 A + ;p


 0 (u)
can be written as

A(z) = a + �
�

(p � 2)X x + ( I : X x )I
�

: Du(x) 
 z; z 2 Rn ;

for somea 2 R, � � 0 and some (Du(x); X x ) 2 J 2;+
0 u(x). Let h be the function of

Lemma 8 for such anA. By applying Lemma 8, we have

Dh(0+ ) � 2Du(x) � DA

= 2 �
�

(p � 2)Du(x) 
 Du(x) : X x + jDu(x)j2I : X x

�

� 0;

since by assumptionu is a subsolution on 
 in the feeble viscosity sense. By using
that h(0) = 0 and that h is convex, we deduce as in Theorem 9 thath(t) � 0 for
t � 0 and hence

kDukL 1 (
 0) � k Du + DA kL 1 (
 0)

for any A 2 A + ;p

 0 (u) and any 
 0 b 
. Thus, ( b) , (c). The case of supersolutions

follows analogously and hence the theorem ensues. �

5. The vectorial case N �
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nullset and choose from each equivalence class the representative which is rede�ned
as � f 0g at points where D2u(x) does not exist. Moreover, let u be a �x map in
C1(
 ; RN ). Since Du(x) exists for all x 2 
, by perhaps a further re-de�nition of
every D2u on a Lebesgue nullset, it follows thatu is D-solution to the system if
and only if for (any �xed such representative of) any di�use hessian, we have

A
�
Du(x)

�
: X x = 0 ; for all x 2 
 and X x 2 supp�

�
D2u(x)

�
:

(We remind that at points x 2 
 for which D2u(x) = � f1g and hence supp�
�
D2u(x)

�

= ;
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Now we argue similarly for the normal component of the system. Suppose that
for any 
 0 b 
 and any A 2 A ? ;1


 0 (u), we have

kDukL 1 (
 0) � k Du + DA kL 1 (
 0) :

We �x as before x 2 
 and X x 2 supp�

�
D2u(x)

�
. If Du(x) = 0, then the system

jDu j2[Du ]? � u = 0 is trivially satis�ed at x. If Du(x) 6= 0, then we choose any
direction normal to Du(x), that is

nx 2 R
�
Du(x)

� ?
� RN ;

which means that n>
x Du(x) = 0. We note that if Du(x) : Rn �! RN is surjective,

then we can �nd only the trivial nx
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since by assumptionDu 
 Du : D 2u = 0 on 
 in the D-sense. In view of the fact
that h(0) = 0 and h is convex, it follows that

h(t) � h(0) + Dh(0+ ) t � 0; t � 0;

and hence

kDukL 1 (
 0) � k Du + DA kL 1 (
 0) ; A 2 A > ;1

 0 (u); 
 0 b 
 :

The case ofA 2 A ? ;1

 0 is completely analogous: any such nonconstantA satis�es

A(x) ? R(Du(x)) and DA 2 L X x
�
A(x)

�
for someX x 2 supp� (D2u(x)) and some

x 2 
 0(u). By applying Lemma 8 again, we have

Dh(0+ ) � max
y2 
 0(u )

�
2Du(y) : DA

	

� 2Du(x) : DA:

If Du(x) 6= 0, then by the de�nition of L X x
�
A(x)

�
we have

Dh(0+ ) � 2DA : Du(x)

= � 2 (nx 
 I ) : X x

= � 2n>
x

� �
[Du(x)]? 
 I

�
: X x

�

= 0

because by assumptionjDu j2[Du ]? � u = 0 on 
 in the D-sense. IfDu(x) = 0,
then again Dh(0+ ) � 0. In either cases, we obtain

h(t) � h(0) + Dh(0+ ) t � 0; t � 0;

and hence

kDukL 1 (
 0) � k Du + DA kL 1 (
 0) ; A 2 A ? ;1

 0 (u); 
 0 b 
 :

The theorem has been established. �

Proof of Corollary 13
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