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Abstract

Given a �nite set of real numbers A, the generalised golden ratio is the unique number G(A) > 1
for which we only have trivial unique expansions in smaller bases, and non-trivial unique expansions
in larger bases. We show that G(A) varies continuously with the alphabet A (of �xed size), and we
calculate G(A) for certain alphabets. As we vary a single parameter within A, the generalised golden
ratio function may behave like a constant function, a linear function, and even a square root function.

We also build upon the work of Komornik, Lai, and Pedicini (2011) and study generalised golden
ratios over ternary alphabets. We give a new proof of their main result, that is we explicitly calculate
the function G(f 0; 1; mg). (For a ternary alphabet, it may be assumed without loss of generality that
A = f 0; 1; mg.) We also study the set of m 2 (1; 2] for which G(f 0; 1; mg) = 1 +

p
m and prove that

it is an uncountable set of Hausdor� dimension 0. Last of all we show that the function mapping m
to G(f 0; 1; mg) is of bounded variation yet has unbounded derivative.

Mathematics Subject Classi�cation 2010: 11A63, 28A80.
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1 Introduction and statement of results

Let A := f a0; a1; : : : ; a0



that the golden ratio acts as a natural boundary between the possible cardinalities the set of expansions
can take. It is natural to ask whether such a boundary exists for more general alphabets.

Before we state the de�nition of a generalised golden ratio it is necessary to de�ne the univoque set.
Given an alphabet A and � > 1 we set

U� (A) :=
n

(uk )1
k=1 2 AN :

1X

k=1

uk

� k has a unique expansion
o

:

We call U� (A) the univoque set. Note that for any alphabet A and � > 1 the points

1X

k=1

a0

� k and
1X

k=1

ad

� k

both have a unique expansion, soa0 and ad are always contained in the univoque set. Here and throughout
w denotes the in�nite periodic word with period w. We are now in a position to de�ne a generalised
golden ratio for an arbitrary alphabet. Given an alphabet A, we call G(A) 2 (1; 1 ) the generalised golden
ratio for A if whenever � 2 (1; G(A)) we have U� (A) = f a0; adg, and if � > G(A) then U� (A



The set M is uncountable, but its Hausdor� dimension is 0.

Theorem 3. We havedimH (M ) = 0 .

On certain intervals, the function G has the following simple form.

Theorem 4. Let h be a positive integer and2h � m �
�
1 +

q
m

m � 1

� h
. Then we have

G
� m

m � 1

�
= G(f 0; 1; mg) = m1=h :

In [1] the �rst author studied G(m) for integer m. In this case the following results hold.

Theorem B. Let m 2 Z with m � 2. The following statements hold:

�

G(m) =

(
m
2 + 1 if m is even,

m +1+
p

m 2 +10 m +9
4 if m is odd.

� If m is odd, then there exists� (m) > 0 such that for all � 2 (G(m); G(m) + � (m)) , the set U� (m)
consists of m � 1

2
m +1

2 and a subset of the sequences that end withm � 1
2

m +1
2 .

� If m is even, then there exists� (m) > 0 such that for all � 2 (G(m); G(m) + � (m)) , the set U� (m)
consists of m

2 and a subset of the sequences that end withm2 .

For each positive integer k, we also calculateG(m) on a small interval to the right of k. These
calculations demonstrate that the function G can vary in di�erent ways as we change a single parameter.
For now we postpone the statement of these results.

2 Continuity of G(A)



Proof of Theorem 1. As G(A) = G
� A � a0

ad � a0

�
, we haveG(f a0; a1; : : : ; adg) = G(� � r (a0; a1; : : : ; ad)), with

r : � d ! � 0
d; (a0; a1; : : : ; ad) 7!

� a1 � a0

ad � a0
;

a2 � a0

ad � a0
; : : : ;

ad� 1 � a0

ad � a0

�
;

� : � 0
d ! P (R); (a1; a2; : : : ; ad� 1) 7! f 0; a1; a2; : : : ; ad� 1; 1g;

and � 0
d = f (a1; a2 : : : ; ad� 1) 2 Rd� 1 : 0 < a 1 < a 2 < � � � < a d� 1 < 1g. As r is continuous on � d, it is

su�cient to prove that G � � is continuous on � 0
d.

Let a = ( a1; a2 : : : ; ad� 1) 2 � 0
d and " > 0 arbitrary but �xed. We will show that jG(� (b)) � G (� (a)) j �

3" for all b in a neighbourhood of a. Let �rst X � � 0
d be a closed neighbourhood ofa such that

jq(� (b)) � q(� (a)) j � " for all b 2 X . (Note that q � � is continuous on � 0
d.) Set

� = min
b 2 X

q(� (b)) � "; Y = f b 2 X : G(�(b)) < � g:

If Y = ; , then X is a neighbourhood ofa with jG(� (b)) � G (� (a)) j � 2" for all b 2 X . Otherwise, let
` � 2 be such that

P `
k=1 � � k � (� + " � 1)� 1. Then

bj +1 � bj �
1

q(� (b)) � 1
�

1
� + " � 1

�
X̀

k=1

1
� k (2.3)

for all ( b1; : : : ; bd� 1) 2 Y , 0 � j < d , with b0 = 0, bd = 1. Set

� (a; b) = min
0� j<d

�
(aj +1 � aj ) � (bj +1 �



Similarly, we obtain from (2.2), (2.5) and (2.6) that

1X

k=1

1 � ~ui + k

(� + " )k �
1X

k=1

1 � ui + k

� k + � (a; b) < b j � bj � 1 + � (a; b) � aj � aj � 1 when ui = bj 6= 0 :

Therefore, we have~u 2 U� + " (� (a)), thus G(�(a)) � G (� (b)) + " for all b 2 Y \ Z .
For b 2 X n Y , recall that G(� (a)) � q(� (a)) � � + 2 " � G (� (b)) + 2 " . Similarly, we obtain for all

b 2 Z that G(� (b)) � G (� (a)) + " when a 2 Y , G(�(b)) � G (� (a)) + 3 " when a =2 Y . This gives that
jG(� (b)) � G (� (a)) j � 3" for all b 2 Z , thus G � � is continuous at a.

3 Generalised golden ratios over ternary alphabets

3.1 Statements

Komornik, Lai and Pedicini [4] described the function m 7! G(m) on the interval (1 ; 2]. We provide more
detailontF11 333(de)48



Note that all the numbers and sequences do not change if we replace� by �� 0 since � 0(01) = 0



� [0;n ](0) for all n � 0, i.e., ui ui +1 � � � = u



for all i � 0 such that ui = 1. By Lemma 3.6 and since u is aperiodic, ui = 1 implies that u <
ui +1 ui +2 � � � < u 1u2 � � � . These bounds cannot be improved because, for alln � 0, 1� [0;n ](0) and
1� 0(1) � � � � [0;n � 1](1) (which is a su�x of � [0;n ](0)) are factors of u. Therefore, we haveu 2 U1+

p
m (m) if

and only if
p

m � 1 +
1X

k=1

uk

(1 +
p

m)k+1 and 1 +
1X

k=1

uk

(1 +
p

m)k � m:

This means that 1 +
P 1

k=1 uk (1+
p

m) � k = m, i.e., m = mu .

Lemma 3.10. Let � 2 S� and m > 1. There is a unique numberf � (m) > 1 such that

m = 1 +
1X

k=1

~u( � )
k

f � (m)k : (3.4)

We have f 0
� (m) < 0, f � (m� (01) ) = 1 +

p
m� (01) , f



Proof. The number � � is well de�ned since f 0(m) < 0, g0(m) > 0 on I � ,

f � (m� (01) ) = 1 +
p

m� (01) > g � (m� (01) ) and f � (m� (1) ) < 1 +
p

m� (1) = g� (m� (1) ):

If � (1) =



Proof. Let � � 2, u 2 U� (m) \ f 0; 1gN and ~u as in Lemma 3.15. Then~u 2 U ~� (m) for all ~� > � . If
~u 2 S1 , then Lemma 3.9 gives that � � 1 +

p
m. If ~u = � (1),



4 Behaviour at the generalised golden ratio

In this section we discuss the behaviour of the univoque set at the generalised golden ratio. It was
observed in [1] that when � = G(L) for some L 2 N, then every x 2 (0; L

� � 1 ) either has a countable
in�nite of expansions or a continuum of expansions. In other wordsUG(L ) (L ) is still trivial. However,
Lemma 3.9 demonstrates that this is not always the case. Indeed the following result is an immediate
consequence of this lemma.

Proposition 4.1. There existsA for which UG(A ) (A) is non-trivial.

In [9] it was shown that the smallest � 2 (1; 2) for which an x has precisely two expansions over the
alphabet f 0; 1g was � 2 � 1:71064. In other words, there is a small gap between the golden ratio for the
alphabet f 0; 1g; and the smallest � for which an x has precisely two expansion. As we show below, for
certain alphabets it is possible that anx has precisely two expansions at the golden ratio.

Proposition 4.2. For every m 2 M , the number m=G(m) has precisely two expansions in baseG(m)
over the alphabetf 0; 1; mg.

Proof. Let u 2 S be such that m = mu , let � = G(m) = 1 +
p

m and let m=� =
P 1

k=1 vk � � k be an
expansion ofm=� over the alphabet f 0; 1; mg. Sincem > m

� � 1 , we havev1 2 f 1; mg, thus
P 1

k=1 vk+1 � � k

equalsm � 1 and 0 respectively. Clearly, 0 has a unique expansion, andm � 1 has the expansionu1u2 � � �
by (3.1), which is also unique.
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