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Approximation or SIA (Hutter, 1983). It gives an analytical formulation for horizontal veloci-
ties of ice in the sheet and for their vertically averaged counterpart. Although simple and fast,
the SIA captures well the nonlinearity of the system and is an excellent resource for testing
numerical approaches, since moving-margin exact solutions exist in the literature (Halfar, 1981,
1983; Bueler et al., 2005).

Signi�cant e�orts have been invested in ice sheet modelling. These have led ice sheet mod-
ellers to compare results obtained by various models for the same idealistic test problems (see
the EISMINT intercomparison project (Huybrechts et al., 1996; Payne et al., 2000) for ice sheet
models using SIA). Most numerical ice sheet simulations use a �xed grid to calculate the solution
of the ice ow equations. In �xed grid models the ice sheet margins are not precisely located as
they generally fall between grid points. So in order to obtain a good approximation a high grid
resolution is required around the positions of the ice sheet margin during its evolution, which
makes �xed grid models costly for accurately computing the evolution of the ice margin.

One approach to gain high resolution is to apply adaptative grid techniques, which allow



2 Ice sheet modelling

2.1 Ice sheet geometry and Shallow Ice Approximation

We consider a single solid phase ice sheet whose thickness at position (x; y) and time t is denoted
by h(t; x; y ). We assume that the ice sheet lies on a �xed bedrock and denote byb(x; y) the bed
elevation. The surface elevation,s(t; x; y ), is then obtained as

s = b+ h (1)

The evolution of ice sheet thickness is governed by the balance between ice gained or lost on the
surface, snow precipitation and surface melting, and ice ow draining ice accumulated in the
interior towards the edges of the ice sheet. This is summarised in the mass balance equation
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= m � r � (hU ) in 
( t) (2)

where m(t; x; y ) is the surface mass balance (positive for accumulation, negative for ablation),
U (t; x; y ) is the vector containing the vertically averaged horizontal components of the velocity
of the ice, and 
( t) is the area where the ice sheet is located.



Figure 1: Section of a grounded radially-symmetrical ice sheet.

where r̂ is the unit radial vector, and the mass balance Eq. (2) simpli�es to
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2005, 2011; Scherer and Baines, 2012; Lee et al., 2015). This conservation method has been
applied in various contexts and is perfectly suitable for multi-dimensional problems (di�erent
examples are summarised in Baines et al. (2011) and references therein; see also Partridge (2013)
for the special case of ice sheet dynamics). The key points of the method are given in the next
paragraphs and the numerical validation of the method is carried out in Sect. 4.

3.1 Conservation of mass fraction

Moving point velocities are derived from the conservation of mass fractions (CMF). To apply
this principle we �rst de�ne the total mass of the ice sheet � (t) as

� (t) = 2 �
Z r l (t )

0
r h (t; r ) dr (9)

In fact � (t) is the total volume of the ice sheet but, since the density of ice is assumed con-
stant everywhere, � (t) is proportional to the total mass of the ice sheet and the constant of
proportionality cancels out.

Since the ux of ice through the ice sheet margin is assumed to be zero, any change in the
total mass over the whole ice sheet is due solely to the surface mass balancem(t; r ), and hence
the rate of change of the total mass,_� , is given by

_� (t) = 2 �
Z r l (t )

0
r m (t; r ) dr (10)

We now introduce the principle of the conservation of mass fractions. Let ^r (t) be a moving
point and de�ne � (r̂ ) to be the relative mass in the moving subinterval (0; r̂ (t)) as

� (r̂ ) =
2�
� (t)

Z r̂ ( t )

0
r h (t; r ) dr (11)

The rate of change of ^r (t) is determined by keeping � (r̂ ) independent of time for all moving
subdomains of [0; r l (
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close to the boundary (r l (t) � r̂ (t))  (t )+1 gl (t) is constant in time. Hence, since (r l (t) � r̂ (t)) is
decreasing, (t) is also decreasing. When (t) reachesn=(2n + 1) the boundary moves.

It is a technical exercise to show that this property extends to cases with accumulation/ablation
and with a general bedrock with a �nite slope @b=@rat the margin (see Partridge, 2013). The
key point to notice is that the asymptotic behaviour depends on an in�nite slope of h at the
margin whereasb(r ) always has a �nite slope.

3.5 Numerics

We now implement a numerical scheme using a �nite di�erence method. The complete algorithm
is detailed in Appendix B. In addition, we explain in Appendix B.6 why our implementation
respects the asymptotic behaviour of the ice sheet at its margin.

4 Numerical results

This section is dedicated to the validation of the numerical scheme derived from the moving
point method detailed in Sect. 3 and to the study of its behaviour. Every numerical experiment
is performed with the parameter values given in Table 1.

4.1 Steady states with at bedrock

We start by studying the behaviour of the numerical scheme using a surface mass balancem(r )
constant in time in order to de�ne a steady state. When the steady state is reached, from
Eq. (5), the following relationship is valid:

r m =
@
@r
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As a �rst test, we consider initialising our numerical model with the following pro�le:

h(t0; r ) = h0

 

1 �
�

r
r l (t0)

� 2
! p

(23)

and study the convergence towards the steady state in three di�erent cases. In each experiment,
the initial grid has 21 points and the model is run for 10 000 a with a constant time step
� t = 0 :1 a. We now detail the initial state for each experiment:

a. Uniformly distributed initial grid with r l (0) = 450 km, h0 = 1000 m and p = 3=7.

b. Initial grid with r l (0) = 500 km with higher resolution near the margin, h0 = 1000 m and
p = 1.

c. Uniformly distributed initial grid with r l (0) = 600 km, h0 = 4000 m and p = 1=4.

The evolution of the geometry and the overall motion of the grid points are shown for each
experiment in Fig. 2. The three experiments show the convergence of every initial state towards
the same steady state. These experiments also show the ability of the CMF method to capture
the trajectory of the moving ice sheet margin (in advance and retreat).

Figure 2: Evolution of the geometry and overall motion of the grid points for three experiments
with the EISMINT surface mass balance and initial pro�le described by Eq. (23). Top: initial
uniform grid with r l (0) = 450 km, h0 = 1000 m and p = 3=7, middle: initial grid with higher
resolution near the margin with r l (0) = 500 km, h0 = 1000 m and p = 1, bottom: initial uniform
grid with r l (0) = 600 km, h0 = 4000 m and p = 1=4.
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Figure 3: The steady state from the EISMINT moving-margin experiment compared with our
25 000 a model run with 28 nodes, uniformly distributed at the initial time. The reference pro�le
is obtained by a numerical integration of Eq. (21) using a composite trapezoidal rule. The error
in the ice thickness occurs mostly near the ice sheet margin, as in other experiments (RMS
error is 15:71 m and maximum error is 58:23 m). The position of the margin is well determined
as the absolute error is only 138:5 m.

We now perform the moving-margin EISMINT experiment (Huybrechts et al., 1996) in order
to validate our numerical model in this case. At the initial time t = 0 we prescribe a uniformly
distributed grid with r l (0) = 450 km and an initial ice thickness h(0; r ) taken as � t � m(r ) for
the constant time step � t = 0 :1 a. Then we run the model as in the EISMINT experiment
for 25 000 a to reach the steady state. As we also want to compare our scheme with numerical
models used in EISMINT, we �rst perform a model run with 28 nodes. With the same number
of grid points as used in the �xed grid models included in EISMINT we are able to obtain
a very good estimation for the position of the margin at steady state (commiting an absolute
error of only 138:5 m for an exact position r 1

l � 579:81 km) without losing accuracy on the
ice thickness (see Fig. 3). The estimation of the ice thickness at the ice divide is 3005:8 m
compared to 2982:3 � 26:4 m obtained by 2-D �xed grid models (we exclude 3-D models from
our comparison as we only use radial symmetry, see Huybrechts et al., 1996) and compared
to 2987� 0:01 m obtained by a numerical integration of Eq. (21) that we carried out by using
a composite trapezoidal rule.

We also study the convergence of our method towards the reference solution in this case
when the number of grid points is increased. We observe that the error for the margin position
decreases at an almost quadratic rateO(n1:95

r ) and the error in the ice thickness at the ice divide
at a linear rate O(n1:16

r ) (results obtained by performing experiments with an initial uniformly
spaced grid with nr = 20; 28; 40; 60 and 80 grid points).

4.2 Steady states with non-at bedrock

The steady state approach of the previous section is still valid for an ice sheet lying on a non-at
bedrock. However, the experiments in such cases are quite limited as we only have the position
of the steady margin from Eq. (20). Nevertheless we carry out a few experiments in this context
in order to demonstrate that the CMF moving point approach is perfectly suitable for non-at
bedrock.
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We consider the following �xed bedrock elevation:

b(r ) = 2000 m � 2000 m�
� r

300 km

� 2
+ 1000 m �

� r
300 km

� 4

� 150 m�
� r

300 km

� 6 (24)



Figure 5: The reference ice sheet pro�le (" = 0) displayed for t = 100 a, t = 1000 a, and at
1000 a intervals thereafter. Rapid changes occur in the state of the sheet at the beginning of the
simulation, then the dynamics dramatically slow. The ice thickness at the ice divide decreases
at a rate t � 1=9 and the position of the margin increases at a ratet1=18.

following family of similarity solutions

h(" ) (t; r ) =
1

t � (" )

�
h

2n +1



with a grid made up of 100 nodes, uniformly distributed at the initial time. In terms of thickness,
errors mostly occur near the ice sheet margin (Fig. 6) as is the case with �xed grid methods
(see Bueler et al., 2005). However, the position of the ice sheet margin is well estimated, the
estimated error being kept under one kilometer (Fig. 7).

Figure 6: The result obtained at �nal time t = 20 000a for " = 0 with 100 nodes equally
distributed at initial time t = 100 a and a �xed time step � t = 0 :01 a is compared to the
reference. A maximum error of 134 m on the ice thickness is obtained at the margin, while the
interior of the sheet has errors less than 10 m. The position of the margin is obtained with an
error of 880 m.

Figure 7: Evolution of the RMS error and maximum absolute error in the ice thickness, and
absolute error in the position of the margin during the run, for the case" = 0 with 100 nodes



Table 2: Rate of convergence of di�erent errors between numerical results obtained for time-
dependent solutions at time t = 20 000 a. The di�erent estimated rates of convergence are
obtained by performing experiments with nr = 10; 20; 40; 60; 80; 100 and 200 grid points for
di�erent con�gurations of surface mass balance (Eq. 25).

" = 0 " = � 1=8 " = 1=4 " = 3=4

RMS error on h O



B A �nite di�erence algorithm

The moving point method is discretised on a radial line using �nite di�erences on the grid f r̂ i g,
i = 1 ; : : :; nr where

0 = r̂1(t) < r̂2(t) < : : : < r̂n r � 1(t) < r̂n r (t) = r l (t); (33)

The approximation of h(t; r ) at r̂ i





B.5 Approximate ice thickness

The ice thickness for interior nodeshk+1
i is recovered algebraically at the new time using an

order-2 midpoint approximation of Eq. (15), namely,

hk+1
i =

� k+1

�
� i +1 � � i � 1

�
r̂ k+1

i +1

� 2
�

�
r̂ k+1

i � 1

� 2 (42)

The ice thickness at the ice dividehk+1
1 is obtained by using the order-1 upwind scheme.

hk+1
1 =

� k+1

�
� 2 � � 1

�
r̂ k+1

2

� 2
�

�
r̂ k+1

1

� 2 (43)

B.6 Behaviour of the approximate ice velocity at the ice margin

As in Sect. 3.4, assuming the topography of the bedrock is at at the vicinity of the margin,
the asymptotic form of the radial ice velocity is

U =
2

n + 2
A (� ig)n  n (r l � r )(2n+1)  � ngl

2n+1 (44)

Hence the leading term in the numerical approximation (Eq. 36) to the ice velocity at the
approximation hl to the ice margin is

�
2
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