


Adapting the ABC distance function
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Abstract

Approximate Bayesian computation performs approximate inference for models

where likelihood computations are expensive or impossible. Instead simulations from

the model are performed for various parameter values and accepted if they are close

enough to the observations. There has been much progress on deciding which summary

statistics of the data should be used to judge closeness, but less work on how to weight

them. Typically weights are chosen at the start of the algorithm which normalise the

summary statistics to vary on similar scales. However these may not be appropriate in

iterative ABC algorithms, where the distribution from which the parameters are pro-

posed is updated. This can substantially alter the resulting distribution of summary

statistics, so that di�erent weights are needed for normalisation. This paper presents

an iterative ABC algorithm which adaptively updates its weights, without requiring

any extra simulations to do so, and demonstrates improved results on test applications.

Keywords: likelihood-free inference, population Monte Carlo, quantile distributions, Lotka-

Volterra

1 Introduction

Approximate Bayesian computation (ABC) is a family of approximate inference methods

which can be used when the likelihood function is expensive or impossible to compute but
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simulation from the model is straightforward. The simplest algorithm is a form of rejection

sampling. Here parameter values are simulated from the prior distribution and corresponding

datasets are simulated. Each simulation is converted to a vector es



is reduced, resulting in increasingly accurate approximations. Full details of this algorithm

are reviewed later.

Weighted Euclidean distance is commonly used in this algorithm with �i values deter-

mined in the �rst iteration. However there is no guarantee that these will normalise the

summary statistics produced in later iterations, as these are no longer drawn from the prior

predictive. This paper proposes a variant iterative ABC algorithm which updates the �i

values at each iteration to appropriate values. It is demonstrated that this algorithm pro-
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2 Approximate Bayesian Computation

This section sets out the necessary background on ABC algorithms. Several review papers

(e.g. Beaumont, 2010; Csill�ery et al., 2010; Marin et al., 2012) give detailed descriptions of

other aspects of ABC, including tuning choices and further algorithms. Sections 2.1 and 2.2

review ABC versions of rejection sampling and PMC. Section 2.3 contains novel material on

the convergence of ABC algorithms.

2.1 ABC rejection sampling

Consider Bayesian inference for parameter vector � under a model with density �(yj�).

Let �(�) be the prior density and yobs represent the observed data. It is assumed that

�(yj�) cannot easily be evaluated but that it is straightforward to sample from the model.

ABC rejection sampling (Algorithm 1) exploits this to sample from an approximation to

the posterior density �(�jy). It requires several tuning choices: number of simulations N ,

a threshold h � 0, a function S(y) mapping data to a vector of summary statistics, and a

distance function d(�; �).

Algorithm 1 ABC-rejection

1. Sample ��i from �(�) independently for 1 � i � N .

2. Sample y�i from �(yj��i ) independently for 1 � i � N .

3. Calculate s�i = S(y�i ) for 1 � i � N .

4. Calculate d�i = d(s�i ; sobs) (where sobs = S(yobs).)

5. Return f��i jd�i � hg.



2.2 ABC-PMC

Algorithm 2 is an iterative ABC algorithm taken from Toni et al. (2009). Very similar

algorithms were also proposed by Sisson et al. (2009) and Beaumont et al. (2009). The latter

note that this approach is an ABC version of population Monte Carlo (Capp�e et al., 2004), so

it is referred to here as ABC-PMC. The algorithm involves a sequence of thresholds, (ht)t�1.

Similarly to h in ABC-rejection, this can be speci�ed in advance or during the algorithm, as

discussed below.

Algorithm 2 ABC-PMC

Initialisation

1. Let t = 1.

Main loop

2. Repeat following steps until there are N acceptances.

(a) If t = 1 sample �� from �(�). Otherwise sample �� from importance density qt(�)
given in equation (2).

(b) If �(��) = 0 reject and return to (a).

(c) Sample y� from �(yj��i ) and calculate s� = S(y�).

(d) Accept if d(s�; sobs) � ht.

Denote the accepted parameters as �t1; : : : ; �
t
N .

3. Calculate wti for 1 � i � N as follows. If t = 1 let w1
i = 1. Otherwise let wti =

�(�ti)=qt(�
t
i).

4. Increment t and return to step 2.

When t > 1 the algorithm samples parameters from the following importance density

qt(�) =
NX
i=1

wt�1
i Kt(�j�t�1

i )=
NX
i=1

wt�1
i : (2)

Drawing from this e�ectively samples from the previous weighted population and perturbs
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the result using kernel Kt



C1. � 2 Rn, s 2 Rm for some m;n and these random variables have density �(�; s) with

respect to Lebesgue measure.

C2. The sets At = fsjd(s; sobs) � htg are Lebesgue measurable.

C3. �(sobs) > 0.

C4. limt!1 jAtj = 0 (where j � j represents Lebesgue measure.)

C5. The sets At have bounded eccentricity.

Bounded eccentricity is de�ned in Appendix A. Roughly speaking, it requires that under

any projection of At to a lower dimensional space the measure still converges to zero.

Condition C1 is quite strong, ruling out discrete parameters and summary statistics, but

makes proof of Theorem 1 straightforward. Condition C2 is a mild technical requirement.

The other conditions provide insight into conditions required for convergence. Condition C3

requires that it must be possible to simulate sobs under the model. Condition C4 requires

that the acceptance regions At shrink to zero measure. For most distance functions this

corresponds to limt!1 ht = 0. It is possible for this to fail in some situations, for example

if datasets close to sobs cannot be produced under the model of interest (in which case C2

generally also fails.) Alternatively, even if sobs can occur under the model, the algorithm

may converge on importance densities on � under which it is impossible. This corresponds

to concentrating on the wrong mode of the ABC target distribution in an early iteration.

Finally, condition C5 prevents At converging to a set where some but not all summary

statistics are perfectly matched.

Conditions C4 and C5 can be used to check which distance functions are sensible to use

in ABC-PMC, usually by investigating whether they hold when ht !Coshnw coi-23.908is conv



3 Weighted Euclidean distance in ABC

This paper concentrates on using weighted Euclidean distance in ABC. Section 3.1 discusses

this distance and how to choose its weights. Section 3.2 illustrates its usefulness in a simple

example.

3.1 De�nition and usage

Consider the following distance:

d(x;y) =

"
mX
i=1

fwi(xi � yi)g2

#1=2

: (3)

If wi = 1 for all i, this is is Euclidean distance. Otherwise it is a form of weighted Euclidean

distance.

Many other distance functions can be used in ABC, as discussed in Section 2.3, for

example weighted L1 distance d(x;y) =
Pm

i=1 wijxi � yij. To the author’s knowledge the

only published comparison of distance functions is by McKinley et al. (2009). This did

not �nd any distances which provide a signi�cant improvement over (3). Owen et al. (2015)

report the same conclusion but not the details. This �nding is also supported in unpublished

work by the author of this paper and by others (Sisson, personal communication). Therefore

the paper focuses on Euclidean distance and the choice of weights to use with it.

Summary statistics used in ABC may vary on substantially di�erent scales. In the

extreme case Euclidean distance will be dominated by the most variable. To avoid this,

weighted Euclidean distance is generally used. This usually takes wi = 1=�i where �i is an

estimate of the scale of the ith summary statistic. (Using this choice in weighted Euclidean

distance gives the distance function (1) discussed in the introduction.)

A popular choice (e.g. Beaumont et al., 2002) of �i is the empirical standard deviation

of the ith summary statistic under the prior predictive distribution. Csill�ery et al. (2012)

suggest using median absolute deviation (MAD) instead since it is more robust to large
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outliers. MAD is used throughout this paper. For many ABC algorithms these �i values

can be calculated without requiring any extra simulations. For example this can be done

between steps 3 and 4 of ABC-rejection. ABC-PMC can be modi�ed similarly, resulting

in Algorithm 3, which also updates ht adaptively. (n.b. All of the ABC-PMC convergence

discussion in Section 2.3 also applies to this modi�cation.)

Algorithm 3 ABC-PMC with adaptive ht and d(�; �)

Initialisation

1. Let t = 1 and h1 =1.

Main loop

2. Repeat following steps until there are N acceptances.

(a) If t = 1 sample �� from �(�). Otherwise sample �� from importance density qt(�)
given in equation (2).

(b) If �(��) = 0 reject and return to (a).

(c) Sample y� from �(yj��i ) and calculate s� = S(y�).

(d) Accept if d(s�; sobs) � ht (if t = 1 always accept).

3. If t = 1:

(a) Calculate (�1; �2; : : :), a vector of MADs for each summary statistic, calculated
from all the simulations in step 2 (including those rejected).

(b) De�ne d(�; �) as the distance (3) using weights (wi)1�i�m where wi = 1=�i.

Denote the accepted parameters as �t1; : : : ; �
t
N and the corresponding distances as

dt1; : : : ; d
t
N .

4. Calculate wti for 1 � i � N as follows. If t = 1 let w1
i = 1. Otherwise let wti =

�(�ti)=qt(�
t
i).

5. Increment t, let ht be the � quantile of the dti values and return to step 2.

3.2 Illustration

As an illustration, Figure 1 shows the di�erence between using Euclidean and weighted

Euclidean distance with wi = 1=�i within ABC-rejection. Here �i is calculated using MAD.
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For both distances the acceptance threshold is tuned to accept half the simulations. In this

example Euclidean distance mainly rejects simulations wheres1 is far from its observed value:

it is dominated by this summary. Weighted Euclidean distance also rejects simulations where

s2 is far from its observed value and is less stringent abouts1.

Figure 1: An illustration of distance functions in ABC rejection sampling. The points show
simulated summary statisticss1 and s2. The observed summary statistics are taken to be
(0; 0) (black cross). Acceptance regions are shown for two distance functions, Euclidean
(red dashed circle) and Mahalanobis (blue solid ellipse). These show the sets within which
summaries are accepted. The acceptance thresholds have been tuned so that each region
contains half the points.

Which of these distances is preferable depends on the relationship between the summaries

and the parameters. For example ifs1 were the only informative summary, then Euclidean

distance would preferable. In practice, this relationship may not be known. Weighted

Euclidean distance is then a sensible choice as both summary statistics contribute to the

acceptance decision.

This heuristic argument supports the use of weighted Euclidean distance in ABC more

generally. One particular case is when low dimensional informative summary statistics have

been selected, for example by the methods reviewed in Blum et al. (2013). In this situation

all summaries are known to be informative and should contribute to the acceptance decision.
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Note that in Figure 1 the observed summaries sobs lie close to the centre of the set of

simulations. When some observed summaries are hard to match by model simulations this

is not the case. ABC distances could now be dominated by the summaries which are hardest

to match. How to weight summaries in this situation is discussed in Section 6.

4 Methods: Sequential ABC with an adaptive distance

The previous section discussed normalising ABC summary statistics using estimates of their

scale under the prior predictive distribution. This prevents any summary statistic dominating

the acceptance decision in ABC-rejection or the �rst iteration of Algorithm 3, where the

simulations are generated from the prior predictive. However in later iterations of Algorithm

3 the simulations may be generated from a very di�erent distribution so that this scaling

is no longer appropriate. This section presents a version of ABC-PMC which avoids this

problem by updating the distance function at each iteration. Normalisation is now based

on the distribution of summary statistics generated in the current iteration. The proposed

algorithm is presented in Section 4.1.

An approach along these lines has the danger that the summary statistic acceptance

regions at each iteration no longer form a nested sequence of subsets converging on the

point s = sobs. To avoid this, the proposed algorithm only accepts a simulated dataset at

iteration t if it also meets the acceptance criteria of every previous iteration. This can be

viewed as sometimes modifying the ith distance function to take into account information

from previous iterations. Section 4.2 discusses convergence in more depth.

4.1 Proposed algorithm

Algorithm 4 is the proposed algorithm. An overview is as follows. Iteration t draws param-

eters from the current importance distribution and simulates corresponding datasets. These

are used to construct the tth distance function. The best N simulations are accepted and
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used to construct the next importance distribution.

A complication is deciding how many simulations to perform in each iteration. This

should continue until N are accepted. However the distance function de�ning the acceptance

rule is not known until after the simulations are performed. The solution implemented

is to continue simulating until M = dN=�e simulations pass the acceptance rule of the

previous iteration. Let A be the set of these simulations and B be the others. Next the new

distance function is constructed (based on A [ B) and the N with lowest distances (from

A) are accepted. The tuning parameter � has a similar interpretation to the corresponding

parameter in Algorithm 3: the acceptance threshold in iteration t is the � quantile of the

realised distances from simulations in A.

Usings this approach means that, as well as adapting the distance function, another

di�erence with Algorithm 3 is that selection of ht is delayed from the end of iteration t� 1

to part-way through iteration t (and therefore h1 does not need to be speci�ed as a tuning

choice.) If desired, this novelty can be used without adapting the distance function. This

variant algorithm was tried on the examples of this paper, but the results are omitted as

performance is closely comparable to Algorithm 3.

Storing all simulated s� vectors to calculate scale estimates in step 3 of Algorithm 4 can

be impractical. In practice storage is stopped after the �rst few thousand simulations, and

scale estimation is done using this subset. The remaining details of Algorithm 4 { the choice

of perturbation kernel Kt and the rule to terminate the algorithm { are implemented as

described earlier for ABC-PMC.

4.2 Convergence

This section shows that conditions for the convergence of Algorithm 4 in practice are es-

sentially those described in Section 2.3 for standard ABC-PMC plus one extra requirement:

et =
maxi w

t
i

mini wt
i

is bounded above.

In more detail, conditions ensuring convergence of Algorithm 4 can be taken from The-
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Algorithm 4 ABC-PMC with adaptive ht and dt(�; �)

Initialisation

1. Let t = 1.

Main loop

2. Repeat following steps until there are M = dN=�e acceptances.

(a) If t = 1 sample �� from �(�). Otherwise sample �� from importance density qt(�)
given in equation (2).

(b) If �(��) = 0 reject and return to (a).

(c) Sample y� from �(yj��i ) and calculate s� = S(y�).

(d) If t = 1 accept. Otherwise accept if di(s�; sobs) � hi for all i < t.

Denote the accepted parameters as ��1; : : : ; �
�
M and the corresponding summary vectors

as s�1; : : : ; s
�
M .

3. Calculate (�t1; �
t
2; : : :), a vector of MADs for each summary statistic, calculated from

all the simulations in step 2 (including those rejected).

4. De�ne dt(�; �) as the distance (3) using weights (wti)1�i�m where wti = 1=�ti .

5. Calculate d�i = dt(s�i ; sobs) for 1 � i �M .

6. Let ht be the Nth smallest d�i value.

7. Let (�ti)1�i�N be the ��i vectors with the smallest d�i values (breaking ties randomly).

8. Let wti = �(�ti)=qt(�
t
i) for 1 � i � N .

9. Increment t and return to step 2.
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orem 1 in Appendix A. These are the same as those given for other ABC-PMC algo-

rithms in Section 2.3 with the exception that the acceptance region At is now de�ned as

fsjdi(s; sobs) � hi for all i �



the �rst iteration of Algorithm 4. The e�ect is similar to making a short preliminary run of

ABC-rejection to make these tuning choices. Both algorithms use N = 2000 and � = 1=2.

Under the prior predictive distribution the MAD for s1 is in the order of 100 while that

for s2 is in the order of 1. Therefore the �rst acceptance region in Figure 2 is a wide ellipse.

Under Algorithm 2 (left panel) the subsequent acceptance regions are smaller ellipses with

the same shape and centre. The acceptance regions for Algorithm 4 (right panel) are similar

for the �rst two iterations. After this, enough has been learnt about � that the simulated

summary statistics have a di�erent distribution, with a reduced MAD for s1. Hence s1 is

given a larger weight, while the MAD and weight of s2 remain roughly unchanged. Thus

the acceptance regions change shape to become narrower ellipses, which results in a more

accurate estimation of � under Algorithm 4, as shown by the comparison of mean squared

errors (MSEs) in Figure 3.

5.2 g-and-k distribution

The g-and-k distribution is a popular test of ABC methods. It is de�ned by its quantile

function:

A+B

�
1 + c

1� exp(�gz(x))

1 + exp(�gz(x))

�
[1 + z(x)2]kz(x); (4)

where z(x) is the quantile function of the standard normal distribution. Following the liter-

ature (Rayner and MacGillivray, 2002), c = 0:8 is used throughout. This leaves (A;B; g; k)

as unknown parameters.

The g-and-k distribution does not have a closed form density function making likelihood-

based inference di�cult. However simulation is straightforward: sample x � Unif(0; 1) and

substitute into (4). The following example is taken from Drovandi and Pettitt (2011b).

Suppose a dataset is 10,000 independent identically distributed draws from the g-and-k

distribution and the summary statistics are a subset of the order statistics: those with

indices (1250; 2500; : : : ;



Figure 2: An illustration of ABC-PMC for a simple normal model using either Algorithm
2 (non-adaptive distance function) or Algorithm 4 (adaptive distance function).Top row:
simulated summary statistics (including rejections)Bottom row: acceptance regions (note
di�erent scale to top row). In both rows colour indicates the iteration of the algorithm.
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Figure 3: Mean squared error of the parameter for Algorithms 2 and 4 on a simple normal
example.





Figure 4: Mean squared error of each parameter from Algorithms 3 and 4 for the g-and-k
example.

Figure 5: Summary statistic weights used in Algorithms 3 and 4 for the g-and-k example,
rescaled to sum to 1.
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A single simulated dataset is analysed (shown in Figure 8.) This is generated from the

model with
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Figure 6: Mean squared error of each parameter from ABC-PMC output for Lotka-Volterra
example.

Figure 7: Summary statistic weights used in ABC-PMC for Lotka-Volterra example, rescaled
to sum to 1.
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Figure 8: Observed dataset (black points) and samples of 20 simulated datasets (coloured
lines) for the Lotka-Volterra example. The top row shows simulations from step 2 of the
�rst iteration of Algorithm 3. The bottom row shows simulations from step 2 of the last
iteration of Algorithm 4. These are representative examples of the simulations used to select
the weights shown in Figure 7.
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from an importance density, (m�; ��) pairs are proposed, where m� is a model indicator. This

could be implemented in Algorithm 4 while leaving the other details unchanged. Drovandi
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A Convergence of ABC-PMC algorithms

Algorithm 5 is an ABC importance sampling algorithm. This appendix considers a sequence

of these algorithms. Denote the acceptance threshold and distance function in thetth element

of this sequence asht and dt (�; �). The ABC-PMC algorithms in this paper can be viewed as

sequences of this form with speci�c choices of howht and dt are selected. Note ABC-rejection

is a special case of Algorithm 5 withg(� ) = � (� ), so this framework can also investigate its

convergence ash ! 0.

Algorithm 5 ABC importance sampling

1. Sample� �
i from density g(� ) independently for 1� i � N .

2. Sampley �
i from � (y j� �

i ) independently for 1� i � N .

3. Calculates�
i = S(y �

i ) for 1 � i � N .

4. Calculated

4. Calculate



Theorem 1. Under conditions C1-C5, lim t !1 � ABC ;t (� jsobs) = � (� jsobs) for almost every

choice of(�; sobs) (with respect to the density� (�; s)).

The conditions are:

C1. � 2 Rn , s 2 Rm for somem; n and these random variables have density� (�; s) with

respect to Lebesgue measure.

C2. The setsA t = f sjdt (s; sobs) � htg are Lebesgue measurable.

C3. � (sobs) > 0.

C4. limt !1 jA t j = 0 (where j � j represents Lebesgue measure.)

C5. The setsA t have bounded eccentricity.

The de�nition of bounded eccentricity is that for any A t , there exists a setB t = f s j jj s �

sobsjj 2 � r tg such that A t � B t and jA t j � cjB t j, wherejj :jj denotes the Euclidean norm and

c > 0 is a constant.

Proof.t ABC



The third and fourth equalities follow by l’Hôpital’s rule and the Lebesgue di�erentiation

theorem respectively. The latter theorem requires conditions C4 and C5. For more details

of it see Stein and Shakarchi (2009) for example.
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