






cannot be evaluated due to the presence of the INC. We �rst review exact methods for simulating

from such a target in sections 1.1.1, 1.1.2 and 1.1.3, before looking at simulation-based methods in

sections 1.1.4 and 1.1.5. The methods described here in the context of MCMC form the basis for

the methods for evidence estimation we develop in the rest of the paper.

1.1.1 Single and multiple auxiliary variable methods

Møller et al. (2006) avoid the evaluation of the INC by augmenting the target distribution with an

extra variable u that lies on the same space asy, and use an MH algorithm with target distribution

� (�; u jy) / qu(uj�; y )f (yj� )p(� ); (2)

where qu is some (normalised) arbitrary distribution. As the MH proposal in (�; u )-space they use

(� � ; u� ) � f (u� j� � )q(� � j� ); (3)

giving an acceptance probability of

min
�

1;
q(� j� � )
q(� � j� )

p(� � )
p(� )


 (yj� � )

 (yj� )

qu(u� j� � ; y)

 (u� j� � )


 (uj� )
qu(uj�; y )

�
: (4)

Note that, by viewing qu(u� j� � ; y)=
 (u� j� � ) as an unbiased IS estimator of1=Z(� � ), this al-

gorithm can be seen as an instance of theexact-approximationsdescribed in Beaumont (2003) and

Andrieu and Roberts (2009), where it is established that if an unbiased estimator of a target density

is used appropriately in an MH algorithm, the � -marginal of the invariant distribution of this chain

is the target distribution of interest. This automatically suggests extensions to thesingle auxiliary

variable (SAV) method described above, whereM importance points are used to instead give the

estimate
d1

Z (� )
=

1
M

MX

m=1

qu(u(m) j�; y )

 (u(m) j� )

: (5)

Andrieu and Vihola (2012) show that the reduced variance of this estimator leads to a reduced

asymptotic variance of estimators from the resultant Markov chain. The variance of the IS estimator

is strongly dependent on an appropriate choice of IS targetqu(�j �; y ), which should ideally have

lighter tails than f (�j � ). Møller et al. (2006) suggest that a reasonable choice may bequ(�j �; y ) =

f (�j b� ), where b� is the maximum likelihood estimator of � . However, in practice qu(�j �; y ) can be

di�cult to choose well, particularly when y lies on a high dimensional space. Motivated by this,



between f (�j � ) and qu(�j �; y ). After the initial draw uK +1 � f (�j � ), the auxiliary point is taken

through a sequence ofK MCMC moves which successively have targetf k (�j �; b�; y ) for k = K : 1.

The resultant IS estimator is given by

d1
Z (� )

=
1

M

MX

m=1

KY

k=0


 k+1 (u(m)
k j



introduced by this approximation tends to zero as the run length of the internal MCMC increases:

the same proof holds for the use of an MCMC chain for the simulation within an ABC-MCMC or

SL-MCMC algorithm, as described in sections 1.1.4 and 1.1.5. Although the approach of Girolami

et al. (2013) is exact, they comment that it is signi�cantly more computationally expensive than

this approximate approach. For this reason, we do not pursue Russian Roulette approaches further

in this paper.

When a rejection sampler is available for simulating fromf (�j � � ), Rao et al. (2013) introduce an

alternative exact algorithm that has some favourable properties compared to the exchange algorithm.

Since a rejection sampler is not available in many cases, we do not pursue this approach further.

1.1.4 Approximate Bayesian computation

ABC (Tavaré et al., 1997) refers to methods that aim to approximate an intractable likelihood

f (yj� ) through the integral

ef (S(y)j� ) =
�

� � (S(u)jS(y)) f (uj� )

�
�
�
�
@Si
@uj

(u)

�
�
�
� du; (8)

where S(�) gives a vector of summary statistics,j@Si =@uj (u)j denotes the Jacobian determinant

arising from the change of variable, and� � (�jS(y)) is a density centred atS(y) with bandwidth � .

As � ! 0, this distribution becomes more concentrated aroundS(y), so that in the case whereS(�)

gives su�cient statistics for estimating � , as � ! 0 the approximate posterior becomes closer to the

true posterior. This approximation is used within standard Monte Carlo methods for simulating

from the posterior. For example, it may be used within an MCMC algorithm (known as ABC-

MCMC (Marjoram et al., 2003)), where using an exact-approximation argument it can be seen that

it is su�cient in the calculation of the acceptance probability to use the Monte Carlo approximation

bf � (S(y)j� � ) =
1

M

MX

m=1

� �

�
S

�
u(m)

�
jS(y)

�
(9)

for the likelihood at � � at each iteration, wheref u(m)gM
m=1 � f (�j � � ). Whilst the exact-approximation

argument means that there is no additional bias due to this Monte Carlo approximation, the approx-

imation introduced through using a tolerance� > 0 or insu�cient summary statistics may be large.

For this reason it might be considered a last resort to use ABC on likelihoods with an INC, but

previous success on these models (e.g Grelaudet al. (2009) and Everitt (2012)) lead us to consider

them further in this paper.

1.1.5 Synthetic likelihood

ABC is essentially using, based on simulations fromf , a nonparameteric estimator off S (Sj� ), the

distribution of the summary statistics of the data given � . In some situations, a parametric model

might be more appropriate. For example, it might be that the statistic consists of the sum of
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independent random variables, in which case a Central Limit Theorem (CLT) might imply that it

would be appropriate to assume thatf S (Sj� ) is multivariate Gaussian.

The SL approach (Wood, 2010) proceeds by making exactly this Gaussian assumption and uses

this approximate likelihood within an MCMC algorithm (SL-MCMC), The parameters (the mean

and variance) of this approximating distribution for a given � � are estimated based on the summary

statistics of simulations f u(m)gM
m=1 � f (�j � � ). Concretely, the estimate of the likelihood is

bf SL



their estimation as �triply intractable� when f has an INC. To our knowledge the only published

approach to estimating the evidence for such models is in Friel (2013), with this paper also giving

one of the only approaches to estimating BFs in this setting. For estimating BFs, ABC provides a

viable alternative (Grelaud et al., 2009), as long as the approximations in this approach described

in section 1.1.4 are not too large.

The methods in Friel (2013) are based on Chib's approximation,

bp(y) =
f (yje� )p(e� )

b� (e� jy)
; (13)

where e� can be an arbitrary value of�





rather than simple IS, for estimating 1=Z(� (p) ) as in equation 7 (giving an algorithm that we refer

to as multiple auxiliary variable IS (MAVIS), in common with the terminology in Murray et al.

(2006)). Using qu(�j �; y ) = f (�j b� ), as described in section 1.1.1, and
 k as in equation 6, we obtain

d1
Z (� )

=
1

Z (b� )

1
M

MX

m=1

KY

k=0


 k+1 (u(m)
k j� � ; �; y )


 k (u(m)
k j� � ; �; y )

: (16)

In this case the (A)IS methods are being used as unbiased estimators of the ratioZ (b� )=Z(� ).

2.2 Simulation based methods

Didelot et al. (2011) investigate the use of the ABC approximation when using IS for estimating

marginal likelihoods. In this case the weight equation becomes

ew(p) =
p(� (p) ) 1

R

P R
r =1 � � (S(x(p)

r )jS(y))

q(� (p) )
;

where
n

x(p)
r

oR

r =1
� f (�j � (p) ), and using the notation from section 1.1.4. However, using these weights

within equation 15 gives an estimate forp(S(y)) rather than, as desired, an estimate of the evidence

p(y). The only way to obtain an estimate of the evidence from ABC is to use the full data, rather

than taking summary statistics.

Fortunately, there are cases in which ABC may be used to estimate BFs. Didelotet al. (2011)

establishes that, for the BF for two exponential family models: ifS1(y) is su�cient for the paramet-

ers in model 1 andS2(y) is su�cient for the parameters in model 2, then using S(y) = ( S1(y); S2(y))

gives
p(yjM 1)
p(yjM 2)

=
p(S(y)jM 1)
p(S(y)jM 2)

:

Outside the exponential family, making an appropriate choice of summary statistics can be more

involved (Robert et al., 2011; Prangleet al., 2013; Marin et al., 2013).

Just as in the parameter estimation case, the use of a tolerance� > 0 results in estimating

an approximation to the true BF. An alternative approximation, not previously used in model

comparison, is to use SL (as described in section 1.1.5). In this case the weight equation becomesy



2.3 Toy example

In this section we have introduced three alternative methods for estimating BFs: MAVIS, ABC and

SL. To further understand their properties we now investigate the performance of each method on

a toy example.

Consider i.i.d. observationsy = f yi g
n=100
i =1 of a discrete random variable that takes values inN.

For such a dataset, we will �nd the BF for the models

1. yj� � Poisson(� ), � � Exp(1)

f 1 (f yi g
n
i =1 j� ) =

nY

i =1

� yi exp(� � )
yi !

=
1

exp(n� )

nY

i =1

� yi

yi !

2. yj� � Geometric(� ), � � Unif (0; 1)

f 2 (f yi g
n
i =1 j� ) =

nY

i =1

p(1 � p)yi

=
1

p� n

nY

i =1

(1 � p)yi :



(a) A box plot of the log of the estimated BF divided by the
true BF.

(b) The log of the BF estimated by ABC-IS against the log
of the true BF.

(c) The log of the BF estimated by SL-IS against the log of
the true BF.

(d) The log of the BF estimated by MAVIS against the log of
the true BF.

Figure 1: Bayes' factors for the Poisson and geometric models.
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by the bias. For this reason it might be more relevant in this example to consider the deviations

from the shallow slope, which are likely due to the Monte Carlo variance in the estimator (which

becomes more pronounced as� is reduced). We see that the choice of� essentially governs a bias-

variance trade-o�, and that the di�culty in using the approach more generally is that it is not

easy to evaluate whether a choice of�



Figure 2: The Gamaneg data.

ABC ( � = 0 :1) ABC ( � = 0 :05) SL MAVIS
p̂(yjM 1 )
p̂(yjM 2 ) 4 20 40 41

Table 1: Model comparison results for Gamaneg data. Note that the ABC (� = 0 :05) estimate
was based upon just 5 sample points of non-zero weight. MAVIS also provides estimates of the
individual evidence (log [bp(yjM 1)] = � 69:6, log [bp(yjM 2)] = � 73:3).
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sums of random variables. However, we note that this is not usually the case for ERGMs, particularly

when modelling large networks, and that SL is a much more appropriate method for inference in

the ERGMs with local dependence (Schweinberger and Handcock, 2015). We might expect a more

sophisticated ABC approach to exhibit improved performance, possibly outperforming SL. However,

the appeal of SL is in its simplicity, and we �nd it to be a useful method for obtaining good results

with minimal tuning.

2.5 Application to Ising models

The implementation of MAVIS in the previous section is not an exact-approximate method for two

reasons:

1. An internal MCMC chain was used in place of an exact sampler;

2. The 1=Z(b� ) term in equation 16 was estimated before running this algorithm (by using a

standard SMC method to estimateZ (b� ), and taking the reciprocal) with this �xed estimate

being used throughout.

However, in practice, we tend to �nd that such �inexact-approximations� do not introduce large

errors into Bayes' factor estimates, particularly when compared to standard implementations of

ABC (as seen in the previous section). We investigate some of the theoretical aspects of such

approximations in section 4. In the current section we investigate this type of approach further

empirically, using data simulated from Ising models. In particular we reanalyse the data from Friel

(2013), which consists of 20 realisations from a �rst-order10 � 10 Ising model and 20 realisations

from a second-order10� 10



Figure 3: Box plots of the results of population exchange, SAVIS, bridged SAVIS and MAVIS on
the Ising data.



We observe that AIS o�ers an improvement over IS, but also that the bridged IS method performs

better than IS despite the additional bias in estimatingZ (� � )=Z(� )



here are a natural alternative to the MCMC methods described in section 1.1. and inherently use

a �population� of Monte Carlo points (shown to be bene�cial on these models by Caimo and Friel

(2011)). In section 3.1 we describe these algorithms, before examining an application to estimating

the precision matrix of a Gaussian distribution in high dimensions in section 3.2.

3.1 SMC samplers in the presence of an INC

This section introduces two alternative SMC samplers for use on doubly intractable target distribu-

tions. The �rst, marginal SMC, directly follows from the IS methods in the previous section. The

second, SMC-MCMC, requires a slightly di�erent approach, but is more computationally e�cient.

Finally we brie�y discuss simulation-based SMC samplers in section 3.1.4.



3.1.1 Marginal SMC

The �rst method we describe results from the use of an approximation to the optimal backward

kernel (Peters, 2005; Klaaset al., 2005). In this case the weight update is

ew(p)
t =

p(� (p)
t )f t (yj� (p)

t )
P P

r =1 w(r )
t � 1K t (�

(p)
t j� (r )

t � 1)
(20)

=
p(� (p)

t )
 t (yj� (p)
t )

Z t (�
(p)
t )

P P
r =1 w(r )

t � 1K t (�
(p)
t j� (r )

t � 1)
(21)

for an arbitrary forward kernel K t . This method is quite widely used, but is a little non-standard

in terms of the framework of Del Moral et al. (2006), since it uses a Monte Carlo estimate of an

importance weight de�ned on the marginal � -space at targett, compared to the usual weight on the

entire past history of each particle. This results in a computational complexity ofO(P2) (although

as noted by Klaaset al. (2005) that this may often be reduced toO(P log(P)) at the cost of negligible

bias), compared toO(P) for a standard SMC method, but we include it here since we notice that

equation 21 contains the term1=Z(�) just as does the corresponding expression (equation 14) for

standard IS. This leads us to consider the same approach for avoiding the calculation ofZ (�) as in

section 2.1. Namely, we employ the SAV target and proposal within the SMC algorithm.

We still have an intractable normalising constant in the denominator. Now let us try the SAVM

posterior, where in target t we use the distribution qu for the auxiliary variable ut , and the SAVM

proposal, whereu(p)
t � f t (�j �

(p)
t ). In this case, the weight update is

ew(p)
t =

qu(u(p)
t j� (p)

t ; y)p(� (p)
t )f t (yj� (p)

t )
P P

r =1 K t (�
(p)
t j� (r )

t � 1)f t (u
(p)
t j� (p)

t )w(r )
t � 1

=
qu(u(p)

t j� (p)
t ; y)p(� (p)

t )
 t (yj� (p)
t )


 t (u
(p)
t j� (p)

t )
P P

r =1 K t (�
(p)
t j� (r )

t � 1)w(r )
t � 1

:

We see that no normalising constant appears in this weight update, but the algorithm isO(P2).

3.1.2 SMC with an MCMC kernel

Suppose we were able to use a reversible MCMC kernelK t with invariant distribution � t (� jy) /

p(� )f t (yj� ), and choose theL t � 1 kernel to be the time reversal ofK t with respect to its invariant
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multivariate Gaussian distribution with zero mean and p(� ) is a Wishart distribution W(�; V ) with

parameters � � d and V 2 Rd� d. Suppose we observen i.i.d. observations y = f yi g
n
i =1 , where

yi 2 Rd. The true evidence can be calculated analytically, and is given by

p(y) =
1

� nd=2

� d( � + n
2 )

� d( �
2 )

�
�
�
�
V � 1 +

P n
i =1 yi yT

i

� � 1
�
�
�

� + n
2

jV j
�
2

; (29)

where � d denotes thed-dimensional gamma function. For ease of implementation, we parametrise

the precision using a Cholesky decomposition� � 1 = LL 0 with L a lower triangular matrix whose

(i; j )'th element is denotedaij .

As in section 2.3, we writef (yj� ) as 
 (yj� )=Z(� ) as follows

f
�
f yi g

n
i =1 j � � 1�

=
nY

i =1

(2� ) � d=2 j� j � 1=2 exp
�

�
1
2

y0
i �

� 1yi

�

=







approximation of this sequence can then be understood as a simple mean �eld approximation and

its convergence has been well studied, see for example Del Moral (2004).

In order to do this, we make a number of identi�cations in order to allow the consideration of

the approximation in an abstract manner. We allow eGt to denote the incremental weight function

at time t, and Gt to denote the exact weight function which it approximates (any auxiliary random

variables needed in order to obtain this approximation are simply added to the state space and their

sampling distribution to the transition kernel). The transition kernel M t combines the proposal

distribution of the SMC algorithm together with the sampling distribution of any needed auxiliary

variables. We allow x to denote the full collection of variables sampled during an iteration of the

sampler, which is assumed to exist on the same space during each iteration of the sampler.

We employ the following assumptions (we assume an in�nite sequence of algorithm steps and

associated target distributions, proposals and importance weights; naturally, in practice only a �nite

number would be employed but this formalism allows for a straightforward statement of the result):

A1 (Bounded Relative Approximation Error) There exists 
 < 1 such that:

sup
t2 N

sup
x

jGt (x) � eGt (x)j
eGt (x)

� 
:

A2 (Strong Mixing; slightly stronger than a global Doeblin condition) There exists � (M ) > 0 such

that:

sup
t2 N

inf
x;y

dM t (x; �)
dM t (y; �)

� � (M ):

A3 (Control of Potential) There exists � (G) > 0 such that:

sup
t2 N

inf
x;y

Gt (x)
Gt (y)

� � (G):

The �rst of these assumptions controls the error introduced by employing an inexact weighting



This result is not intended to do any more than demonstrate that, qualitatively, such forgetting

can prevent the accumulation of error even in systems with �biased� importance weighting potentials.

In practice, one would wish to make use of more sophisticated ergodicity results such as those

of Whiteley (2013), within this framework to obtain results which are somewhat more broadly

applicable: assumptions A2 and A3 are very strong, and are used only because they allow stability

to be established simply. Although this result is, in isolation, too weak to justify the use of the

approximation schemes introduced here in practice it seems su�cient, together with the empirical

results presented below, to suggest that further investigation of such approximations might be

warranted.

4.2.2 Empirical results

We use the precision example introduced in section 3.2.1 to investigate the e�ect of using biased

weights in SMC samplers. Speci�cally we taked = 1 and use a simulated datasety where n = 500

points were simulated usingyi � N (0; 0:1). In this case there is only a single parameter to estimate,

� 1





listed in section 1. Our results suggest that improved mixing can help combat the accumulation of

bias, which may implies that there may be situations where it is useful to perform many iterations of

a kernel at a particular target, rather than the more standard approach of using many intermediate

targets at each of which a single iteration of a kernel is used. Other variations are also possible,

such as the calculation of fast cheap biased weights at each target in order only to adaptively decide

when to resample, with more accurate weight estimates (to ensure accurate resampling and accurate

estimates based on the particles) only calculated when the method chooses to resample.

5 Conclusions

This paper describes several IS and SMC approaches for estimating the evidence in models with

INCs that outperform previously described approaches. These methods may also prove to be useful

alternatives to MCMC for parameter estimation. Several of the ideas in the paper are also applicable

more generally, in particular the use of synthetic likelihood in the IS context and the notion of using

biased weight estimates in IS and SMC. We advise caution in the use of biased weights in SMC

due to the potential for bias to accumulate, but also note that this accumulated bias may be small

compared to errors resulting from commonly accepted approximate techniques such as ABC.
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A Using SAV and exchange MCMC within SMC

A.1 Weight update when using SAV-MCMC

Let us consider the SAVM posterior, with K being the MCMC move used in SAVM. In this case

the weight update is

ew(p)
k =

p(� (p)
t )f t (yj� (p)

t )qu(u(p)
t j� (p)

t ; y)

p(� (p)
t � 1)f t � 1(yj� (p)

t � 1)qu(u(p)
t � 1j� (p)

t � 1; y)

L t � 1(( � (p)
t ; u(p)

t ); (� (p)
t � 1; u(p)

t � 1))

K t (( � (p)
t � 1; u(p)

t � 1); (� (p)
t ; u(p)

t ))

=
p(� (p)

t )f t (yj� (p)
t )qu(u(p)

t j� (p)
t ; y)

p(� (p)
t � 1)f t � 1(yj� (p)

t � 1)qu(u(p)
t � 1j� (p)

t � 1; y)

p(� (p)
t � 1)f t (yj� (p)

t � 1)qu(u(p)
t � 1j� (p)

t � 1; y)

p(� (p)
t )f t (yj� (p)

t )qu(u(p)
t j� (p)

t ; y)

=

 t (yj� (p)

t � 1)


 t � 1(yj� (p)
t � 1)

Z t � 1(� (p)
t � 1)

Z t (�
(p)
t � 1)

;

which is the same update as if we could use MCMC directly.

A.2 Weight update when using the exchange algorithm

Nicholls et al. (2012) show the exchange algorithm, when set up to target� t (� jy) / p(� )f t (yj� ) in

the manner described in section 1.1.2, simulates a transition kernel that is in detailed balance with

� t (� jy). This follows from showing that it satis�es a �very detailed balance� condition, which takes

account of the auxiliary variable u. The result is that the derivation of the weight update follows

exactly that of equations 22-24.

B An extended space construction for the random weight SMC

method in section 3.1.2

The following extended space construction justi�es the use of the �approximate� weights in equation

25 via an explicit sequential importance (re)sampling argument along the lines of Del Moralet al.
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(2006), albeit with a slightly di�erent sequence of target distributions.

Consider an actual sequence of target distributionsf � t gt � 0. Assume we seek to approximate a

normalising constant during every iteration by introducing additional variables ut = ( u1
t ; : : : ; uM

t )

during iteration t > 0.

De�ne the sequence of target distributions:

e� t (ex t = ( � 0; � 1; u1; : : : ; � t ; ut ))

:= � t (� t )
t � 1Y

s=0

L s(� s+1 ; � s)
tY

s=1

1



extended space.

C Proof of SMC Sampler Error Bound

A little notation is required. We allow



If A1. holds, then 8� 2 P (E) and any t 2 N:

jj 	 eGt
(� ) � 	 Gt (� )jjT V � 2
:

Proof. Let � t := eGt � Gt and consider a generic' 2 Cb(E ):

(	 eGt
(� ) � 	 Gt (� ))( ' ) =

� ( eGt ' )

� ( eGt )
�

� (Gt ' )
� (Gt )

=
� (Gt )� ( eGt ' ) � � ( eGt )� (Gt ' )

� ( eGt )� (Gt )

=
� (Gt )� ((Gt + � t )' ) � � ((Gt + � t )) � (Gt ' )

� ( eGt )� (Gt )

=
� (Gt )� (� t ' ) � � (� t )� (Gt ' )

� ( eGt )� (Gt )

Considering the absolute value of this discrepancy, making using of the triangle inequality:

�
�
�(	 eGt

(� ) � 	 Gt (� ))( ' )
�
�
� =

�
�
�
�
�
� (Gt )� (� t ' ) � � (� t )� (Gt ' )

� ( eGt )� (Gt )

�
�
�
�
�

�

�
�
�
�
�
� (� t ' )

� ( eGt )

�
�
�
�
�
+

�
�
�
�
�
� (� t )

� ( eGt )

�
�
�
�
�

�
�
�
�
� (Gt ' )
� (Gt )

�
�
�
�

Noting that Gt is strictly positive, we can boundj� (Gt ' )j=� (Gt ) with � (Gt j' j)=� (Gt ) and thus with

k' k1 and apply a similar strategy to the �rst term:

�
�
�(	 eGt

(� ) � 	 Gt (� ))( ' )
�
�
� �

�
�
�
�
�
� (j� t j) k' k1

� ( eGt )

�
�
�
�
�
+

�
�
�
�
�
� (� t )

� ( eGt )

�
�
�
�
�

�
�
�
�
� (Gt j' j)

� (Gt )

�
�
�
�

� 
 k' k1 + 
 k' k1 = 2 
 k' k1 :

(noting that � (j� t j)=� ( fGt ) < 




We thus establish (noting that e� 0 = � 0):

� t � e� t =
tX

s=1

� s;t (� s(e� s� 1)) � � s;t ( e� s(e� s� 1)) : (32)

Turning our attention to an individual term in this expansion, noting that:

� s(� )( ' ) =	 Gs� 1 (� )M s(' ) e� s(� )( ' ) =	 eGs� 1
(� )M s(' )

we have, by application of a standard Dobrushin contraction argument and Lemma 1

(� s(e� s� 1) � e� s(e� s� 1))( ' ) =	 Gs� 1 (e� s� 1)M s(' ) � 	 eGs� 1
(e� s� 1)M s(' )






 � s(e� s� 1) � e� s(e� s� 1)







TV

� (1 � � (M ))





 	 Gs� 1 (e� s� 1) � 	 eGs� 1

(e� s� 1)






TV

� 2
 (1 � � (M )) (33)

which controls the error introduced instantaneously during each step.

We now turn our attention to controlling the accumulation of error. We make use of (Del Moral,

2004, Proposition 4.3.6) which, under assumptions A2 and A3, allows us to deduce that for any

probability measures�; � :

k� s;s+ k (� ) � � s;s+ k (� )kTV � � (� s;s+ k ) k� � � kTV

where

� (� s;s+ k ) =
2

� (M )� (G)
(1 � � 2(M )) k :

Returning to decomposition (32), applying the triangle inequality and this result, before �nally

inserting (33) we arrive at:

k� t � e� t kTV �
tX

s=1






 � s;t (� s(e� s� 1)) � � s;t ( e� s(e�

we have, by application of a standard Dobrushin contraction argu/F47 10.9091 Tf  m 46.1-6.35 -3.272 Td .9091 1 Tf 4.7320.909n51s36o-1.Td .9091 1 Tf 4.7320.9240.07119.491 3.756 Td [(�)]TJ/F23 7.9701 Tf 16.653 13.636 Td [(t)]TJ/F47 10.9091 Tf -6.35 -3.272 Td [(X)]TJ/F23 7.9701 Tf 0.51 -23.319 Td [(s)]TJ/F20 7.9701 Tf 3.916 0 T[(�)]TJ/F15 4278909-2716.936 -1 7.483 Td [((1)]TJ/F46 0.97691 Tf 12.121 0 Td [(�)]TJ/F45 10.9091 Tf 10.909 0 Td [(�)]TJ/F20 7.97.9099 4.428 4.505 Td [(2)]TJ/F15 10.909.9099 4.428.428 0 Td [(()]TJ/F45 10.9091 Tf 4.243 0 Td [(M)]TJ/F15 10.9091 Tf 11.772 0 Td [()))]TJ/F23 7.97.9099 4.428t1.63)+2

� (M(� (G)






 � s(e� s� 1

) � e� s(e� s� 1

)





TV�

tX

s�(1� �2(M )) +2

� (M(� (G

)

k2
 (1 � � (M 2
 (1 � � (M

� (M )� (G tX

s=1(1� �2(M )) +:



result:

4
 (1 � � (M ))
� (M )� (G)

1X

s=0

(1 � � 2(M )) s =
4
 (1 � � (M ))

� (M )� (G)
1

1 � (1 � � 2(M ))

=
4
 (1 � � (M ))

� 3(M )� (G)
:
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