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A JOINT STATE AND PARAMETER ESTIMATION SCHEME FOR
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Abstract. We present a novel algorithm for concurrent model state and parameter estimation
in nonlinear dynamical systems. The new scheme uses ideas from three dimensional variational
data assimilation (3D-Var) and the extended Kalman filter (EKF) together with the technique of
state augmentation to estimate uncertain model parameters alongside the model state variables in
a sequential filtering system. The method is relatively simple to implement and computationally
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cross-covariances in joint state-parameter estimation. It is these cross-covariances that
transfer information from the observations to the parameter estimates and determine
the nature of the parameter updating. In [39] it was found that whilst the assumption
of static error covariances was sufficient for state estimation, it was insufficient for
joint state-parameter estimation. In order to yield reliable estimates of the exact
parameters, a flow dependent representation of the state-parameter cross-covariances
is required. Crucially, however, it is not necessary to evolve the full augmented system
covariance matrix. This result led to the development of a novel algorithm that uses
ideas from 3D-Var and the extended Kalman filter (EKF) to construct a hybrid error
covariance matrix. The new approach enables us to capture the flow dependent nature
of the state-parameter error cross-covariances whilst avoiding the explicit propagation
of the full background error covariance matrix. As we demonstrate here, the method
has proved to be applicable to a range of dynamical system models. An additional
example of its application is given in [43].

In this paper we give details of the formulation of our new method and demon-
strate its efficacy using three simple models: a single parameter 1D linear advection
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where the matrix Mk ∈ R
n×n depends nonlinearly on the parameters p.

In this paper we use the ‘perfect model assumption’ [32]; for any given initial
state, the model equations (1), together with the known exact parameter values, give
a unique description of the behaviour of the underlying exact dynamical system. We
also assume that the model parameters remain constant over time, that is, they are
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where ~hk : Rn + q �! Rr k maps from augmented model space to observation space.
The equivalence of equations (8) and (7) comes from the fact thatthe parameters
cannot be observed.

The aim of state-parameter estimation is to combine the measured observations
yk with the prior estimates w b

k
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where the matrix ~H k 2 Rr k � (n + q) represents the linearisation (or Jacobian) of the
augmented observation operator~hk evaluated at the background statew b

k .
Unlike in 3D-Var, the EKF algorithm forecasts the error covariance matrix P f

k
forward, using the quality of the current analysis to specify the covariances for the
next update step. If the Kalman gain (12) has been computed exactly, the analysis
(posterior) error covariancePa

k is given by

Pa
k = ( I � K k ~H k )P f

k : (13)

The background (forecast) state attk+1
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The state-parameter cross-covariances are estimated based on a simpli�ed version of
the EKF error covariance forecast step (14) and this is then combined with an em-
pirical, �xed approximation of the model state background error covariances and a
�xed parameter error covariance matrix. We give details of the formulation of this
new approach in the following section.

3.1. Formulation. The augmented EKF forecast and analysis error covariance
matrices can be partitioned as follows

P k =
�

P xx k P xp k

(P xp k
)T Ppp k

�
(16)

with the superscript f or a used to indicate forecast or analysis. HereP xx k 2 Rn � n is
the forecast (analysis) error covariance matrix for the model state vector xk at time
tk , Ppp k

2 Rq� q is the covariance matrix describing the errors in the parameter vector
pk and P xp k

2 Rn � q is the covariance matrix for the cross correlations between the
forecast (analysis) errors in the state and parameter vectors.

Starting at time tk , we consider the form of the EKF forecast error covariance
matrix (14) for a single step of the �lter. If we denote the Jacobian of the state
forecast model with respect to the model state and model parameters respectively as

M k =
@f (x; p)

@x

�
�
�
�
x a

k ;p a
k

and N k =
@f (x; p)

@p

�
�
�
�
x a

k ;p a
k

; (17)

where M k 2 Rn � n and N k 2 Rn � q, and substitute into (15),(14) we obtain the
following expressions for the blocks ofP f

k+1

P f
xx k +1

= M k Pa
xx k

M T
k + N k (Pa

xp k
)T M T

k + M k Pa
xp k

N T
k + N k Pa

pp k
N T

k ; (18)

P f
xp k +1

= M k Pa
xp k

+ N k Pa
pp k

; (19)

P f
pp k +1

= Pa
pp k

: (20)

We do not want to recompute the full augmented matrix (18{20) at every time step.
Guided by the results of our previous work [39], [40] we simplify as follows. We sub-
stitute the EKF model state forecast error covariance matrix (18) with a conventional
3D-Var �xed approximation

P f
xx k

= P f
xx for all k: (21)

The choice for P f
xx will depend on the particular model application; a simple and

commonly adopted approach is to de�neP f
xx using an analytic correlation function

[6]. Alternatively, a more sophisticated covariance representationcan be obtained
using one of the various empirical techniques discussed in the literature (see e.g. [1],
[10]). We make the same assumption for the parameter error covariances and set

P f
pp k

= P f
pp for all k: (22)

Speci�cation of P f
pp requires somea priori knowledge of the parameter error statis-

tics. The error variance of each parameter should reect our unc
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we wish to estimate,q, is greater than one, we also need to consider the relationships
between individual parameters.

For our new method we focus on the state-parameter background error cross-
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Fig. 1 . Solutions u(x; t ) to the linear advection equation (27) for Gaussian initial d ata at model
times t = 0 ; 1; 2:

assume that the observation errors are spatially and temporally uncorrelated and set
the observation error covariance matrixR k

R k = R = � 2
o I ; I 2 Rr � r : (26)
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stable we set� = 1 and assume that c is known to be somewhere in the interval [0; 1].
The upwind scheme is numerically di�usive; this results mainly in amplitude errors
in the solution when the forecast model is run with the correctc value and can be
reduced by choosing a small �x. The scheme (28) can be written as a linear matrix
system enabling us to obtain an explicit expression for the elements of the Jacobian
matrix N k .

The state forecast model (28), with known constant advection speed c, can be
written as

xk+1 = Mx k ; (30)

where xk = ( u1;k ; u2;k ; : : : un;k )T 2 Rn is the model state at time tk and M is a
(constant) n � n matrix, that depends nonlinearly on the advection velocity c,

M i;j =

8
<

:

(1 � �c ) i = j
�c i = j + 1 ; and (i; j ) = (1 ; n)
0 otherwise

(31)

Setting w k = ( xk ; ck )T , we combine (30) with the parameter evolution model (3) to
give the augmented system model

w k+1 =
�

M k 0
0 1

� �
xk

ck

�
(32)

Note that the constant matrix M in (30) has been replaced by the time varying
matrix M k = M (ck ). Although the exact system matrix M is constant, during the
state-parameter estimation the forecast model at timetk will depend on the current
estimate, ck , of the exact advection velocity, c. The matrix M k will therefore vary as
ck is updated.

4.1.1. State-parameter cross-covariance. In this case, we only have a single
unknown parameter; the parameter vector is scalar and the parameter background
error covariance matrix P f

pp is simply the parameter error variance, � 2
c . The ap-

proximation of the cross-covariances between the errors in the model state and the
parameter c at time tk+1 is therefore given by

P f
xp k +1

= � 2
c N k : (33)

For the linear advection model, the matrix N k is de�ned as

N k =
@(M k xk )

@c

�
�
�
�
x a

k ;ca
k

; (34)

which is a vector in Rn with elements

N j;k = � (uj � 1;k � uj;k ); j = 1 ; : : : ; n ; k = 0 ; 1; : : : (35)

4.1.2. Experiments. We run the linear advection model on the domainx 2
[ 0; 3] with grid spacing � x = 0 :01 and time step � t = 0 :01, giving � = 1. The initial
state of the reference solution is given by the Gaussian function

u(x; 0) =

8
><

>:

0 x < 0:01

e� ( x � 0 : 25) 2

0: 01 0:01 < x < 0:5
0 x � 0:5

: (36)
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the case 25� t. When observations are taken every 50�t the estimates for c take
longer to converge and as a result the model takes longer to stablise. Once the model
has settled the analysis foru
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using di�erent observation intervals. There was also variation across model runs.
A notable result is the estimates of parameterd when observations are available at
every timestep (solid grey line in �gure 6(a)). The estimates initially appear to be
moving towards the correct value but at around 40 timesteps theybegin to increase
away. The experiment was repeated with di�erent noise simulations and di�erent
starting values for d but similar behaviour was found in every case. It is possible
that the interval between updates is insu�cient for the model to a djust to the new
value of d before the next input of data. A further hypothesis is that this behaviour
is related to the role of d in the model equations. The parameterd determines how
quickly the solution becomes damped. As we move forward in time the amplitude of
the solution decreases, the relative size of the observational noise therefore increases
causing greater misrepresentation of the true amplitude and making it harder to
identify the exact value of d.

We found that this behaviour could be remedied by averaging the estimates as
is illustrated in �gures 7(a) and (b). The parameter estimates were averaged over a
moving time window of 50 time steps starting at t = 30. This produces more stable
estimates for the parameters which in turn gives greater stability to the forecast
model. In this example, the value prescribed for� 2

o is relatively small and so the
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x0 = � 5:4458, y0 = � 5:4841 and z0 = 22:5606. The solutions for x and z are
illustrated in �gure 8 for t 2 [0; 30]. The initial model background state vector xb

0
is generated by adding Gaussian random noise with zero mean and variance 0.1 to
the reference state att0. The state background error covariance matrix is given by
P f

xx = � 2
b I 2 R3� 3 with error variance � 2

b = 1 :0. The error variances of the parameters
are set equal to 20% of their reference value. As inx4.2, we use the BLUE equation
(11) to compute the analysis directly.

4.3.3. Results. Perfect observations.
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background estimates are particularly poor then we are unable to yield reliable results.
The threshold for each model varied depending on properties of the model structure
and the underlying dynamics, but was not overly restrictive.

The scheme is inevitably less successful in situations where the model is relatively
insensitive to a particular parameter, as was the case for certain settings in the nonlin-
ear oscillating system. This is not surprising as we cannot expect to be able to correct
parameters that cause errors in the model solution that are on smaller scales than
can be reliably observed. Other parameter estimation techniques would also be likely
to fail in such a scenario. This is linked to the concepts of observability and identi�-
ability [2], [30]; whether the available observations contain su�cient inf ormation for
us to be able to determine the parameters of interest and whetherthese parameters
have a unique deterministic set of values. A method can only be expected to work
reliably when both these properties hold. Future work will consider these issues in
more depth and examine how they formally relate to our new algorithm.

For models with more than one parameter, consideration must be given to the
relationship between individual parameters. In this work we assumed that the pa-
rameters in the oscillating and Lorenz models were uncorrelated andset the cross-
covariances between the parameters equal to zero. Whilst this assumption worked for
these particular models it may not adequate for models in which the parameters ex-
hibit strong correlation. A model sensitivity analysis can be used to help identify the
interdependence of parameters and ascertain whether cross-correlations are needed.
In this case, more attention will need to be given to the parameter error covariance
matrix and methods for de�ning the cross-correlations will need tobe considered [43].
In some situations, it may be prudent to consider a re-parameterisation of the model
equations to improve the identi�ability of the parameters or even to transform the
parameters to a set of uncorrelated variables [44].

To date, our new technique has only been tested in models of relatively low di-
mension, where the number of parameters is small and, since the required parameters
are constants, the dynamics of the parameter model are simple. The increase in the
dimension of the problem caused by the addition of the parameters to the state vector
does not have a signi�cant impact on the computational cost of theestimation scheme
and the re-calculation of the matrix N k at each new observation time is not infeasi-
ble. Here we chose model discretisations that allowed us to obtain explicit expressions
for the matrix N k thereby avoiding any additional computational complexity. How-
ever, an explicit computational form for the Jacobian is not necessarily required; it
can, for example, be approximated using a simple local �nite di�erence approach, as
demonstrated in [43], [42], [41]. A further option is automatic di�erent iation [33].

Important advantages of our new approach are that the background error covari-
ance matrix only needs to be updated at each new analysis time rather than at every
time step and it does not require the previous cross-covariance ma
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