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Abstract

In this review I summarise some of the most signi�cant advances of the last decade
in the analysis and solution of boundary value problems posed for integrable partial
di�erential equations in two independent variables. These equations arise widely in
mathematical physics, and in order to model realistic applications, it is essential to
consider bounded domain and inhomogeneous boundary conditions.

I focus speci�cally on a general and widely applicable approach, usually referred to
as the Uni�ed Transform or Fokas Transform, that provides a substantial generalisation
of the classical Inverse Scattering Transform. This approach preserves the conceptual
e�ciency and aesthetic appeal of the more classical transform approaches, but presents
a distinctive and important di�erence. While the Inverse Scattering Transform fol-
lows the "separation of variables" philosophy, albeit in a nonlinear setting, the Uni�ed
Transform is a based on the idea of synthesis, rather than separation, of variables.

I will outline the main ideas in the case of linear evolution equations, and then
illustrate their generalisation to certain nonlinear cases of particular signi�cance.

1 Introduction

The Inverse Scattering Transform is one of the most celebrated advances in the study of
nonlinear systems, pioneered at the end of the 1960's by Kruskal et al. [44] and consolidated
throughout the 1970's by the work of many others [4, 5, 50, 57].
This transform is essentially a nonlinear version of the Fourier transform in one variable, and
can be used to unravel the behaviour of many systems with the property that the nonlinearity
is exactly balanced by other e�ects, such as dispersive e�ects. This implies that, in many
important respects, the behaviour of the solutions of the system is highly regular. For
example, when posed on an in�nite spatial domain, these systems admit localised solutions
(often referred to as solitons) that interact elastically - the interaction does not destroy the
amplitude or speed of the solutions. More importantly still, localised initial conditions with
su�cient energy will eventually evolve into a train of solitons, followed by a dispersive tail.
These properties are remarkable for a nonlinear system, and were �rst described heuristically
by Zabuski and Kruskal who observed this elastic interaction in numerical experiments
modelling solutions of the Korteweg-deVries equation.

Systems with the particular properties described above are calledintegrable.
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given PDE. Combining this idea with the two observations above, it is possible to construct
algorithmically a formal integral representation of the solution of a given boundary value
problem for an integrable PDE - this construction is the basis of the Uni�ed Transform
approach. It is important to note that this representation generally involves contours in the



procedure yields the following integral representation of the solution of (1.1) on the half-line:

q(x; t ) =
1

2�

Z 1

�1
ei�x + i� 3 t

� Z 1

0
e� i�y q0(y)dy

�
d� + (1.3)

+
1

2�

Z 1

�1
ei�x + i� 3 t

� Z t

0
e� i� 3 s �

qxx (0; s) + i�q x (0; s) � � 2f 0(s)
�

ds
�

d�:

The �rst term in this representation is the contribution of the initial condition. This would
be the only term present when solving the Cauchy value problem for decaying data, with the
integration in y extending over R. In this term, the x and t dependence is explicit through
the exponential term.
The second term involves the boundary values of the solution atx = 0, but two of the
boundary values involved in the integrand are not directly available. This is the generic
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Figure 1: The domain D +

with

q̂0(� ) =
Z 1

0
e� i�y q(y; 0)dy; � 2 C� ; ~f 0(� ) =

Z T

0
e� i� 3 sf (s)ds; ! = e2�i= 3: (1.6)

In this linear example, the expression (1.4) could be derived from (1.3) by simply considering
analyticity properties with respect to the variable � , extended from R to C, and deforming
the contour of integration. However, this deformation is not possible in the general nonlinear
case. The general methodology to obtain the representation (1.4) is based instead on formu-
lating and solving an associated Riemann-Hilbert problem, and this approach can indeed be
extended to the case of nonlinear integrable evolution equations in one space variable, e.g.
to the famous KdV or mKdV equation, posed on the domain 0< x < 1 ; 0 < t < T :

(KdV ) qt + qxxx + qx + 6qqx = 0 ; (1.7)

(mKdV ) qt + qxxx + � 6q2qx = 0 ; � = � 1: (1.8)

However, in this case, the elimination of the unknown boundary values is only as e�ective
as in the linear case for special boundary conditions, calledlinearisable [26, 28]. For general
boundary conditions, the characterisation can be obtained by a perturbation scheme e�ective
to all orders [41, 42].

In this article, I present a summary of the main results obtained by this approach for
boundary value problems, unifying the treatment of linear and integrable nonlinear PDEs



I will also leave out of my exposition the case of problems with periodicity in the variable
x. The solution of this case, for integrable nonlinear evolution PDEs, was developed in the
seventies, and it involves algebro-geometric techniques, through a formulation as a Riemann-
Hilbert problem on a Riemann surface [13, 23, 48].

2 Integral transforms and Riemann-Hilbert problems

The Fourier transform provides the most e�ective way of solving initial value problems for
linear evolution PDEs.
Consider for example the PDE@t q+ @n

x q = 0. The solution "algorithm", assuming q(x; 0) =
q0(x) 2 S(R), is given by (1.2). Schematically, this algorithm is given by

q0(x)
Direct map

�! q̂0(� )
Inverse map

�! q(x; t ) =
1

2�

Z 1

�1
ei�x � ( i� )n t q̂0(� )d�;

with q̂0(� ) is the Fourier transform of q0(x).
This solution algorithm is generally applicable, it yields an exact solution representation
and, on account of the explicit x and t dependence appearing in the solution representation,
it contains qualitative information (in particular, asymptotic information for large



� For � 2 R, where both functions � �



2.2 The Inverse Scattering Trasform: a nonlinear Fourier transform

The approach just described for formulating and inverting integral transforms has a nonlin-
ear analogue. This nonlinear transform can be used to solve the initial value problem for
integrable nonlinear evolution PDEs, in a way analogous to the use of Fourier transform in
the linear case.
The starting point, rather than the scalar ODE (2.1), is a matrix -valued ODE. Namely,
de�ne the matrix Q in terms of the given arbitrary function q(x) 2 S(R) (although much
less regularity is required, see [6]) by

Q(x) =
�

0 q(x)
� q(x) 0

�
; (2.5)

where � denotes complex conjugation, and consider the ODE

M x + i� [� 3; M ] = QM x 2 R; � 2 C; M (x; � ) a 2 � 2 matrix; (2.6)

where
[� 3; M ] = � 3M � M� 3; � 3 = diag(1; � 1): (2.7)

One seeks a solutionM (x; � ) of this ODE well-de�ned for all � 2 C. As for the linear case,
one can de�ne a solutionM + (x; � ) well-de�ned and bounded for � 2 C+ , indeed, such that
M + ! I as x ! 1 , and a solution M � (x; � ) well-de�ned and bounded for � 2 C� , with
M � ! I as x ! �1 . These matrix-valued solutions are not explicit, but characterised as
the unique solution of a linear integral equation, namely

M � (x; � ) = I �
Z �1

x
e� i� (x � y ) c� 3 Q(y)M � (y; � )dy; � 2 C� :

They satisfy a jump condition acrossR of the form

M � (x; � ) = M + (x; � ) ~J (x; � ); � 2 R; (2.8)

as well as asymptotic conditionsM � = I + O
�

1
�

�
as j� j ! 1 . The jump ~J (x; � ), de�ned

for � 2 R, is now matrix-valued. The entries of the 2� 2 matrix ~J (x; � ) are de�ned in terms
of certain � -transforms of the given function q(x), called the spectral data, multiplied by
explicit exponentials encoding the dependence onx:

~J (x; � ) = e i�x c� 3 J (� ): (2.9)

The notation expresses that the action of exp(xc� 3) on a 2� 2 matrix A is given by

ex c� 3 A =
�

a11 e2x a12

e� 2x a21 a22

�
: (2.10)

Hence given the matrix Q(x), the jump condition (2.8) de�nes the transform J (� ).
Conversely, givenJ (� ), the jump and decay data above determine a Riemann-Hilbert prob-
lem for M (x; � ) on the real line. Note that the jump matrix J (� ) and the function M (x; � )
are well-de�ned only modulo the possible existence of isolated singularities. However, the
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role of such isolated singularities is well understood and we will ignore them for the purpose
of this review, see also remark 5.2 below.
The di�erence with the linear case is that the jump condition in this case is multiplicative.
The multiplicative, non-commutative structure of the Riemann-Hilbert problem is a mani-
festation of the nonlinearity of the equation, and it implies that the solution does not have
an explicit expression analogous to the one in (2.3) given by the Plemelj formula. However,
it is a classical result that the solution M (x; � ) of the Riemann-Hilbert determined by the
data above can be characterised as the solution of a linear singular integral equation, and
its unique solvability can be rigorously proved, appealing to the symmetries forced on the
system by the choice of the form of the matrixQ(x) [10, 11, 12, 22].
From the expression forM (x; � ) one must derive an expression forq(x) and thus formulate
the inverse transform. Recall that, in the linear case,� � iq=� as � ! 1 . Similarly, from
the expression forM (x; � ), one can determine the arbitrary function



the Lax pair may be altered by changes of variable to regularise the� dependence, see for
example the elliptic sine-Gordon case, equation (3.4) below).
A useful Lax pair for several important evolution PDEs takes the general form

�
M x + if 1(� )[� 3; M ] = Q(x; t; � )M;
M t + if 2(� )[� 3; M ] = ~Q(x; t; � )M;

(3.1)

where � 3 and the commutator [�; �] are de�ned in (2.5), (2.7).
The particular form of the functions f i (� ), Q(x; t; � ), ~Q(x; t; � ) depends on the speci�c PDE.
Throughout this review, I will refer to two of the most common and important integrable evo-
lution PDEs, arising as models in mathematical physics, namely the nonlinear Schr•odinger
(NLS) and modi�ed Korteweg-deVries (mKdV) equations. The case of this second- and
third-order evolution equation illustrate the general approach for integrable evolution PDEs
in one space variable. For these equations, the Lax pair is given by the following choices:

NLS

equation : iqt + qxx � 2�q x jqj2 = 0 ; � = � 1; (3.2)

Lax pair : f 1(� ) = �; f 2(� ) = 2 � 2;

Q =
�

0 q(x)
� �q(x) 0

�
; ~Q = 2 �Q � iQ x � 3 � j qj2� 3;

mKdV

equation : qt + qxxx � 6�q 2qx = 0 ; � = � 1; (3.3)

Lax pair : f 1(� ) = �; f 2(� ) = 4 � 3;

Q =
�

0 q(x; t )
�q (x; t ) 0

�
; ~Q = 2Q3 � Qxx � 2i� [Q2 + Qx ]� 3 + 4 � 2Q:

There exist also integrable PDEs of elliptic type, with independent variables denotedx and
y. The best-known such equation is the so-called elliptic sine-Gordon equation

equation : qxx + qyy � sinq(x; y) = 0 : (3.4)

For this PDE, a convenient Lax pair is given by [33, 37, 54]

Lax pair : M x +
1
4i

�
� �

1
�

�
[� 3; M ] = Q(x; y; �



3.1 The solution of the Cauchy problem for integrable PDEs in 2
independent variables using the Inverse Scattering Transform

I have introduced all the ingredients needed to extend the strategy for solving the Cauchy
problem for linear evolution equations to nonlinear integrable evolution equations such as
the NLS or mKdV equations. I focus on the particular example of the NLS equation (3.2)
to discuss how this generalisation is obtained.
The Lax pair formulation of the NLS equation, given explicitly by

�
M x + i� [� 3; M ] = QM
M t + 2 i� 2[� 3; M ] = (2 �Q � iQ x � 3 � i� jqj2� 3)M

� 2 C; (3.6)

where M = M (x; t; � ), implies that q(x; t ) solves the PDE (3.2) if and only if for all � 2 C
there exists an invertible matrix-valued function M (x; t; � ) solving (3.6), In practice, the
PDE is obtained by imposing the compatibility condition M xt = M tx .
The �rst ODE in this pair is precisely the ODE associated with the nonlinear Fourier trans-
form. The second part of the Lax pair is used to determine the time evolution ofM (x; t; � ),
so that it is possible to write down an implicit expression for the solution M (x; t; � ) of the
Lax pair, in terms of a given initial condition q(x; 0) = q0(x) 2 S(R).
Conversely, givenJ (� ) the function q(x; t ) can be represented in terms of the elements of
the matrix M (x; t; � ) as

q(x; t ) = 2 i lim
j � j!1

(�M 12(x; t; � )) :

where the function M (x; t; � ), sectionally analytic for � 2 C, is the solution of the Riemann-
Hilbert problem determined by

M � = M + e( i�x � i� 2 t ) c� 3 J



4 An integral transform for linear boundary value prob-
lems

My aim is to extend the approach of the Inverse Scattering Transform to boundary value
problems. I have already mentioned the di�culty of solving a given boundary value problem
using the Fourier transform, or the inverse scattering transform in the nonlinear case. This
approach, that works well for the initial value problem when the time evolution is explicit
and depends only on the initial condition, runs into the di�cult problem of eliminating
unknown boundary values. This problem is not purely nonlinear - it features also for linear
PDEs. I will start therefore to consider how this di�culty can be resolved in the linear case.

4.1 Lax pairs for linear PDEs in two variables and the global rela-
tion



with the condition that Re w(� ) � 0 for � 2 R. This condition ensures that the pure initial
value problem is well posed, excluding cases such as the "wrong" heat equationqt + qxx = 0,
corresponding tow(� ) = � � 2, whose one-parameter family of solutions exp(i�x + � 2t), with
� 2 R, grow exponentially in time. Taking the limit as � ! 1 , this condition can be
recognised as a condition on the leading coe�cient� n . Namely, for n odd, it is enough to
require the condition � n = � i , while for n even, the condition is that Re � n � 0.

To obtain a boundary value problem which is well posed in the sense of admitting a unique
solution valid for all times, it is also necessary to prescribe an initial condition and an
appropriate number of boundary n an.f 20.314 -1.494 Jo0]s In1.494 tonditio5(sec314 ,-326(conditiondary)-325(n)-476(an.f 20.314 -1.494 I.955 Td [(appropriatf 2sid)-325334(i-28(o3(cb)-296)]TJ/F1-28(o4(conditio3all)m.9626 Tf 117.947 0 58.98d [d [9q)]]TJ/F10 49738 Tf 5.812 3.615 6n)][(n)]TJ/F14 0.9626 Tf 4.469 -3.615 Td (n)]TJ/F14 q9626 Tf 4.469 -3.61580550)]TJ/F11 90.9626 Tf 4.469 -3.68.85.)]TJ -34;0� 0��



Once the PDE is cast in this form, involving the auxiliary complex parameter � , the stage
is set for deriving an appropriate transform. As stated earlier, instead of using only one
ODE, this uni�ed transform is determined by both ODEs in the Lax pair simultaneously.
This transform, valid only for the speci�c boundary value problem at hand, by construction
involves both x and t as parameters.
In this way one derives the following formal representation for the solution of the PDE.

Proposition 4.2 (The formal solution representation) De�ne

~F (�; t ) =
Z t

0
ew(� )sF (0; s; � )ds =

n � 1X

k=0



Proposition 4.3 (The global relation) Consider the PDE (4.2), and let ~F (�; t ) be given
by (4.10).
Consider also the Fourier transform in x of the solution q(x; t ) at time t:

q̂(�; t ) =
Z 1

0
e� i�y q(y; t)dy; 0 � t � T; � 2 C� : (4.14)

Then for every t 2 (0; T), the functions q̂0(� ) given by (1.6), ~F (�; t ) and q̂(�; t ) satisfy the
global relation

~F (�; t ) = q̂0(� ) � ew(� ) t q̂(�; t ); � 2 C� : (4.15)

The restriction � 2 C� in (4.15) is needed for the integral de�ning the termsq̂0(� ) and q̂(�; t )
to be well de�ned. In general, the functions involved in the global relation may have isolated
singularities in � , that can arise from speci�c boundary conditions or for problems posed on
bounded intervals, and whose residues play an important role in the explicit characterisation
of the solution. I will touch on this point later, for the case of problems posed on bounded
intervals. See [51] for other examples.

The global relation is a necessary condition that the boundary and initial values must satisfy.



4.2 The determination of the spectral data - generalised Dirichlet
to Neumann map

To formulate and solve a boundary value problem for a PDE of the form (4.2), it is necessary
to

(a) determine how many boundary conditions should be prescribed at the boundary in
order to guarantee the existence of a unique solution of the problem;

(b) derive a solution representation that involves only the prescribed boundary conditions,
and not all boundary values as in (4.12).

The answer to the question posed in (a) yields the number of boundary values that must be
determined as part of the e�ective solution of the boundary value problem.
The determination of these unknown boundary values yields the answer to (b). I refer to
the expression for the unknown boundary values in terms of the prescribed data as the
generalised Dirichlet to Neumann map.



where S is given by (4.3), q0(x) 2 S(R+ ) is a given function, and there areN prescribed
boundary conditions @j

x q(x; t )jx =0 = f j (t), j = 0 ; :::; N �



as well as in the derivation of a solution representation involving only the known boundary
conditions.
The representation (4.12) involvesall functions ~f k (�; t ), k = 0 ; ::; n � 1, evaluated for � 2
@D+ . On the other hand, the global relation (4.15) is only valid in C� . The main idea
involved in the derivation of (4.19) from (4.12) is to make use only of the transformations�
that map the connected components ofD + into D . Indeed, it can be shown that while there
are n � 1 transformations � j (� ) leaving w(� ) invariant (excluding the trivial one � (� ) = � ),
for each connected component ofD + only n � N of these map the given component into
C � ; namely (upon relabelling)

� 2 D + =) � j (� ) 2 C � ; j = 1 ; ::; n � N:

Recalling that ~f k (� j (� )) = ~f j (� ), by evaluating the global relation at the values � j (� ) one
�nds a system of n � N equations for the n � N unknown boundary values:

n � 1X

k= N

ck (� 1(� )) ~f k (�; t ) = q̂0(� 1(� )) � K (� 1(� ); t) � ew(� ) t q̂(� 1(� ); t)

:::

:::
n � 1X

k= N

ck (� n � N (� )) ~f k (�; t ) = q̂0(� n � N (� )) � K (� n � N (� ); t) � ew(� ) t q̂(� n � N (� ); t)

The solution of this system can be given using Cramer's rule to write each of the functions
~f k (�; t ), k = N; :::n � 1, in terms of the known function on the right hand side and the
determinant of the system, which can be shown to have no zeros. This solution de�nes the
mapping F appearing in (4.19).
It would seem that this solution involves also the termsq̂(� j (� ); t) that are unknown. How-
ever, it can be proved that the combination of these terms appearing in the solution is
always bounded and analyticin D + , in fact that these terms have decay of orderO

�
1
�

�
as

� ! 1 , so that their integral along @D+ vanishes. Hence these areghost termsthat do not
contribute to the integral in (4.19), and can be ignored for the purpose of representing the
solution in the form (4.19).
Finally, analyticity arguments can be used to substitute t with the �nal time T in the term
K (�; t ) appearing in the �nal integral representation.
QED

Remark 4.3 There is considerable 
exibility in deforming the contour of integration in
(4.12) and (4.19). In .629 Td99.91nH322(�nal)-321(t69I1nH322(�nal)14nal)-3216 Tf 8.6 T294nal t-348(theour-281(sho)28(w1)-280(that)-28(con)2en)27(1/F11 4nalanrming)-(omp)-25(in)28r280(there)]lly, analyn7329(de1ng)1(mde1npdefoo.638that)23.135 -11.955 Td [(C7/F8w-)]TJ -36f 14.368 3.615 Td [(+)]TJ/F8 9.9626 Tf 6.614 -3.615 Td [(.)-706(On)-420(the)-421,F8 9.99(der7(in)28(t7resen)28(tatie)-34at)-7329f 95.63834at





The mapping F of theorem 4.1 (assuming for convenience that the homogeneous boundary
condition q(0; t) = 0 is prescribed, hence that ~K (� ) = q̂0(� )) is given for this example by

F [ ~K ](� ) = ! q̂0(!� ) + !



the domain D . In this case, the evaluation of the residue of these functions at the poles
gives rise to the usual series representation.

The global relation is now the following equation, valid for all � 2 C:

~F (�; t ) � e� i�L ~G(�; t ) = q̂0(� ) � ew(� ) t q̂(�; t ); � 2 C; 0 < t � T: (4.29)

Using the analysis of the global relation just as for the half-line case, it is possible to
determine the value of ~F (�; t ) and ~G(�; t ) in terms only of the given initial and boundary





where ak ; bk 2 C, k = 0 ; :::; n � 1.

The above discussion makes it clear that it is of crucial importance to determine the location
of the zeros of the function �( � ). General results in complex analysis [49] allow one to
determine the asymptotic location of the zeros of �( � ) for large � and this is su�cient to
give a complete characterisation of the solution of these boundary value problems.

The approach discussed here provides a constructive criterion to distinguish between bound-
ary conditions that yield a self-adjoint spectral problem, and those that do not. In the latter
case, the integral representation of the solution is not equivalent to a series representation.
The �rst results on this phenomenon were presented in [35, 36, 53], but recently there has
been a rigorous treatment of this issue from the point of view of classical spectral theory
[56].

Series versus integral representation - an example

For the illustrative case of the PDE (1.1), two cases of boundary conditions exemplify the
situation. Suppose that one has

qt + qxxx = 0 ; 0 < x < 1; 0 < t < T; q 0(x) = q0(x); 0 < x < 1; (4.36)

and either of the following two sets of boundary conditions:

(A) q(0; t); q(1; t); qx (0; t) given (4.37)

(B ) q(0; t) q(1; t) given; qx (0; t) = �q x (1; t); � 2 R n f 0g: (4.38)

In both cases, sincew(� ) = � 3 for this PDE, the solution is obtained as an integral along
the boundary of the region

D = f � 2 C : Im (i� 3) < 0g: (4.39)

The global relation is now (dropping the dependence ont)

~f 2(� ) + i� ~f 1(� ) � � 2 ~f 0(� ) � e� i� �
~g2(� ) + i� ~g1(� ) � � 2~g0(� )

�
= q̂0(� ) � ei� 3 t q̂(�; t ); � 2 C

(4.40)
where ~f k represent transforms of the solution evaluated atx = 0 and ~gk represent transforms
of the solution evaluated at x = 1, k = 0 ; 1; 2. Note that now the global relation is valid for
all � 2 C, as all functions involved are entire functions of� .

The unknown boundary values can be obtained as in the half-line case by solving a system,
for each �xed � 2 C, of three equations for three unknowns obtained by evaluating the
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Re� 3 = 0

Re�

Im �

� = 0

Figure 4: The location of the zeros of �( � ) for case (A)

global relation at the three roots given by (4.21):

(A) :
8
><

>:

~f 2(� ) + i� ~f 1(� ) � e� i� ~g2(� ) = q̂0(� ) + K (� ) � ei� 3 t q̂(�; t );
~f 2(� ) + i!� ~f 1(� ) � e� i!� ~g2(� ) = q̂0(!� ) + K (!� ) � ei� 3 t q̂(!�; t );
~f 2(� ) + i! 2� ~f 1(� ) � e� i! 2 � ~g2(� ) = q̂0(! 2� ) + K (! 2� ) � ei� 3 t q̂(! 2�; t );
�

with K (� ) = � 2 ~f 0(� ) + e � i� [i� ~g1(� ) � � 2~g0(� )]
�

(B ) :
8
><

>:

~f 2(� ) + e � i� [i� (� � 1)~g1(� ) � ~g2(� )] = q̂0(� ) + K (� ) � ei� 3 t q̂(�; t );
~f 2(� ) + e � i!� [i!� (� � 1)~g1(� ) � ~g2(� )] = q̂0(!� ) + K (!� ) � ei� 3 T q̂(!�; t );
~f 2(� ) + e � i! 2�

�
i! 2� (� � 1)~g1(� ) � ~g2(� )

�
= q̂0(! 2� ) + K (! 2� ) � ei� 3 t q̂(! 2�; t );

�
with K (� ) = � 2 ~f 0(� ) + e � i� � 2~g0(� )

�

The determination of the spectral functions ~F and ~G in terms of given initial and boundary
data only is obtained by solving the system - in this example, the explicit system in (A) or
(B).
Case (A) The determinant of this linear system is

�( � ) = ( ! � ! 2)[e� i� + ! e� i!� + ! 2e� i! 2 � ]

The zeros lie asymptotically on the rays bisecting the three connected components ofD c,
see Figure 4.
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These zeros are outsideD and in fact it is not possible to deform the integration con-
tour to include them - the integral representation on this case isnot equivalent to a series
representation.
Case (B) The determinant of this linear system is

Re� 3 = 0

Re�

Im �

� � � e
5�
2

log(� � )

Figure 5: The location of the zeros of
�( � ) for case (B) - � � � e5�= 2

Re� 3 = 0

Re�

Im �

� = � 1
log(� � )

Figure 6: The location of the zeros of
�( � ) for case (B) - � = � 1

�( � ) = ( ! � ! 2)[e� i� + ! e� i!� + ! 2e� i! 2 � + � (ei� + ! ei!� + ! 2ei! 2 � )]

The zeros lie asymptotically on @D, see Figures 5 and 6 for the example of two particular
values of � . Therefore the residues at these zeros must be computed and yield the series
representation.

5 An integral transform for nonlinear boundary value
problems

The Uni�ed Transform to solve boundary value problems for linear equations, outlined in
the previous section, is based on deriving an integral transform through a Riemann-Hilbert
problem associated with both ODE in the Lax pair. This transform yields (1) an integral
representation for the solution and (2) a global relation among certain transforms of the
boundary values.
Since the starting point for the approach above is the Lax pair formulation of the PDE, it
seems natural to expect that this construction can be generalised to the case of nonlinear
integrable equations, that are precisely those characterised by a Lax pair formulation.
I will consider the case of evolution equations posed on a half-line, as this case gives the full

avour of the techniques and results.
Consider an integrable nonlinear PDE in the variablesx 2 R and t 2 R



Example of such equations are the NLS, KdV and mKdV equations given by (3.2), (1.7),
(1.8) respectively, as well as many other important equations of mathematical physics.
As for the linear case, it is indeed possible to derive, starting from the Lax pair, a global
relation and a formal integral representation, that is now implicitly characterised through a
singular linear integral equation.
I have discussed how the idea of the simultaneous spectral analysis of the Lax pair is imple-
mented for the case of linear evolution PDEs, namely by formulating and solving a Riemann-
Hilbert problem. The approach can be generalised and remains conceptually the same for
the nonlinear case. However, there is an important technical di�erence: the associated
Riemann-Hilbert problem in the nonlinear case is matrix-valued, hence non commutative,
rather than scalar as for the linear case. The lack of commutativity of the Riemann-Hilbert
problem implies that it is not possible to write down explicit formulas.
To illustrate the di�erence, I sketch the case of the defocusing NLS equation, namely equa-
tion (3.2) with � = 1 (more details on the construction of the solution representation are
given below in section 5.1). Then, in analogy with the case of the full line in section 3.1, the
role of the Fourier transform of the initial condition q̂0(� ), where q0(x) = q(x; 0) is played
by the spectral data de�ned in terms of the initial information. These spectral data are the
pair of functions a(� ), b(� ) such that

�
b(� )
a(� )

�
=

�
M 21(x; 0; � )
M 22(x; 0; � )

�
:

where M (x; 0; � ) is the solution of the x part of the Lax pair, i.e. the �rst ODE in (3.6),
evaluated at t



Again, symmetry considerations imply that it is enough to consider one column of this
function. For example, the second column of �(t; � ) satis�es, for 0 < t < T and � 2 C, the
following ODE:

@t

�
� 21(t; � )
� 22(t; � )

�
+ 4 i� 2

�
1 0
0 0

� �
� 21(t; � )
� 22(t; � )

�
=

�
� i jq(0; t)j2 � iqx (0; t) + 2 �q (0; t)

� i qx (0; t) + 2 � q(0; t) i jq(0; t)j2

� �
� 21(t; � )
� 22(t; � )

�
;

�
� 21(0; � )
� 22(0; � )

�
=

�
0
1

�
; � 2 C; (5.3)

which again is equivalent to a linear Volterra integral equation, hence well de�ned.
Note that since in general only one boundary condition involving the two boundary values
q(0; t) and qx (0; t) can be prescribed, the boundary spectral functionsA(� ), B (� ) are not
fully characterised by the above ODE.

Nevertheless the solutionq(x; t ) has a formal representation in terms of the solutionM (x; t; � )
of a Riemann-Hilbert problem de�ned on the real and imaginary axes, whose jump is de-
�ned in terms of the spectral functions a(� ), b(� ), A(� ) and B (� ). The function q(x; t )
exists uniquely, has explicit x and t dependence, and it represents a solution of the PDE
satisfying the initial condition. However, in general, it will not satisfy prescribed boundary
conditions. However, if the full set of boundary values is assumeda priori to satisfy the
additional constraint given by the global relation, then the function q(x; t ) satis�es these
boundary values.

The general picture is similar. For many interesting integrable PDEs of mathematical physics
(for example NLS, KdV, mKdV, sine-Gordon), the representation of the solution q(x; t ) of
the PDE is based on the unique solvability of the associated Riemann-Hilbert problem, which



� derive a solution representation that involves only the prescribed boundary conditions.

I will assume that the answer to the �rst question is the same as for the linearised version
of the PDE. This assumption can be veri�ed a posteriori by using the representation of the
solution to prove existence and uniqueness for the given boundary value problem.
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Thus, given q0(x) 2 S(R+ ) and a subset of set of all boundary valuesf f k (t) = @x

k q(0; t)gn � 1
k=0 ,

the main problem becomes to show that the global relation characterises all other unknown
boundary values. Namely, the last step in the full solution of a given, well -posed boundary
value problem isthe analysis of the invariance of the global relation in the complex� plane to
determine a representation depending only on the prescribed initial and boundary conditions.
As discussed below, this step is fully successful in the nonlinear caseonly for certain special
types of boundary conditions, calledlinearisable boundary conditionin the literature.
For generic boundary conditions, the characterisation of the unknown boundary values via
the global relation is itself a nonlinear problem, as it can be shown to be equivalent to solving
a nonlinear system of equations [28].

5.1 The integral representation of the solution

In this section I summarise the steps to derive the main formal statement regarding integrable
evolution PDE in the two independent variables (x; t ) 2 
, where 
 is given by (5.1). Rather
than specifying a set of boundary conditions, one assumes a-priori that the initial condition
and the full set of boundary values satisfy the global relation. See [41] for the details.

For several of the most physically relevant PDEs in this class, the Lax pair takes the form
(3.1). In this form, M (x; t; � ) is a 2� 2 matrix-valued function, while f 1(� ), f 2(� ) are given
analytic (usually polynomial) functions of � , encoding the dispersion relation of the PDE.
The Lax pair (3.1) can be written in terms of a di�erential form W (x; t; � ) as

d[e( if 1 ( � )x + if 2 ( � ) t ) c� 3 M (x; t; � )] = e ( if 1 ( � )x + f 2 ( � ) t ) c� 3 W (x; t; � ); (5.4)

where the meaning of the notationec� 3 is given in (2.10) and

W (x; t; � ) =
h
Q(x; t; � )dx + ~Q(x; t; � )dt

i
M (x; t; � ): (5.5)

The direct problem

As for the linear case, the �rst step is constructing simultaneous solutions of the two ODEs
in the Lax pair, in such a way that for each � 2 C there is only one solution bounded and
analytic in a neighbourhood of � . These basic eigenfunctions are given by

M j (x; t; � ) = I +
Z (x;t )

(x j ;t j )
e( � if 1 ( � )( x � � ) � if 2 ( � )( t � � )) c� 3 Wj (�; �; � ); (x; t ); (x j ; t j ) 2 
 : (5.6)

In order to de�ne a solution M (x; t; � ) de�ned and analytic everywhere except on a contour,
it is su�cient to consider the points ( x j ; t j ) as the the vertices of the unbounded polygon

, namely

(x1; t1) = (0 ; T); (x2; t2) = (0 ; 0); (x3; t3) = ( 1 ; t);
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Thus one obtains threesectionally analytic basic eigenfunctions,M 1; M 2 and M 3. Their
de�nition is independently of the path of integration,and the column vectors are bounded and
analytic in certain domains. On the common boundary of these domains, the eigenfunctions
satisfy the following jump conditions:

M 3(x; t; � ) = M 2(x; t; � )e( � if 1 ( � )x � if 2 ( � ) t ) c� 3 s(� ); � 2 (C� ; C+ ); (5.7)

M 1(x; t; � ) = M 2(x; t; � )e( � if 1 ( � )x � if 2 ( � ) t ) c� 3 S(� ); � 2 (D2; D3); (5.8)

where � 2 (D; ~D) means the matrix identity is valid for the �rst column in the domain D
and for the second column in the domain ~D,

D1 = f � : Imf 1(� ) > 0 and Imf 2(� ) > 0g; D2 = f � : Imf 1(� ) > 0 and Imf 2(� ) < 0g;

D3 = f � : Imf 1(� ) < 0 and Imf 2(� ) > 0g; D4 = f � : Imf 1(� ) < 0 and Imf 2(� ) < 0g;

(5.9)

and
s(� ) = M 3(0; 0; � ); S(� ) = [e if 2 ( � )T b� 3 M 2(0; T; � )] � 1: (5.10)

The spectral functions

Letting

	( x; � ) = M 3(x; 0; � ); � 2 (C� ; C+ ); �( t; � ) = M 2(0; t; � ); � 2 C: (5.11)

one can write the matrices in (5.10) as

s(� ) = 	(0 ; � ); � 2 (C� ; C+ ); (5.12)

S(� ) =
h
eif 2 ( � )T c� 3 �( T; � )

i � 1
; � 2 C: (5.13)

Since they solve the two ODEs in the Lax pair, these functions are the solutions of the
following linear Volterra integral equations:

	( x; � ) = I �
Z 1

x
e� if 1 ( � )( x � � ) c� 3 Q(�; 0; � )	( �; � )d�; x 2 (0; 1 ); � 2 (C� ; C+ );

(5.14)

�( t; � ) = I +
Z t

0
e� if 2 ( � )( t � � ) c� 3 ~Q(0; �; � )�( �; � )d�; t 2 (0; T); � 2 C; (5.15)

which are respectively equivalent to ODE (5.2) and to the following analogue of (5.3):

@t

�
� 21(t; � )
� 22(t; � )

�
+ 2 if 2(� )

�
1 0
0 0

� �
� 21(t; � )
� 22(t; � )

�
= ~Q(0; t; � )

�
� 21(t; � )
� 22(t; � )

�
;

�
� 21(0; � )
� 22(0; � )

�
=

�
0
1

�
; � 2 C: (5.16)

In particular, the spectral functions satisfy the following:
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� s(� ) is de�ned by the values of the solution at t = 0 - the initial condition;

� S(� ) is de�ned by the values of the solution at x = 0 - the boundary values.

The matrices Q, ~Q for the integrable PDE considered have symmetry properties that imply
that s(� ), S(� ) can be written as

s(� ) =

 
a( �� ) b(� )

� b( �� ) a(� )

!

; S(� ) =

 
A(�� ) B (� )

� B (�� ) A(� )

!

: (5.17)

Hence the jump matrices depend on the four distinct functions of the spectral parameter�
de�ned by (5.17).

The global relation

To obtain an additional relation involving the spectral functions s(� ) and S(� ), one observes
that the function � de�ned by (5.11) and the function M 3



J1 =
�

1 0
�( � ) 1

�
; J3 =

�
1 � � �( � )
0 1

�
;

J4 =
�

1 � 
 (� )
� 
 (� ) 1 � � j
 (� )j2

�
; J2 = J3J � 1

4 J1:

where


 (� ) =
b(� )

a( �� )
; �( � ) =

� B ( ��



This Riemann-Hilbert problem admits a unique solutionM (x; t; � ). In addition the func-
tion q(x; t ) de�ned in terms of of M by (5.24) satis�es either the NLS equation or mKdV
equations, as well as

q(x; 0) = q0(x); q(0; t) = f 0(t); qx (0; t) = f 1(t); (qxx (0; t) = f 2(t) for mKdV ):

Remark 5.1 The proof that q(x; t ) solves the given nonlinear PDE uses the standard argu-
ments of the dressing method. The proof thatq(x; 0) = q0(x) is based on the fact that the
Riemann-Hilbert problem satis�ed by M (x; 0; � ) is equivalent to the Riemann-Hilbert prob-
lem de�ned by s(� ), namely the Riemann-Hilbert problem which characterisesq0(x). The
proof that @k

x q(0; t), k = 0 ; :::; n � 1 are the boundary values of the solution makes crucial use
of the global relation [32]. Indeed, the Riemann-Hilbert problem satis�ed by M (0; t; � ) is
equivalent to the Riemann-Hilbert problem de�ned by S(� ), which characterises the bound-
ary values, if and only if the spectral functions satisfy this global relation, hence this relation
is a necessary and su�cient condition for the existence of a solution.

Remark 5.2 To simplify the exposition and stress the points that are of speci�c relevance



Linearisable boundary conditions are precisely the conditions such that the components of
�( t; � ) admit this additional invariance property. A more precise statement is given in the
following proposition, see [29].

Proposition 5.1 Suppose that thet part of the Lax pair of an integrable nonlinear PDE is
characterised by the scalar functionf 2(� ) and by the2 � 2 matrix-valued function ~Q(x; t; � )
given in (2.5). Let � (� ) be the transformations of complex(� )-plane which leavef 2(� )
invariant.
De�ne U(t; � ) by

U(t; � ) = if 2(� )� 3 � ~Q(0; t; � ): (5.25)

If it is possible to de�ne a matrix-valued function N (� ), in terms only of the prescribed
boundary conditions, such that

U(t; � (� ))N (� ) = N (� )U(t; � ) (5.26)

then the boundary spectral functionA(� ), B (� ) de�ned in (5.17) possess explicit symmetry
properties of the form

A(! (� )) = L 1(A(� ); B (� )) ; B (! (� )) = L 2(A(� ); B (� ))

where L 1; L 2 are linear functions of A(� ), B (� ), A(�� ), B (�� ) with coe�cients depending
only on the entries of the matrix N (� ).

When the condition of this proposition is satis�ed, the functions A(� ), B (� ) can be com-
puted as e�ectively as in the linear case in terms ofa(� ), b(� ) and the prescribed boundary
conditions.
It follows from this proposition that a necessarycondition for the existence of linearisable
boundary conditions is that the determinant of the matrix U(t; � ) de�ned by (5.25) is a
function of � only through f 2(� ). However, this condition is not su�cient . In particular,
since the function U depends on the particular choice of Lax pair, it follows that di�erent
Lax pairs allow one to uncover di�erent linearisable conditions. An explicit example is given
by the case of the sine-Gordon equation, derived following this strategy in [27]. Indeed,
using the usual Lax pair for this equation, an invariance property can be established for a
constant boundary condition, while an alternative Lax pair leads to the boundary condition
(b) in (5.30) below, originally discovered by Sklyanin [59].

Particular conditions that are linearisable for some of the important integrable equations of
mathematical physics are listed below:

NLS In this case, there are three linearisable boundary conditions satisfying the necessary
condition on the determinant of U(t; � ) with ~Q de�ned by (2.5):

(a) q(0; t) = 0; ( b) qx (0; t) = 0; ( c) qx (0; t) � �q (0; t) = 0 ; � 2 R+ ; (5.27)

KdV- This refers to the KdV equation with dominant surface tension, hence with a negative
sign in front of the third derivative term:

qt + qx � qxxx + 6qqx = 0 : (5.28)
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In this case, N = 2 so two boundary conditions must be prescribed atx = 0.

(a) q(0; t) = �; q xx (0; t) = � + 3 � 2; � 2 R; (5.29)

sG I also mention the case of thesine-Gordon equationqtt � qxx + sin q = 0, as in this
case the two cases of linearisable conditions are obtained by considering the invariance
(5.26) with respect to two distinct Lax pairs, [27, 29].

(a) q(0; t) = �; � 2 R; (b) qx (0; t) + � 1 cos(
q(0; t)

2
)+ � 2 sin(

q(0; t)
2

) = 0 ; � 1; � 2 2 R:

(5.30)

5.3 General boundary conditions

For general boundary conditions, not necessarily linearisable, the invariance analysis of the
global relation is not su�cient to characterise the solution of the problem without involving
the unknown boundary values. However, for general boundary conditions thatdecay for
large t, the representation obtained through the Uni�ed Transform yields useful asymptotic
information even without the explicit characterisation of the spectral functions.
In addition, two di�erent approaches for analysing the generalised Dirichlet to Neumann
map for the case of the NLS equation, i.e. to expressqx (0; t) in terms of the given boundary
condition f (t) and initial condition q0(x), have been presented recently in [41, 42].

For non-decaying boundary conditions, the computation of the larget behaviour of the
solution and of its boundary values requires new ideas. The most signi�cant example of this
situation is the case of atime-periodic given boundary condition, an important condition in
practice. For example, the KdV equation with given zero initial condition q(x; 0) = 0 and
a periodic boundary condition such asq(0; t) = a sin(!t ), corresponds to the very realistic
situation of shallow water waves in a tank, excited by a periodic wavemaker. The linear case
of this model is studied in [15].



equations. Indeed, for the particular example of NLS, this system is given explicitly as
follows

A(� ) = ' 2(T; �� ); B (� ) = � e4i� 2 T ' 1(T; � );

where ' 1(t; � ), ' 2(t; � ) are solutions of

' 1(t; � ) =
Z t

0
e4i� 2 (s� t ) [� jf 0(t)j2 ' 1 + (2 �f 0(t) + if 1(t)) ' 2](s; � )ds (5.31)

' 2(t; � ) = 1 �
Z t

0
[(2� �f 0(t) � i �f 1(t)) ' 1 + i jf 0(t)j2 ' 2](s; � )ds 0 < t < T; � 2 C:

where I use the notation

f 0(t) = q(0; t); f 1(t) = qx (0; t):

By substituting into the equations above the expression forf 0 and f 1 given below in equa-
tions (5.32)-(5.33), it becomes apparent that this system is itself nonlinear.
Indeed the following result summarises the situation for the general (non-homogeneous)
Dirichlet or Neumann case, directly in terms of boundary functions in physical variables.

Proposition 5.2 Let T < 1 . Consider the NLS equation on the positive half-line

iqt + q



(b) For f 1(t) given,

f 0(t) =
1
�

Z

@D3

~� 1(
3





For the semistrip, the analysis is fully carried out in [33] but only for a simple example of
linearisable boundary conditions.

The half-plane problem

Consider the Dirichlet problem for the elliptic sine-Gordon equation in the half plane
f (x; y) 2 R2 : y > 0g. In [37], it is shown that the solution q(x; y) can be expressed in terms
of a Riemann-Hilbert problem whose jump matrix is uniquely de�ned by a certain function
b(� ), � 2 R, explicitly expressed in terms of the given Dirichlet datum g0(x) = q(x; 0) and
the unknown Neumann boundary valueg1(x) = qy (x; 0), where g0(x) and g1(x) are related
via the global relation, which in this case is the following constraint:

b(� ) = 0 for � � 0: (6.1)

Furthermore, it is shown that the latter relation can be used to characterise the Dirichlet
to Neumann map, i.e. to expressg1(x) in terms of g0(x). It appears that this provides the
�rst case that such a map is explicitly characterised for a nonlinear integrableelliptic PDE,
as opposed to anevolution PDE.
I give �rst the main theorem on the representation of the solution under the assumption
that the global relation holds. This theorem, analogous to Theorem 5.1 for the evolution
case, is based on the analysis of the Lax pair (3.5).

Theorem 6.1 Let the functions g0(x), g1(x) be such thatg0 � 2�m 2 H 1(R), m 2 Z, and
g1(x) 2 H 1(R).
Let

! (� ) =
1
4i

�
� �

1
�

�
; 
( � ) =

1
4

�
� +

1
�

�
:

De�ne a(� ) and b1

2
g0(x

� (x q0(x



De�ne the following Riemann-Hilbert problem in terms of b(� ):

	 � (x; y; � ) = 	 + (x; y; � )J (x; y; � ); � 2 R; 	 = I + O
�

1
�

�
; � ! 1 ; (6.6)

where

J =
�

1 b(� � )e� � (x;y;� )

� b(� )e� (x;y;� ) 1

�
� (x; y; � ) = 2( ! (� )x + 
( � )y: (6.7)

If the H 1 norm of the data g0(x), g1(x) is su�ciently small, the above Riemann-Hilbert
problem admits a unique solution	( x; y; � ).
Let the function q(x; y), x 2 R, 0 < y < 1 , be de�ned in terms of this unique solution by

iqx + qy = � lim
� !1

(i� 	) 12 ; cosq(x; y) = 1 � lim
� !1

4i�
�

@	
@x

�

22
� 2 lim

� !1
(� 	) 2

12 : (6.8)

Then q(x; y) solves the elliptic sine-Gordon equation (3.4) in the half planey > 0, and
furthermore

q(x; 0) = g0(x); qy (x; 0) = g1(x); x 2 R: (6.9)

It is evident th!cR;.9R, 0



where the vectors(m1(x; � ); m2(x; � )) and (n1(x; � ); n2(x; � )) satisfy the ODEs
8
<

:

(m1)x = i
� (1 � cosg0(x))m1 � [ 1

� sing0(x) � � (x)]m2

lim x !1 (m1; m2) = (1 ; 0)
(m2)x + 2 ! (� )m2 = [ 1

� sing0(x) + � (x)]m1 � i
� (1 � cosg0(x))m2

x 2 R; � 2 C+ ;

8
<

:

(n1)x = i
� (1 � cosg0(x))n1 � [ 1

� sing0(x) � � (x)]n2

lim x !�1 (n1; n2) = (1 ; 0)
(n2)x + 2 ! (� )n2 = [ 1

� sing0(x) + � (x)]n1 � i
� (1 � cosg0(x))n2

x 2 R; � 2 C� :

The semistrip problem

In the case of the sine-Gordon equation posed in a semistrip, there are three unknown
boundary values to be determined, one on each of the three boundariesy = 0, y = L and
x = 0. In general, the complexity of this problem appears out of reach of the current
techniques.
In [33], the problem is analysed for one particularly simple example of linearisable boundary
conditions, namely the case that the prescribed boundary conditions are zero along the
unbounded sides of a semistrip and constant along the bounded side. A major di�culty
for this problem is the existence ofnon-integrable singularities of the function qy at the
two corners of the semistrip; these singularities are generated by the discontinuities of the
boundary condition at these corners. Following the spirit of the recent solution of the
analogous problem for the modi�ed Helmholtz equation [9], it is possible to introduce an
appropriate regularisation which overcomes this di�culty. Furthermore, by mapping the
basic Riemann-Hilbert problem to an equivalent modi�ed Riemann-Hilbert problem, it can
be shown that the solution can be expressed in terms of a 2� 2 matrix Riemann-Hilbert
problem whose jump matrix depends explicitly on the width of the semistrip L , on the
constant value d of the solution along the bounded side, and on the residues at the given
poles of a certain spectral function denoted byh(� ). The explicit determination of the
function h remains open, even for this simplest case of boundary conditions.

7 Conclusions

This review is intended as a summary of the most recent results obtained by the Uni�ed
Transform, or Fokas Transform, for solving boundary value problems for linear evolution
and integrable nonlinear PDEs in two variables.
This method is truly unifying, in the sense that the construction of the formal solution
representation follows the same steps in all cases, and is based on solving simultaneously
the system given by the Lax pair via a Riemann-Hilbert problem. This leads not only to
a formal solution representation involving an integral in the complex plane, but also to the
formulation of a global constraint among the boundary values. This constraint, although
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elementary (it can be derived by a straightforward argument appealing to Green's Theorem
in the plane), holds the key to the e�ective characterisation of the problem in terms only
of the prescribed boundary data. The important conceptual step to unlock the potential of
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