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In health-related behaviour change context, for an intervention to work at
the individual level, it is often of the utmost importance that a support network
exist (see e.g. [8]). In this way an individual is surrounded with social support.
Also, a support network needs to have a major inuence on the individual, as
possible negative inuences also come from her/his social network (for example
in interventions aimed at addictive behaviours).

For these reasons, one often needs to �nd a set of nodes/individuals such
that all other or indeed all individuals are connected to that set. In graph the-
ory such a set is called a dominating set and a problem of �nding a dominating
set of minimal cardinality is NP complete [7]. The notion was generalised in-
troducing k-domination where each node needs to have at leastk neighbours
in the dominating set, and � domination where 0 < � � 1, where each node
not in the dominating set needs at least� � 100 percentage of neighbours in the
dominating set [12]), and � -rate domination [6] where each node (including ones
in the dominating set) needs to have at least� � 100 percentage of neighbours
in the dominating set. Again, �nding minimum cardinalities of � and � -rate
dominating sets is NP-complete.

Here, we introduce � -rate dominating sets problems on weighted networks.
Why weighted networks? It might be that the \best" candidates (from structural
perspective) for dominating sets are not feasible for di�erent reasons: they cannot
be a part of intervention because they do not have desired attributes, or they do
not have time to invest into intervention. We want to overcome this assigning
a cost to be part of intervention to each node. Thus, our goal is to �nd a most
cost e�ective set that we can control or dominate network from. Note that here
we do not model negative inuences that come from a social network, but just
require at least � � 100 percents of neighbours to be in the support network.

In the next section we give preliminaries and formally de�ne the problem.
In Section 2 an overview of the previous work is given. In Section 3 theoret-
ical upper bound on weighted � -rate dominating set is given which leads to
simple randomised rounding algorithm using linear programming formulation of
the problem. In Section 4 we analyse the results obtained from the algorithm's
application on a Twitter network and generated graphs and compare them for
non-weighted case with the existing algorithm in [5] for � -rate domination. We
conclude in the Section 5.

1 Preliminaries

In this section we introduce the notation and de�nitions that we use throughout
this paper.

A graph or undirected graph G is an ordered pairG = ( V; E) where V is a
set, elements of which are called vertices or nodes, andE is a set of unordered
pairs of distinct vertices called edges. IfG is a graph of ordern, then V(G) =
f v1; v2; :::; vn g is the set of vertices inG, dv denotes the degree ofv, and �dv =
dv + 1. Let N (v) denote the neighbourhood of a vertex v. Also, let N (V ) =
[ v2 V N (v) and N [V ] = N (V ) [ V: Then �dv = jN [v]j. Denote by � (G) and � (G)
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the minimum and maximum degrees of vertices ofG, respectively. Put � = � (G)
and � = � (G).

A set D is called adominating set if every vertex not in D is adjacent to one
or more vertices inD . The minimum cardinality of a dominating set of G is the
domination number  (G).

Let � be a real number satisfying 0< � � 1. A set X � V (G) is called
an � -dominating set of G if jN (v) \ X j � �d v for every vertex v 2 V(G) n X ,
i.e. v is adjacent to at least d�d v e vertices of X . The minimum cardinality of
an � -dominating set of G is called the � -domination number  � (G). It is easy
to see that  (G) �  � (G), and  (G) =  � (G) if � is su�ciently close to 0. A
set X � V (G) is considered an� -rate dominating set of G if for any vertex
v 2 V(G), jN [v] \ X j � �d v : The minimum cardinality of an � -rate dominating
set of G is called the � -rate domination number  � � (G). It is easy to see that
 � (G) �  � � (G).

Now we consider the vertex-weighted graphs. These are �nite and undirected
graphs with no loops and multiple edges in which each vertex has been assigned
a weight. Let wv be the weight (cost) of each vertexv of graph G. Let  w (G)
denote a minimum weight of a dominating setX of G and let  � �;w denote a
minimum weight of an � -rate dominating set D . Finding an � -rate dominating
set D of G such that

P
v2 D wv is minimised is the main problem studied in this

paper.

2 Previous work

Variants of domination have been studied extensively and have various applica-
tions for real life problems. Smaller number of studies in domination parameters
consider weighted graphs in particular.

The minimum weighted dominating set problem is one of the classicNP -hard
optimisation problems in graph theory. Zou et al. [20] studied the minimum-
weighted dominating set and the minimum-weighted connected dominating set
problems on a node-weighted unit disk graph and devised approximation algo-
rithms for these problems with performance ratios of 5 +" and 4 + " respec-
tively. In [18] Polynomial Time Approximation Scheme (PTAS) was generalised
for weighted case in polynomial growth bounded graphs with bounded degree
constraint. A variant of the weighted dominating set problem - the weighted
minimum independent k-domination (WMIkD) problem was studied by Yen in
[19]. An algorithm linear in the number of vertices of the input graph for the
WMIkD problem on trees is presented.

Discussing a more general domination set problem [3], where the direct con-
nections are replaced with shortest paths corresponding to some measuref de-
�ned on the vertices of a graph, the authors give an approximation algorithm
for the vertex-weighted version. Using randomised rounding they prove the ap-
proximation ratio of O(log � ) for their randomised algorithm, where � is the
maximum cardinality of the sets of vertices that can be dominated by any single
vertex, or in our case a maximum degree of the vertices in the graph.
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In [2], the maximum spanning star forest problem is discussed, which is the
complement problem of domination set. A 0:71-approximation algorithm for this
problem is given, and for vertex-weighted case a 0:64-approximation algorithm
is presented.

The � -domination was introduced by Dunbar et al. in [12]. Introduced by
Zverovich et al.[6] the concept of � -rate domination can be considered as a
particular case of an � dominating set in the same graph. Note that both the
� and � -rate domination problems are known to beNP -complete. Thus it is
of importance to determine bounds for � and � -rate domination numbers and
various similar parameters. In [5] and [6] the authors explicitly provide new upper
bounds and randomised algorithms for �nding the � and � -rate domination sets
in terms of a parameter � and graph vertex degrees on undirected simple �nite
graphs by using probabilistic constructions. Their algorithm is bounded by:

 � � (G) �

0

@1 �
b�

(1 + b� )
1+1 =b� ed 1=b�

�

1

A n; (1)

where ed� is a closed� -degree ofG and b� = b� (1 � � )c + 1.

Studies of the propagation of inuence in the context of social networks car-
ried out by Wang et al. in [16] resulted in introducing new variants of domination
such as the positive inuence dominating set (PIDS) and total positive inuence
dominating set (TPIDS). From the de�nitions given in [16] it is easy to see that
PIDS and TPIDS problems are equivalent to � -dominating and � -rate domi-
nating set problems respectively for a special case when� = 1=2. Wang et al.
proved that both these problems areNP -hard. Thus, it is important to study
approximability of the problems. In their work Dinh et al. [4] generalise PIDS
and TPIDS by allowing any 0 < � < 1 and show that both problems can be ap-
proximated within a factor ln � + O(1) and present linear time exact algorithm
for trees.

3 Randomised rounding algorithm



of an integer program IP:

min



Showing our goal (4) is equivalent to showing

1
2

�

�dvX

l = k

X

A 2F l

(
Y

i 2 A

x i )(
Y

j 2 A c

(1 � x j )) = P r (k � X ): (5)

So we are looking for a minimum of the right hand side of (5) subject to
P �dv

i =1 x i � k (this minimum must exist by continuity and compactness). Clearly

the minimum will be found when
P �dv

i =1 x i = k; increasing one of thex i s without
changing the others will clearly only increase the RHS. So we may assume that

�dvX

i =1

x i = k: (6)

Now we can use the result from [10], Theorem 5, that shows that tail distribution
function of Poisson's binomial distribution attains its minimum in binomial dis-
tribution, i.e. when all probabilities are equal. The theorem states that for two
integers b, and c such that 0 � b � np � c � n, the probability P(b � X � c)
reaches its minimum where all the probabilitiesp1 = : : : = pn = p, unlessb = 0
and c = n. Here pi s are probabilities (or parameters) of Poisson's binomial dis-
tribution, and n and p are parameters of related binomial distribution. We apply
that theorem taking two integers b and c to be our k and �dv respectively. We
have that p, the equal probability is k

�dv
from (6), whence np equals ourk. The

theorem gives us

�dvX

l = k

� �dv

l

�
pl (1 � p)

�dv � l � P r (k � X ):

Thus, we will be done if we can show that

�dvX

l = k

� �dv

l

�
pl (1 � p)

�dv � l (7)

is at least 1
2 . Let Y be a random variable of binomial distribution with �dv trials

each of probability p. Then observe that in fact P r (Y � k) is equal to (7) above.
The median of Y is bounded by b �dv pc and d �dv pe [13], but �dv p is exactly the
integer k, so k is the unique median ofY . It follows from the de�ning property
of medians that P r (Y � k) � 1

2 , and thus P r (Y < k ) < 1
2 and the proof is

complete. �

Hence, the probability is lower bounded by 1
2 , and the feasibility follows. Let

A i denote the event that vertex vi is � -rate dominated and let B = \ n
i =1 A i

be the event that all vertices are dominated. Using a technique identical to one
carried out in [3], with ampli�cation approach (repeating randomised rounding
t = O(log2 � ) times) which results in P r ([x i = 1]) = 1 � (1 � x̂ i )t . We obtain

6



that the expected value of the solution resulted from randomised rounding, given
that event B happens, (i.e. that the solution is feasible) is

E

"
nX

i =1

wi x i jB

#

=
nX

i =1

wi Pr([x i = 1] jB )

=
nX

i =1

wi
Pr(B j[x i = 1])

P r [B ]
P r (x i = 1)

�
nX

i =1

wi
1

Q
j 2 N (v i ) Pr(A j )

(1 � (1 � x̂ i )) t

�
t
1

2�

nX

i =1

wi x̂ i

� O(log2 �OPT ):

Hence, there exists a particular solution that it is within ( O log2 � ) ratio to the
optimal solution. ut

A simple randomised rounding algorithm AlgRR follows immediately, by
�rst solving LP and then rounding the solutions to zero or one. All vertices with
ones then create an� -rate domination set with the sum of the weights within
O(log2 � ) factor of the optimal solution. We implemented AlgRR in Python.

4 Twitter UK mentions network

The Twitter data-set was collected on our behalf by Datasift, a certi�ed Twitter
partner, which allowed us to access the full Twitter �rehose rather than being
rate-limited. The data-set consists of all UK based3 Twitter users that sent
tweets with at least one mention between 8 Dec 2011 and 4 Jan 2012 (28 days
in total). Mentions are messages that include an @ followed by a username and
are used to address people. Thus, if personA posts a tweet containing \@B "
that means A is addressing the tweet toB speci�cally. Mentions are not private
messages and can be read by anyone who searches for them. A tweet can be
addressed to several users simultaneously using @ repetitively.

4.1 Data

We preprocessed the data, removing empty mentions and self-addressing which
left us with 3; 614; 705 time-stamped arcs (individual mentions) from a total of
819; 081 distinct usernames, or nodes. We then removed all users who didn't
tweeted but just received messages, as we did not have a weight measure for
them. There were approximately 50k nodes that appeared both as tweeters and
receivers. We aggregated data on weekly basis and kept only two-directional arcs
(thus if person A mentioned B and person B mentioned A at least once during

3 All Twitter users appearing in our data-set had selected the UK as their location.
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a week there is a bi-directional edge between A and B in a weekly graph). For
simplicity, we treated those bi-directional edges as undirected. This left us with 4
undirected weekly graphs with around 5k nodes in each and around 3:5k edges in
average. For each vertex we retrieved itsKlout score and used it as a weight. The
Klout score measures an individual's inuence based on her/his social media ac-
tivity 4 It is a single number that represents the aggregation of multiple pieces of
data about individuals' social media activity, based on a score model which is not
publicly available [14]. The descriptive statistics of the Twitter mentions weekly
graphs are given in Table 1 below. As the 4 mentions graphs are quite sparse, we

Table 1. Twitter mentions network statistics, ME denotes number of multi-edges in



4.2 Results

In this section we investigate how our randomised rounding algorithm AlgRR
performs on some real and created networks. We also compare it with the existing
� -rate domination algorithm for simple (non-weighted) graphs from [5] (denoted
here as AlgA). We have run both algorithms on 4 weekly Twitter random and
preferential graphs. As algorithms are randomised, we have run both algorithms
100 times taking averages. Results are presented in Tables 3 and 4 below. The
results show that for dense networks (networks denoted withpref-d and rnd-
d) the algorithm AlgRR outperforms algorithm A signi�cantly and not only
on minimum weights (which would be expected, as algorithm A optimises the
size of � -rate dominating set, while algorithm AlgRR optimises the weights)
but also on the sizes of� -rate dominating sets. According to the theoretical
bounds of algorithm A the probability with which each candidate vertex for
� -rate dominating set is selected gets close to 1 for dense networkpref-d, thus
resulting in selecting all the nodes of the network. However on sparse networks
such astwitt1-4 Algorithm A slightly outperforms algorithm AlgRR.

Table 3. Alpha-rate domination sets' sizes (#), weights(W) and running times(T) for
AlgA, for di�erent graphs and � = 0 :25; 0:5; 0:75 respectively.

Graph Avg# AvgW Min# Max# MaxW MinW AvgT(ms)

pref-d0.25 5000 193419 5000 5000 193419 193419 12.71
pref-d0.5 5000 194267 5000 5000 194267 194267 12.87
pref-d0.75 5000 188938 5000 5000 188938 188938 13.09
rnd-d0.25 4730 182675 4689 4768 184149 180909 12.11
rnd-d0.5 4991 191934 4985 4998 192222 191573 12.35
rnd-d0.75 4998 194278 4994 5000 194343 194082 12.58
twitt10.25 4328 146960 4259 4408 149577 144171 3.21
twitt10.5 5291 179701 5222 5334 181377 176986 4.21
twitt10.75 5056 171733 4993 5113 173600 169609 3.80
twitt20.25 4612 157207 4539 4670 159495 154516 3.22
twitt20.5 5453 185872 5436 5475 186780 185343 3.77
twitt20.75 5259 179254 5217 5297 180618 177888 3.58
twitt30.25 3960 135557 3879 4031 138291 132624 2.70
twitt30.5 4897 167738 4854 4946 169551 165730 3.60
twitt30.75 4753 162770 4697 4794 164233 160732 3.24
twitt40.25 4195 142143 4119 4289 145122 139323 3.24
twitt40.5 5127 173809 5069 5183 175550 171776 3.64
twitt40.75 5036 170727 4979 5092 172826 168874 3.53

Since the algorithm AlgRR is based onLP -relaxation technique it runs in
polynomial time. Our resetwOur



Table 4. Alpha-rate domination sets' sizes, weights and running times for AlgRR, for
di�erent graphs and � = 0 :25; 0:5; 0:75 respectively.

Graph Avg# AvgW Min# Max# MaxW MinW AvgT(ms)

pref-d0.25 979 16647 578 1512 30845 7124 65.70
pref-d0.5 2158 51541 1498 2777 75523 28143 139.24
pref-d0.75 3489 109794 2661 4279 149581 71461 256.96
rnd-d0.25 1604 28367 960 2420 56342 10869 341.29
rnd-d0.5 2688 68953 1843 3664 115395 34074 870.87
rnd-d0.75 3901 130250 2747 4770 180502 70105 1180.02
twitt10.25 4628 153367 4607 4655 154355 152560 8.79
twitt10.5 4817 159901 4792 4837 160658 158939 9.11
twitt10.75 5665 191648 5665 5665 191648 191648 9.29
twitt20.25 4443 148065 4413 4469 148980 147007 7.77
twitt20.5 4595 153249 4566 4625 154311 152196 8.06
twitt20.75 5431 184481 5431 5431 184481 184481 8.13
twitt30.25 4191 140094 4166 4220 141094 139172 6.99
twitt30.5 4360 145765 4321 4391 146869 144362 7.13
twitt30.75 5159 175854 5159 5159 175854 175854 7.26
twitt40.25 4459 147854 4447 4471 148289 147384 7.80
twitt40.5 4637 153552 4624 4651 154067 153058 8.12
twitt40.75 5468 184486 5468 5468 184486 184486 8.16

The analysis of AlgA has shown similar spread of solutions for di�erent runs,
and were relatively stable. For algorithm AlgRR the results in Table 4 show
signi�cant di�erence between minimum and maximum cardinalities of � -rate
dominating sets for dense networkspref-d and rnd-d. This indicates that the
values of variables in the solutions obtained byLP relaxation are spread out over
(0; 1) interval (i.e. are fractional). We have veri�ed the spread and consistency by
performing additional 200 runs for algorithm AlgRR where � = 0 :25 for pref-d
and rnd-d



� -rate dominating sets does not change signi�cantly compared with the results
obtained from 100 runs. Thus it can be concluded that more runs are unlikely
to achieve better results.

Fig. 1. Variation in size and weight for 100 runs of AlgRR, for rnd-d, � = 0 :5

On Figure 1 given are sizes and weights for 100 runs for AlgRR onrnd-d
networks where� = 0 :5. Similar plots were obtained for all graphs and for both
algorithms.

5 Conclusion

We have explored how to pick optimal sets of individuals for interventions in so-
cial networks. If each person in network has assigned a cost, the aim was to �nd a
group of people having minimum sum of costs so that each individual in network
has at least � � 100 percent of its neighbourhood in this designated group. We
presented a randomised algorithm for �nding approximation of minimum weight
� rate domination set in graphs. We proved that this algorithm's output is within
O(log2 �
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