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1. large datasets: the sample sizèis too large. This situation is very common nowadays
as huge databases can be stored at no cost. For example: in genomics the cost of
sequencing has fallen by a factor of 105 in past decade and a half. This has led to the
wide availability of sequence data - the recently announced Personal Genome Project
UK aims to sequence 105 human genomes, each consisting of 3� 108 bases.

2. high-dimensional parameter spaces: the sample size` might be reasonable, but the
number of variablesp is too large. For example: data assimilation in numerical weather



the target distribution. We then study the special cases of a noisy version of the Exchange
algorithm (Murray et al. (2006)), and discretized Langevin Monte Carlo in Section 3. For
these noisy algorithms we prove that the total variation distance decreases with the number
of iterations, N , of the randomisation step in the noisy algorithm, and �nd a bound on this
distance in terms ofN . We study in detail an application to intractable likelihood problems
in Section 4.

2 Noisy MCMC algorithms



It turns out that a useful answer to this question is given by the study of the stability of
Markov chains. There have been a long history of research on this topic, we refer the reader
to the monograph by Kartashov (1996) and the references therein. Here, we will focus on a
more recent method due to Mitrophanov (2005). In order to measure the distance between
P and P̂ recall the de�nition of the total variation measure between two kernels:

kP � P̂k := sup
�2 �

k� �



� 9 N0 2 N; 0 < � < 1; L > 0; 8N � N0;
Z

V (� )P̂N (� 0; d� ) � �V (� 0) + L:

� k P̂N � Pk ���!
N!1

0.

Then there exists anN1 2 N such that anyP̂N , for N � N1, is geometrically ergodic with
limiting distribution � N and k� N � � k ���!

N!1
0.

(We refer the reader to (Meyn and Tweedie 1993) for the de�nition of thek �kV norm). Note
that, in contrast to the previous result, we don’t know explicitly the rate of convergence of
the distance between� �0 P̂N � � when N is �xed. However it is possible to get an estimate
of this rate (see Corollary 1 page 189 in (Ferr�e, Herv�e and Ledoux 2013)) under stronger
assumptions.

2.1 Noisy Metropolis-Hastings

The Metropolis-Hastings (M-H) algorithm, sequentially draws candidate observations from a
distribution, conditional only upon the last observation, thus inducing a Markov chain. The
M-H algorithm is based upon the observation that a Markov chain with transition density
P (�; � ) and exhibiting detailed balance for� ,

� (� jy )P (�; � ) = � (� jy )P (�; � );



Algorithm 2 Noisy Metropolis-Hastings algorithm
for n = 0 to I do

Draw � 0 � h(�j � n)

Draw y0 � F�0(�)

Set � n+1 = � 0 with probability min(1 ; �̂ (� 0; � n; y0))

Otherwise, set� n+1 = � n.
end for

Note that �̂ (� 0; �; y 0) can be thought of as a randomised versio versio versio 0))



Obviously, we expect that ^� is chosen in such a way that� � 1 and so in this case,
k� �0 Pn � � P



that the Langevin algorithm produces a Markov chain and we letP� denote the corresponding
transition kernel. Note that, we generally don’t have� (�jy)P� = � (�jy) nor � �0 P� ! � (�jy),
however, under some assumptions,� �0 P� ! � � for some � � close to � when � is small
enough, we discuss this in more detail below.

In practice, it is often the case that r log � (� n) cannot be computed. Here again, a
natural idea is to replacer log � (� n) by an approximation or an estimate r̂ y0 log � (� n),
possibly using a randomization stepy0 � F�n . This yields what we term a noisy Langevin
algorithm.

Algorithm 4 Noisy Langevin algorithm
for n = 0 to I do

Draw y�n � F�n (�).

Set � n+1 = � n + �
2

br y� n log � (� njy) + C� � � N (0; �) :
end for

Note that a similar algorithm has been proposed in (Welling and Teh 2011; Ahn, Korattikara
and Welling 2012) in the context of big data situations, where the gradient of the logarithm
of the target distribution is estimated using mini-batches of the data.

We let P̂� denote the corresponding transition kernel arising from Algorithm 4. We now
prove that the Stochastic gradient Langevin algorithm, (Algorithm 4), will converge to the
discrete-time Langevin di�usion with transition kernel resulting from Algorithm 3.

2.3 Towards theoretical guarantees for the noisy Langevin algo-
rithm

In this case, the approximation guarantees are not as clear as they are for the noisy Metropolis-
Hastings algorithm. To begin, there are two levels of approximation:

� the transition kernel P� targets a distribution � � that might be far away from � (�jy).

� Moreover, one does not simulate at each step fromP� but rather from P̂� .

The �rst point requires one to control the distance between� � and � (�jy). Such an analysis
is possible. Here we refer the reader to Proposition 1 in (Dalalyan and Tsybakov 2012) and
also to Roberts and Stramer (Roberts and Stramer 2002) for di�erent discretization schemes.
It is possible to controlkP̂� � P� k as Lemma 2.4 illustrates.

Lemma 2.4

kP� � P̂� k �

r
�
2

where

� = Ey� n �F� n

�
exp

�
1
2



 �

1
2 (r log � (� n) � r̂ y� n log � (� n))





2
�

� 1
�

:

8



The paper by Roberts and Tweedie (1996a) contains a complete study of the chain generated
by P� . The problem is that it is not uniformly ergodic. So Theorem 2.1 is not the appropriate
tool in this situation. However, in some situations, this chain is geometrically ergodic,
and in this instance we can use Theorem 2.2 instead (moreover, note that Roberts and
Tweedie (1996a) provide the functionV used in the Theorem). We provide an example of
such an application in Section 3 below.

2.4 Connection with the pseudo-marginal approach

There is a clear connection between this paper and the pseudo-marginal approaches described
in (Beaumont 2003) and (Andrieu and Roberts 2009). In both cases a noisy acceptance
probability is considered, but in pseudo-marginal approaches this is a consequence of using
an estimate of the desired target distribution at each� , rather than the true value. Before
proceeding further, we make precise some of the terminology used in (Beaumont 2003) and
(Andrieu and Roberts 2009). These papers describe two alternative algorithms, the \Monte
Carlo within Metropolis" (MCWM) approach, and \grouped independence MH" (GIMH).
In both cases an unbiased importance sampling estimator,b� , is used in place of the desired
target � , however the overall algorithms proceed slightly di�erently. The (i + 1)th iteration
of the MCWM algorithm is shown in algorithm 5.

Algorithm 5 MCWM

for n = 0 to I do
Draw � 0 � h(:j� n ).

Draw z0 � G(:j� 0), z � G(:j� ), where G is an importance proposal andz0 and z are
random vectors of sizeN .

Calculate the acceptance probability,� (� n ; � 0), whereb� N
z and b� N

z0 denote the 18 11.9552 Tf 5.03 0 Td [(:)]TJ/F14 11.9552 Tf 3.251 0 Td [(j)]TJ/F36 xTJ -0.429 -7.50



the auxiliary variables. The same argument holds when using any unbiased estimator of the
target. As regards our focus in this paper, GIMH is something of a special case, and our
framework has more in common with MCWM. We note that despite its exactness, there is
no particular reason for estimators from GIMH to be more statistically e�cient than those
from MCWM.



where � (� ) denotes the prior distribution for � . For example, a naive application of the
Metropolis-Hastings algorithm when proposing to move from� i to � 0 � h(�j � i) results in the
acceptance probability,

� (� 0; � ) = min
�

1;
q�0(y)� (� 0)h(� j� 0)
q�(y)� (� )h(� 0j� )

�
Z (� )
Z (� 0)

�
; (4)

depending on the intractable ratio
Z (� )
Z (� 0)

.

One method to overcome this computational bottleneck is to use an approximation of
the likelihood f (yj� ). A composite likelihood approximation of the true likelihood, such as
that of (Besag 1974), is most commonly used. This approximation consists of a product of
easily normalised full-conditional distributions. The most basic composite likelihood is the
pseudo likelihood which comprised of the product of full-conditional distributions of eachyi,

f (yj� ) �
MY

i=1

f (yijy�i; � ):

However this approximation of the true likelihood can give unreliable estimates of� (Friel
and Pettitt 2004), (Friel et al 2009).

3.2 Exchange Algorithm

A more sophisticated approach is to use the Exchange algorithm. Murrayet al. (2006) ex-
tended the work of M�ller et al. (2006) to allow inference on doubly intractable distributions
using the exchange algorithm. The algorithm samples from an augmented distribution

� (� 0; y0; � jy) / f (yj� )� (� )h(� 0j� )f (y0j� 0)

whose marginal distribution for� is the posterior of interest. Here the auxiliary distribution
f (y0j� 0) is the same likelihood model in whichy is de�ned. By sampling from this aug-
mented distribution, the acceptance formula simpli�es, as can be seen in algorithm 6, where
the normalising constants arising from the likelihood and auxiliary likelihood cancel. One
di�culty of implementing the exchange algorithm is the requirement to sampley0 � f (:j� 0),
perfect sampling (Propp and Wilson 1996) is often possible for Markov random �eld models.
However when the exchange algorithm is used with MRFs the resultant chains may not mix
well. For example, Caimo and Friel (2011) used adaptive direction sampling (Gilks, Roberts
and George 1994) to improve the mixing of the exchange algorithm when used with ERGM
models.

Murray et al. (2006) proposed the following interpretation of the exchange algorithm. If
we compare the acceptance ratios in the M-H and Exchange algorithm, the only di�erence is
that the ratio of the normalising constants in the M-H acceptance probabilityZ (� )=Z(� 0) is
replaced byq�(y0)=q�0(y0) in the exchange probability. This ratio of un-normalised likelihoods

11





Algorithm 7 Noisy Exchange algorithm
for n = 0 to I do

Draw � 0 � h(�j � n):

for i = 1 to N do
Draw y0i � f (�j � 0):

end for
De�ne y�0 = f y01; : : : ; y0Ng

Set � n+1 = � 0 with probability min(1 ; �̂ (� 0; � n; y�0)), where

�̂ (� 0; � n; y�0) =
q�0(y)� (� 0)h(� nj� 0)
q�n (y)� (� n)h(� 0j� n)

1
N

NX

i=1

q�n (y0i)
q�0(y0i)

.

Otherwise, set� n+1 = � n.
end for

(A3) for any � and � 0 in �,

Vary0�f (y0j�0)

�
q�n (y0)
q�0(y0)

�
< + 1 :

Note that when (A1) or (A2) is satis�ed, we necessarily have that � is a bounded set, in
this case, we putT = sup�2� k� k. This also means that 0< exp(� TS) � q�(y) � exp(TS)
for any � and S, we then put K := exp(TS). Also, note that this immediately implies
Assumption (A3) because in this case, Vary0�f (y0j�0)(q�n (y0)=q�0(y0)) � K SetKSetK



Note that Liang and Jin (2011) presents a similar algorithm to that above. However in
contrast to Lemma 3.1, the results in (Liang and Jin 2011) do not explicitly provide a rate
of approximation with respect toN . Lemma 2.2, page 9 in (Liang and Jin 2011) only states
that there exists aN large enough to reach arbitrarily small accuracy� > 0.

3.4 Noisy Langevin algorithm for Gibbs random �elds

The discrete-time Langevin approximation (3) is unavailable for Gibbs random �elds since
the gradient of the log posterior,r log � (� ijy) is analytically intractable, in general. However
Algorithm 4 can be used using a Monte Carlo estimate of the gradient, as follows.

log(� (� jy)) = � Ts(y) � log(z(� ))) + log � (� ) � log(� (y))

r log(� (� jy)) = s(y) �
z0(� )
z(� )

+ r log � (� )

= s(y) �
P

s(y)[exp � Ts(y)]
P

exp(� Ts(y))
+ r log � (� )

= s(y) � Eyj�[s(y)] + r log � (� ) (7)

In practice, Ey0�f� [s(y0)] is usually not known - an exact evaluation of this quantity would
require an evaluation ofZ (� ). However, it is possible to estimate it through Monte-Carlo
simulations. If we simulatey� = ( y01; ::; y0n) � f (:j� ), then Eyj�[s(y)] can be estimated usingP n

i s(y0i)=n. This gives an estimate of the gradient at� from (7).

br y� log � (� jy) = s(y) �
1
N

NX

i

s(y0i) + r log � (� ):

In turn this yield the following noisy discretized Langevin algorithm.

Algorithm 8 Noisy discretized Langevin algorithm for Gibbs random �elds
for n = 0 to I do

for i = 1 to N do
Draw y0i � f (�j � n):

end for
De�ne y�n

= f y01; : : : ; y0Ng,

Calculate br y� n log � (� njy) = r log � (� n) + s(y) � 1
N

P N
i=1 s(y0i):

Set
� n+1 = � n +

�
2

br y� n log � (� njy) + � n; where � n are i.i.d. N (0; �) :

end for

Remark that in this case, the bound in Lemma 2.4 can be evaluated.
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Lemma 3.3 As soon asN > 4kS2k� k2, the � in Lemma 2.4 is �nite with

� = exp
�

k log(N )
4S2k� k2N

�
� 1 +

4k
p

� Sk� k
N

� N!1
k log

�
N
k

�

4S2k� k2N

(where k� k = supfk � xk; kxk = 1g).

We conclude by an application of Theorem 2.2 that allows to assess the convergence of
this scheme whenN ! 1 when the parameter is real.

Theorem 3.4 Assume that � 2 R and the prior is Gaussian� � N (0; s2 2



Algorithm 9



Algorithm 10 noisy MALA-exchange
Initialise; set �,
for i = 1 to N do

Draw yi � f (�j � 0):
end for
De�ne y�0

= f y1; : : : ; yNg,
Calculate br y� 0 log � (� 0jy) = r log � (� 0) + s(y) � 1

N

P N
i=1 s(yi):

for n = 0 to I do
Draw � 0 = � n + �

2
br y� n log � (� njy) + � � � N (0; �).

for i = 1 to N do
Draw y0i � f (�j � 0):

end for
de�ne y�0 = f y01; : : : ; y0Ng.

Calculate br y
� 0 log � (� 0jy) = r log � (� 0) + s(y) � 1

N

P N
i=1 s(y0i):

Set � n+1 = � 0 and y�n +1
= y�0 with probability min(1 ; �̂ (� 0; � n; y�n

))

where ^� (� 0; � n; y�n
) =

q�0(y)� (� 0)h(� nj� 0; y0�n
)

q�n (y)� (� n)h(� 0j� n; y0�n
)

1
N

NX

i=1

q�n



4.1 Ising study

The Ising model is de�ned on a rectangular lattice or grid. It is used to model the spatial
distribution of binary variables, taking values� 1 and 1. The joint density of the Ising model
can be written as

f (yj� ) =
1

Z (� )
exp

(

�
MX

j=1

X

i�j

yiyj

)

where i � j denotes that i and j are neighbours andZ (� ) =
P

y exp
n

�
P M

j=1

P
i�j yiyj

o
.

The normalising constantZ (� ) is rarely available analytically since this relies on taking the
summation over all di�erent possible realisations of the lattice. For a lattice withM nodes
this equates to 2

M ( M � 1)
2 di�erent possible lattice formations.

For our study, we simulated 20 grids of size 16� 16. This size lattice is su�ciently small
enough such that the normalising constantZ (� ) can be calculated exactly (36.5 minutes for
each graph) using a recursive forward-backward algorithm (Reeves and Pettitt 2004; Friel
and Rue 2007), giving a gold standard with which to compare the other algorithms. This is
done by calculating the exact density over a �ne grid of� values, f � 1; � Ig over the interval
[� 0:4; 0:8], which cover the e�ective range of values that� can take. We normalise� (� ijy)
by numerically integrating over the un-normalised density.

�̂ (y) =
IX

i=2

(� i � � i�1)
2

�
q�i (y)
Z (� i)

� (� i) +
q�i � 1 (y)
Z (� i�1)

� (� i�1)
�

; (8)

yielding

� (� ijy) �
q�i (y)
Z (� i)

� (� i)
�̂ (y)

:

Each of the algorithms was run for 30 seconds on each of the 20 datasets, at each iteration
the auxiliary step to draw y08i6or 383(dra)27(w)]TJ/F36 11.9555ai[(�1 11.9552 Tf 4.553 0 Td [(253 Td onds) Td 1f 6.) Td 9 -14.446
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Figure 1: Boxplot of the bias estimate of� for 20 datasets corresponding to the exchange,
importance sampling exchange, Langevin and MALA algorithms.

Figure 1 shows the bias of the posterior means for each of the algorithms. We see that both



Figure 2: Estimated posterior densities corresponding to the exact and noisy algorithms
corresponding to one of the datasets used in the Ising simulation study.

4.2 ERGM study

Here we explore how our algorithms may be applied to the exponential random graph model
(ERGM) (Robins et al



4.2.1 The Florentine Business dataset

Here, we consider a simple 16 node undirected graph: the Florentine family business graph.
This concerns the business relations between some Florentine families in around 1430. The
network is displayed in Figure 3. We propose to estimate the following 2-dimensional model.

f (yj� ) =
1

Z (� )
exp (� 1s1(y) + � 2s2(y)) ;

wheres1(y) is the number of edges in the graph ands2(y) is the number of two-stars.

Figure 3: Florentine family business.

Before we could run the algorithms, certain parameters had to be tuned. We used a
at prior N (0; 100) in all of the algorithms. The Langevin, MALA exchange and noisy
MALA exchange algorithms all depend on a stepsize matrix �. This matrix determines the
scale of proposal values for each of the parameters. This matrix should be set up so that
proposed values for� accommodate the di�erent scales of the posterior density of� . In
order to have good mixing in the algorithms we chose a � which relates to the shape of the
posterior density. Our approach was to aim to relate � to the covariance of the posterior
density. To do this, we equated � to an estimate of the inverse of the second derivative of
the log posterior at themaximum a posteriori estimate � �. As the true value of the MAP is
unknown, we used a Robbins-Monro algorithm (Robbins and Monro 1951) to estimate this.
The Robbins-Monro algorithm takes steps in the direction of the slope of the distribution.
It is very similar to Algorithm 8 except without the added noise and follows the stochastic
process

� n+1 = � n + � n br y� n log � (� njy);

where
NX

i=0

� n < 1 and
NX

i=0

� 2
n < 1 :

21



The values of� decrease over time and once the di�erence between successive values of this
process is less than a speci�ed tolerance level, the algorithm is deemed to have converged to
the MAP. The second derivative of the log posterior is derived by di�erentiating (7) yielding

r 2 log � (� �j



MALA exchange but not in the Langevin algorithm. Since our Noisy Langevin algorithm
approximates Langevin di�usion we are approximating an approximation. There are two
levels of approximations which leaves more room for error.

Edge 2-star
Method



Figure 5: Chains, density plot and ACF plot for the 2-star statistic.

4.2.2 The Molecule dataset

The Molecule dataset is a 20 node graph, shown in Figure 6. We consider a four parameter
model which includes the number of edges in the graph, the number of two-stars, the number
of three-stars and the number of triangles.

f (yj� ) =
1

Z(� )
exp (� 1s1(y) + � 2s2(y) + � 3s3(y) + � 4s4(y))

The � parameter was chosen in a similar fashion to the Florentine business example. The
Robbins-Monro algorithm was run for 20,000 iterations to �nd an estimate of the MAP,
4,000 graphs were then simulated at the estimated MAP and these were used to calculate



Figure 6: Molecule network

The BERGM algorithm of (Caimo and Friel 2011) was again used as a \ground truth".
This algorithm was run for a large number of iterations equating to 4 hours of CPU time.
This gave us accurate estimates against which to compare the various algorithms. The �ve
algorithms were each run for 100 seconds of CPU time. Table 2 shows the posterior mean and
standard deviations of each of the four parameters for each of the algorithms. The results for
the Molecule dataset model are similar to the Florentine business dataset model. In Table
2 we see that the noisy exchange algorithm improved on the standard exchange algorithm.
The MALA exchange improved on noisy Langevin and the Noisy MALA improved on the
MALA exchange.

Figure 7 and Figure 8 show the densities and the autocorrelation plots of the algorithms.
The autocorrelation plots show that the noisy algorithms had less correlation than the ex-
change algorithm. The densities show that again the algorithms, when run on the Molecule
model, performed in the same manner as the Florentine model. The algorithms with the
exception of the noisy Langevin algorithm estimated the mode well but underestimated the
standard deviation. The noisy Langevin algorithm did not estimate the mean or standard
deviations well.

Edge 2-star 3-Star Triangle
Method Mean SD Mean SD Mean SD Mean SD
BERGM 2.647 2.754 -1.069 0.953 -0.021 0.483 1.787 0.646
Exchange 1.889 2.142 -0.797 0.744 -0.138 0.385 1.593 0.519
Noisy Exch 1.927 2.444 -0.757 0.823 -0.176 0.422 1.543 0.53
Noisy Lang 1.679 3.65 -0.509 1.429 -0.466 0.787 1.633 0.573
MALA Exch 2.391 2.095 -0.938 0.795 -0.113 0.451 1.454 0.598
Noisy MALA Exch 2.731 2.749 -1.054 0.886 -0.041 0.417 1.519 0.492

Table 2: Posterior means and standard deviations.

25



Figure 7: Density plots of the 4 parameters for the molecule example.
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result to hold for noisy MCMC algorithms, in which case the e�ect of this additional variance
on top of the aforementioned bias should be a consideration when employing noisy MCMC.

A further area for future work lies in relaxing the requirement for the ideal non-noisy
chain to be uniformly ergodic. This property does not hold in many cases: the results in
this paper are intended as the �rst steps towards future work that would obtain results that
hold more generally.
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= � �(d� 0)
ZZ

dtdy0h(t j� )Ft(y0)
h
min (1; �̂ (�; t; y 0)) � min (1; � (�; t ))

i

+
Z

dy0F�0(y0)
h
h(� 0j� ) min (1; � (�; � 0)) � h(� 0j� ) min (1; �̂ (�; �

d



Now, note that

Z
1

p
2�

exp
�
�

ktk2

2

� �
�
�
�
�
1

� exp

"
tT �

1
2 (r log � (� ) � r̂ y0 log � (� ))

2
�

1
8

k�
1
2 (r log � (� ) � r̂ y0

log � (� ))k2

#�
�
�
�
�
dt

= E

�
�
�
�
�
1 � exp

�
aTX �

kak2

2

� �
�
�
�
�

whereX � N (0; I ) and a = �
1
2 [r log � (� ) � r̂ y0 log � (� )]=2. Then:

E

�
�
�
�
�
1 � exp

�
aTX �

kak2

2

� �
�
�
�
�

= exp
�

�
kak2

2

�
E

�
�
�
�
�
exp

�
aTX

�
� exp

�
kak2

2

� �
�
�
�
�

= exp
�

�
kak2

2

�
E

�
�
�
�
�
exp

�
aTX

�
� E

�
exp

�
aTX

��
�
�
�
�
�

� exp
�

�
kak2

2

� p
Var[exp (aTX )]

= exp
�

�
kak2

2

� q
E [exp (2aTX )] � E [exp (aTX )]2

= exp
�

�
kak2

2

� p
exp(2kak2) � exp(kak2)

=
p

exp(kak2) � 1:

So �nally,

kP� � P̂�



�
1

p
N

h(� j� 0)� (� 0)q� 0(y)
h(� 0j� )� (� )q� (y)

s

Vary0
1 � f (y0

1 j � 0)

�
q� n (y0

1)
q� 0(y0

1)

�
: �

Proof of Theorem 3.2.Under the assumptions of Theorem 3.2, note that (4) leads to

� (� n ; � 0) =
� (� 0)q� 0(y)Z (� n )
� (� n )q� n (y)Z (� 0)

h(� n j� 0)
h(� 0j� n )

�
1

c2
� c2

hK4
: (10)

Let us consider any measurable subsetB of � and � 2 �. We have

P(�; B ) =
Z

B
� � (d� 0)

�
1 �

Z
dth(tj� ) min (1; � (�; t ))

�

+
Z

B
d� 0h)



with
C = c2

�c2
hK

4

�
� +

C� �

1 � �

�

with � =
l

log(1=C)
log(�)

m
. �

Proof of Lemma 3.3. Note that

r log � (� ) � r̂ x0
=

1
N

NX

i=1

s(y0i) � Ey0�f� [s(y0)]:

So we have to �nd an upper bound, uniformly over� , for

D := Ey0�F� n

8
<

:
exp

2

4 � 2

2






�

1
2

 
1
N

NX

i=1

s(y0i) � Ey0�f� [s(y0)]

! 





2
3

5 � 1

9
=

;
:

Let us put V := 1
N

P N
i=1 V (i) := 1

N

P N
i=1 �

1
2 f s(y0i) � Ey0�f� [s(y0)]g and denoteVj (j = 1 ; : : : ; k)



� exp
�

k�



and soP� is geometrically ergodic with functionV . We calculate

Z
V (� )P̂� (� 0; d� ) = Ey0

2

4 1
p

2� �

Z

R
V (� ) exp

0

@�

�
� � � 0 � �

2 r̂ y0 log � (� 0jy)
�

2�

1

A d�

3

5

= Ey0

"
1

p
2� �

Z

R
V

�
� +

�
2

(r̂ y0
log � (� 0jy
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