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Abstract

This paper provides an overview of interpolation of Banach and Hilbert spaces, with a focus on
establishing when equivalence of norms is in fact equality of norms in the key results of the theory.
(In brief, our conclusion for the Hilbert space case is that, with the right normalisations, all the key
results hold with equality of norms.) In the �nal section we apply the Hilbert space results to the
Sobolev spacesH s (
) and 4, 5, 23, 24]

and the recent review paper [3] for the Hilbert space case), and it might be thought that there is little more
to be said on the subject. The novelty of our presentation|this the perspective of numerical analysts who,
as users of interpolation theory, are ultimately concerned with the computation of interpolation norms and
the computation of error estimates expressed in terms of interpolation norms|is that we pay particular
attention to the question: \When is equivalence of norms in fact equality of norms in the interpolation of
Banach and Hilbert spaces?"

At the heart of the paper is the study, in Section 3, of the interpolation of Hilbert spaces H0 and H1

embedded in a larger linear spaceV , in the case when the interpolating space is also Hilbert (this the
so-called problem ofquadratic interpolation, see, e.g., [2,3,10,15,17]). The one line summary of this section
is that all the key results of interpolation theory hold with \equality of norms" in place of \equivalence of
norms" in this Hilbert space case, and this with minimal assumptions, in particular we assume nowhere
that our Hilbert spaces are separable (as, e.g., in [2,3,15,17]).

Real interpolation between Hilbert spacesH0



that, in general (we suspect, in fact, whenever 
 $ R n ), H s(
) and eH s(
) are not exact interpolation
scales. Indeed, we exhibit simple examples where the ratio of interpolation norm to intrinsic Sobolev
norm may be arbitrarily large. Along the way we give explicit formulas for some of the interpolation
norms arising that may be of interest in their own right. We remark that our investigations, which are
inspired by applications arising in boundary integral equation methods (see [9]), in particular are inspired
by McLean [18], and by its appendix on interpolation of Banach and Sobolev spaces. However a result of
x4 is that one result claimed by McLean ( [18, Theorem B.8]) is false.

Much of the Hilbert space Section 3 builds strongly on previous work. In particular, our result that,
with the right normalisations, the norms in the K - and J -methods of interpolation coincide in the Hilbert
space case is a (corrected version of) an earlier result of Ameur [2] (the normalisations proposed and the
de�nition of the J -method norm seem inaccurate in [2]). What is new in our Theorem 3.3 is the method
of proof|all of our proofs in this section are based on the spectral theorem that every bounded normal
operator is unitarily equivalent to a multiplication operator on L 2(X ; M; � ), for some measure space
(X ; M; � ), this coupled with an elementary explicit treatment of interpolation on weighted L 2 spaces|
which deals seamlessly with the general Hilbert space case without an assumption of separability or that
H0 \ H1 is dense inH0 and H1. Again, our result in Theorem 3.5 that there is only one (geometric)
interpolation space of exponent � , when interpolating Hilbert spaces, is a version of McCarthy's [17]
uniqueness theorem. What is new is that we treat the general Hilbert space case by a method of proof
based on the aforementioned spectral theorem. Our focus in this section is real interpolation, but we
note in Remark 3.6 that, as a consequence of this uniqueness result (as noted in [17]), complex and real



case whereX 1 � X 0. In this case � = X 1 and � = X 0 with equivalence of norms, indeed equality of
norms if k� kX 1 � k � kX 0 , for � 2 X 1.

If X and Y are Banach spaces andB : X ! Y is a bounded linear map, we will denote the norm ofB
by kB kX;Y , abbreviated askB kX when X = Y. Given compatible pairs X = ( X 0; X 1) and Y = ( Y0; Y1)
one calls the linear mapA : �( X ) ! �( Y ) a couple map, and writes A : X ! Y , if A j , the restriction of
A to X j , is a bounded linear map fromX j to Yj . Automatically A : �( X ) ! �( Y ) is bounded andA � ,
the restriction of A to �( X ), is also a bounded linear map from �( X ) to �( Y ). On the other hand, given
bounded linear operatorsA j : X j ! Yj , for j = 0 ; 1, one says thatA0 and A1 are compatibleif A0� = A1� ,
for � 2 �( X ). If A0 and A1 are compatible then there exists a unique couple mapA : �( X ) ! �( Y )
which has A0 and A1 as its restrictions to X 0 and X 1, respectively.

Given a compatible pair X = ( X 0; X 1) we will call a Banach spaceX an intermediate spacebetweenX 0

and X 1 [5] if � � X � � with continuous inclusions. We will call an intermediate space X an interpolation
spacerelative to X if, whenever A : X ! X , it holds that A(X ) � X and A : X ! X is a bounded linear
operator. Generalising this notion, given compatible pairsX and Y , and Banach spacesX and Y , we will
call (X; Y ) a pair of interpolation spaces relative to(X; Y ) if X and Y are intermediate with respect to X
and Y , respectively, and if, wheneverA : X ! Y , it holds that A(X ) � Y and A : X ! Y is a bounded
linear operator [5]. If (X; Y ) is a pair of interpolation spaces relative to (X; Y ) then [5, Theorem 2.4.2]
there exists C > 0 such that, wheneverA : X ! Y , it holds that

kAkX;Y � C max
�

kAkX 0 ;Y0 ; kAkX 1 ;Y1

	
: (1)

If the bound (1) holds for every A : X ! Y with C = 1, then ( X; Y ) are said to be exact interpolation
spaces: for example the pairs (�(X ); �( Y )) and (�( X ); �( Y )) are exact interpolation spaces with respect
to (X; Y ), for all compatible pairs X and Y [5, Section 2.3]. If, for all A : X ! Y ,

kAkX;Y � k Ak1� �
X 0 ;Y0

kAk�
X 1 ;Y1

; (2)

then the interpolation space pair (X; Y ) is said to be exact of exponent � .

2.1 The K -method for real interpolation

To explain the K -method, for every compatible pair X = ( X 0; X 1) de�ne the K -functional by

K (t; � ) = K (t; �; X ) := inf
n �

k� 0k2
X 0

+ t2k� 1k2
X 1

� 1=2
: � 0 2 X 0; � 1 2 X 1; � 0 + � 1 = �

o
; (3)

for t > 0 and � 2 �( X ); our de�nition is precisely that of [15, p. 98], [6,18]. (More usual, less suited to the
Hilbert space case, but leading to the same interpolation spaces and equivalent norms, is to replace the
2-norm

�
k� 0j2X 0

+ t2k� 1k2
X 1

� 1=2
by the 1-norm k� 0kX 0 + tk� 1kX 1 in this de�nition, e.g. [5].) Elementary

properties of this K -functional are noted in [18, p. 319]. An additional elementary calculation is that, for
� 2 �,

K (t; � ) � K 1(t; � ) := inf
a2 C

�
jaj2k� k2

X 0
+ t2j1 � aj2k� k2

X 1

� 1=2
=

tk� kX 0 k� kX 1
�
k� k2

X 0
+ t2k� k2

X 1

� 1=2
; (4)

this in�mum achieved by the choice a = t2k� k2
X 1

=(k� k2
X 0

+ t2k� k2
X 1

).
Next we de�ne a weighted L q norm by

kf k�;q :=
� Z 1

0
jt � � f (t)jq

dt
t

� 1=q

; for 0 < � < 1 and 1� q < 1 ;

with the modi�cation when q = 1 , that

kf k�; 1 := ess sup
t> 0

jt � � f (t)j: (5)

Now de�ne, for every compatible pair X = ( X 0; X 1), and for 0 < � < 1 and 1� q � 1 ,

K �;q (X ) :=
�

� 2 �( X ) : kK (�; � )k�;q < 1
	

; (6)

this a normed space (indeed a Banach space [5, Theorem 3.4.2]) with the norm

k� kK �;q (X ) := N �;q kK (�; � )k�;q : (7)

3



Here the constant N �;q > 0 is an arbitrary normalisation factor. We can, of course, make the (usual)
choiceN �;q



Theorem 2.2. Suppose thatX = ( X 0; X 1) and Y = ( Y0; Y1) are compatible pairs. Then:

(i) For 0 < � < 1, 1 � q � 1 , (K �;q (X ); K �;q (Y )) is a pair of interpolation spaces with respect to
(X; Y ) that is exact of exponent� .

(ii) For 0 < � < 1, 1 � q � 1 , (X 0; X 1) �;q = ( X 1; X 0)1� �;q , with equality of norms if N �;q = N1� �;q

(which holds for the choice(8)).

(iii) For 0 < � 1 < � 2 < 1 and 1 � q � 1 , if X 1 � X 0, then X 1 � K � 2 ;q(X ) � K � 1 ;q(X ) � X 0, and
the inclusion mappings are continuous. Furthermore, ifk� kX 0 � k � kX 1 , for � 2 X 1, then, with the
choice of normalisation (8), k� kK � 1 ;q (X ) � k � kK � 2 ;q (X ) for � 2 K � 2 ;q(X ),

k� kX 0 � k � kK � 1 ;q (X ) ; for � 2 K � 1 ;q(X ); and k� kK � 2 ;q (X ) � k � kX 1 ; for � 2 X 1:

(iv) For 0 < � < 1, 1 � q < 1 , �( X ) is dense inK �;q (X ).

(v) For 0 < � < 1, 1 � q < 1 , where X �
j denotes the closure of�( X ) in X j ,

(X 0; X 1) �;q = ( X �
0 ; X 1) �;q = ( X, and11(



A major motivation for introducing the J -method is the following duality result. Here, for a Banach
spaceX , X � denotes the dual ofX .

Theorem 2.4. If X = ( X 0; X 1) is a compatible pair and �( X ) is dense in X 0 and X 1, then �( X ) is
dense in �( X ) and X

�
:= ( X �

0 ; X �
1 ) is a compatible pair, and moreover

�( X ) � = �( X
�
) and �( X ) � = �( X

�
); (15)

with equality of norms. Further, for 0 < � < 1, 1 � q < 1 , with q� de�ned by (14),

(X 0; X 1) �
�;q = ( X �

0 ; X �
1 ) �;q � ;

with equivalence of norms: precisely, if we use the normalisation(8), for � 2 (X 0; X 1) �;q ,

k� kK �;q (X ) � � k � kJ �;q � (X � ) and k� kK �;q � (X � ) � k � kJ �;q (X ) � :

Proof. We embedX �
j in �( X ) � , for j = 0 ; 1, in the obvious way, mapping  2 X �

j to its restriction to
�( X ), this mapping injective since �( X ) is dense inX j . That (15) holds is shown as Theorem 2.7.1 in [5].
The remainder of the theorem is shown in the proof of [18, Theorem B.5].

The above theorem has the following corollary that is one motivation for our choice of normalisation
in (13) (cf., the corresponding result for K -norms in Lemma 2.1 (iii)).

Corollary 2.5. If X = ( X; X ) then J �;q (X ) = X with equality of norms.

Proof. It is clear, from Lemma 2.1 and Theorem 2.3, thatJ �;q (X ) = X . It remains to show equality of
the norms which we will deduce from Theorem 2.4 for 1< q � 1 .

We �rst observe (cf. part (vi) of Theorem 2.2) that, for 0 < � < 1, 1 � q � 1 , it follows immediately
from the de�nitions that if Z j is a closed subspace ofYj , for j = 0 ; 1, and Z = ( Z0; Z1), Y = ( Y0; Y1),
then k� kJ �;q (Y ) � k � kJ �;q (Z ) , for � 2 J �;q (Z ). We will apply this result in the case that, for some Banach
spaceX and j = 0 ; 1, Z j = X , and Yj = X �� , the second dual ofX , recalling that X is canonically and



3 Interpolation of Hilbert spaces

We focus in this section on so-calledquadratic interpolation, meaning the special case of interpolation
where the compatible pairs are pairs of Hilbert spaces and the interpolation spaces are also Hilbert spaces.
For the remainder of the paper we assume the normalisations (8) and (13) for theK - and J -methods, and
focus entirely on the case



Now we show below that this in�mum is achieved for the choice

f (t) =
t2� �

(w0 + w1t2)
R1

0 s2� � 1=(w0 + w1s2) ds
=

w� N 2
�; 2t2� �

w0 + w1t2 ; (17)

to get the second equality we use that, from (10),
Z 1

0

s2� � 1

w0 + w1s2 ds =
Z 1

0

s1� 2�

w0s2 + w1
ds =

w1� �

N 2
�; 2w0w1

=
1

w� N 2
�; 2

:

Substituting from (17) in (16) gives that

k� k2
J �; 2 (H ) = N 2

�; 2

Z

X
w2

� j� j2
� Z 1

0

t � 1+2 �

w0 + w1t2 dt
�

d� =
Z

X
w� j� j2 d� = k� k2

H � :

It remains to justify that the in�mum is indeed attained by (17). We note �rst that the de�nition of
f implies that

R1
0 (f (t)=t)dt = � , so that (11) holds. Now suppose thatg is another eligible function such

that (11) holds, and let � = g � f . Then
R1

0 (� (t)=t) dt =
R



Proof. For j = 0 ; 1, de�ne the non-negative bounded, injective operatorA j : �( H ) ! �( H ) by the
relation (A j �;  ) �( H ) = ( �;  )H j , for �;  2 �( H ), where (�; �) �( H ) denotes the inner product induced
by the norm k � k0

�( H )
. By the spectral theorem [11, Corollary 4, p. 911] there exists a measure space

(X ; M; � ), a bounded � -measurable function w0, and a unitary isomorphism U : �( H ) ! L 2(X ; M; � )
such that

A0� = U � 1w0U�; for � 2 �( H );

and w0 > 0 � -almost everywhere sinceA0 is non-negative and injective. De�ning w1 := 1 � w0 we see
that A1� = U � 1w1U� , for � 2 �( H ), so that also w1 > 0 � -almost everywhere.

For � 2 �( H ),

k� k2
H j

= ( U � 1wj U�; � ) �( H ) = ( wj U�; U� )L 2 (X ;M;� ) = kU� k2
L 2 (X ;M;w j � ) ; for j = 0 ; 1:

Thus, where (similarly to H �
1 ) H �

0 denotes the closure of �(H ) in H0, U extends to an isometry U :
H �

j ! L 2(X ; M; w j � ) for j = 0 ; 1. These extensions are unitary operators since their range contains

L 2(X ; M; � ), which is dense inL 2(X ; M; w j � ) for j = 0 ; 1. Where H
�

:= ( H �
0 ; H �

1 ), U extends further
to a linear operator U : �( H

�
) ! Y , the space of� -measurable functions de�ned onX . Thus, applying

Corollary 3.2 and noting part (v) of Theorem 2.2, we see thatH � = K �; 2(H ) = J �; 2(H ), with equality of
norms, where

H � :=
�

� 2 �( H ) : k� kH � := kU� kL 2 (X ;M;w � � ) < 1
	

;

and w� := w1� �
0 w�

1 . Moreover, for � 2 �( H ), the unbounded operator T : H �
1 ! H �

1 satis�es T � =
U � 1(w0=w1)U� so that kS1� � � k2

H 1
= ( T1� � �; � )H 1 = ( A1T1� � �; � ) �( H ) = ( w� U�; U� )L 2 (X ;M;� ) =

k� k2
H � , for 0 < � < 1, and kS� k2

H 1
= ( w0U�; U� )L 2 (X ;M;� ) = k� k2

H 0
.

In the special case, considered in [15], thatH0 is densely and continuously embedded inH1, when
�( H ) = H0 and �( H ) = H1, the above theorem can be interpreted as stating that (H0; H1) �; 2 is the
domain of the unbounded self-adjoint operatorS1� � : H1 ! H1 (and H0 the domain of S), this a standard
characterisation of the K -method interpolation spaces in this special case, see, e.g., [15, p. 99] or [6]. The
following theorem (cf., [6, Theorem B.2]), further illustrating the application of Corollary 3.2, treats the
special case whenH1 � H0, with a compact and dense embedding (which implies that bothH0 and H1

are separable).

Theorem 3.4. Suppose thatH = ( H0; H1) is a compatible pair of Hilbert spaces, withH1 densely and
compactly embedded inH0. Then the operator T : H1 ! H1, de�ned by

(T �;  )H 1 = ( �;  )H 0 ; �;  2 H1;

is compact, self-adjoint, and injective, and there exists an orthogonal basis,1, n( 1



3.2 Uniqueness of interpolation in the Hilbert space case

Theorem 3.3 is a statement that, in the Hilbert space case, three standard methods of interpolation
produce the same interpolation space, with the same norm. This is illustrative of a more general result.
It turns out, roughly speaking, that all methods of interpolation between Hilbert spaces that produce, for
0 < � < 1, interpolation spaces that are Hilbert spaces and that are exact of exponent� , must coincide.
To make a precise statement we need the following de�nition: given a Hilbert space compatible pair
H = ( H0; H1



so that
pn (1 � � ) k� n k2

H 1
� k � n k2

H �
� p(n +1)(1 � � ) k� n k2

H 1
:

Combining these inequalities with (18) (taking a = pn , b = pn +1 ) and (19), we see that

p� (1 � � ) k� k2
G � k � k2



4 Interpolation of Sobolev spaces

In this section we study Hilbert space interpolation, analysed in Section 3, applied to the classical Sobolev
spacesH s(
) and eH s(
), for s 2 R and an open set 
. (Our notations here, which we make precise below,
are those of [18].) This is a classical topic of study (see, e.g., notably [15]). Our results below provide a
more complete answer than hitherto available to the following questions:

(i) Let H s, for s 2 R, denote H s(
) or eH s(
). For which classes of 
 and what range of s is f H sg an
(exact) interpolation scale?

(ii) In cases wheref H sg is an interpolation scale but not an exact interpolation scale, how di�erent are
the H s norm and the interpolation norm?

Our answers to (i) and (ii) will consist mainly of examples and counterexamples. In particular, in the
course of answering these questions we will write down, in certain cases of interest, explicit expressions
for interpolation norms that may be of some independent interest. Our investigations in this section are
in very large part prompted and inspired by the results and discussion in [18, Appendix B], though we
will exhibit a counterexample to one of the results claimed in [18].

We talk a little vaguely in the above paragraph about \Hilbert space interpolation". This vagueness
is justi�ed in Section 3.2 which makes clear that, for 0< � < 1, there is only one method of interpolation
of a pair of compatible Hilbert spacesH = ( H0; H1) which produces an interpolation spaceH � that is a
geometric interpolation space of exponent� (in the terminology of x3.2). Concretely this intermediate space
is given both by the real interpolation methods, the K - and J -methods with q = 2, and by the complex
interpolation method: to emphasise, these methods give the identical interpolation space with identical
norm (with the choice of normalisations we have made for theK - and J -methods). We will, throughout
this section, useH � and (H0; H1) � as our notations for this interpolation space andk �kH �

as our notation
for the norm, so that H � = ( H0; H1) � and k � kH �

are abbreviations for (H0; H1) �; 2 = K �; 2(H ) = J �; 2(H )
and k � kK �; 2 (H ) = k � kJ �; 2 (H ) , respectively, the latter de�ned with the normalisation (9).

4.1 The spaces H s(Rn )

Our function space notations and de�nitions will be those in [18]. For n 2 N let S(Rn ) denote the
Schwartz space of smooth rapidly decreasing functions, andS� (Rn ) its dual space, the space of tempered
distributions. For u 2 S(R



4.2 The spaces H s(
)

For 
 � Rn there are at least two de�nitions of H s(
) in use (equivalent if 
 is su�ciently regular).
Following [18] (or see [24, Section 4.2.1]), we will de�ne

H s(
) :=
�

u 2 D � (
) : u = Uj 
 ; for someU 2 H s(Rn )
	

;

where D � (
) denotes the space of Schwartz distributions, the continuous linear functionals on D(
) [18,
p. 65], and Uj 
 denotes the restriction of U 2 D � (Rn ) � S� (Rn ) to 
. H s(
) is endowed with the norm

kukH s (
) := inf
�

kUkH s (Rn ) : Uj 
 = u
	

; for u 2 H s(
) :

With this norm, for s 2 R, H s(
) is a Hilbert space, D(
) := f Uj 
 : U 2 D(Rn )g is dense inH s(
),
and H t (
) is continuously and densely embedded in H s(
) with kukH s (
) � k ukH t (
) , for s < t and
u 2 H t (
) [18]. Further L 2(
) = H 0(
) with equality of norms, so that H s(
) � L 2t





Proof. Let H � := ( H 0(
) ; H 2(
)) � , for 0 < � < 1. Choose an even function� 2 C1 (R) such that
0 � � (t) � 1 for t 2 R, with � (t) = 0 if jt j > 1, and � (t) = 1 if jt j < 1=2. For 0 < h � 1 de�ne
� h 2 H 2(
) by � h (x) = � (x1=h), x 2 
. We observe that( (



Except in the case 
 = Rn , it appears that f eH s(
) : s 2 Rg is not an exact interpolation scale.
Example 4.15 below shows, for the simple one-dimensional case 
 = (0; 1), that f eH s(
) : 0 � s � 1g is not
an exact interpolation scale, using a representation for the norm for interpolation betweenL 2(
) = eH 0(
)
and eH 1(
) given in the following lemma that illustrates the abstract Theorem 3.4 (cf., [14, Chapter 8]).
For the cusp domain example of Lemma 4.8, by Lemma 4.8 and Corollary 4.9,f eH s(
) : � 2 � s � 0g is
not an interpolation scale at all.

Lemma 4.11. Let 
 be bounded and setH0 := eH 0(
) = L 2(
) , H1 := eH 1(
) =



Lemma 4.13. If 
 = (0 ; a), with a > 0, then f H s(
) : 0 � s � 2g is not an exact interpolation
scale. In particular, where



Figure 1: Comparison of Sobolev and interpolation norms ineH � (
), for the functions � 1 and � 2.

Our last example uses the results of Lemma 4.11, and shows thatf eH s(0; 1) : 0 � s � 1g is not an exact
interpolation scale by computing values of the Sobolev and interpolation norms for speci�c functions. This
example also demonstrates that no normalisation of the interpolation norm can make the two norms equal.

Example 4.15. Let 
 = (0 ; 1), H0 = eH 0(
) = L 2(
) and H1 = eH 1(
) = H 1
0 (
) . The eigenfunctions

and eigenvalues in Lemma 4.11 are� j (x) =
p

2 sin(j�x ) and � j = j 2� 2, so that, for 0 < � < 1, the
interpolation norm on H � = eH � (
) is given by (24). In particular,

k� j k�
� = (1 + j 2� 2) �= 2; for j 2 N:

Noting that

^� j (� ) =
1

p
�

Z 1

0
sin(j�x )e� i �x dx =

j
p

�
�
1 � (� 1)j e� i �

�

j 2� 2 � � 2 =
2j

p
� e� i �= 2

j 2� 2 � � 2

(
cos�=2; j odd;
i sin �=2; j even;

it holds that

k� j k eH � (
) =
� Z 1

�1
(1 + � 2) � j ^� j (� )j2 d�

� 1=2

= 2 j
p

2�
� Z 1

0

(1 + � 2) �

(j 2� 2 � � 2)2

�
cos2(�=2)
sin2(�=2)

�
d�

� 1=2

:

A comparison of k� j k�
� and k� j k eH � (
) for j = 1 ; 2 and � 2 (0; 1) is shown in Figure 1(a). It is clear

from Figure 1(a) that the interpolation and Sobolev norms do not coincide in this case. In particular, for
� = 1=2 we have

k� 1k�
1=2 � 1:816; k� 1k eH 1= 2 (
) � 1:656; k� 2k�

1=2 � 2:522; k� 2k eH 1= 2 (
) � 2:404:

The ratio between the two norms is plotted for both� 1 and � 2 in Figure 1(b). In particular,

k� 1k�
1=2=k� 1k eH 1= 2 (
) � 1:096; k� 2k�

1=2=k� 2k eH 1= 2 (
) � 1
1
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