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Abstract

The dynamics of polymer melts and concentrated solutions is notoriously slow due to the fact that long polymer



where W i are independent vector Wiener processes.
Despite the simplicity of such approximation, the Rouse model compares relatively well with molecular dynamics

(MD) simulations [1],[2] and experiments [3],[4]. For example, the viscosity scales linearly with molecular weight and
stress relaxation function scales asG(t) � V

kB T h� xy (t)� xy (0)i � t � 1=2, where � �� is the stress tensor andV is volume.
The agreement with the Rouse model breaks dramatically when the molecular weight exceeds some critical value

M c. This is clearly observed in both MD and experiment. For example, the stress relaxation functionG(t) slows down
and eventually develops a plateau, and the terminal time and viscosity start to grow with molecular weight asN 3:5 or
so. These deviations from the Rouse model are generally believed to be caused by entanglements, or by the constraint
that polymer chains can not cross each other. For long chain this constraint becomes signi…cant and the e¤ect of other



contacts between the mean paths of di¤erent chains.We will de…ne entanglements as such persistent contacts between
the mean paths. Section 3 will introduce contact maps for chain pairs and a way to analyze such maps. In section
4 we will develop numerical algorithms to extract quantitative information about entanglements, and in section 5 we
shall present the results of these algorithms applied to MD trajectories of well entangled chains. Section 6 will list the
conclusions and the outlook.

2 Mean paths

It is clear that both entanglements and tube pictures predict existence of long lived contacts between di¤erent chains.
However, it is not easy to detect such contacts. Indeed, in a usual modest simulation withNc = 100 chains of length
N = 100 for 107 time steps one has to process information about1011 possible contacts even if the only information
one is interested in is whether chaini is in contact with chain j or not. If one does process this information, one has to
decide what to call a persistent contact. Chain positions are subject to rapid ‡uctuations and thus contacts between
the chains appear and disappear rapidly. Thus, any analysis of such contact information is bound to be probabilistic,
i.e. one can ask what is the probability of two chains to be in contact at time t providing they were in contact at
time 0. One can not however assert whether these two contacts constitute the same entanglement or not. Such contact
analysis was performed in ref.[7] for instantaneous chain coordinates. An approach based on an average interaction
energy between non-bonded monomers was utilized in ref.[8] to visualize persistent contacts.

We note that contact probability information is not very useful to calibrate the tube or the slip-spring models. These
models operate with survival probabilities, i.e. the probability that the sameentanglement or tube segment exists at
time t; if it was present in the system at time 0. In order to compute these probabilities, one has to track individual
contacts and detect their appearance and disappearance.

In order to do that, we suggest to perform contact analysis on the mean pathŝr i rather than on the instantaneous
chain coordinatesR i . The mean paths were introduced in ref.[9] as

r̂ i (t) =
1

� av

Z t

t � � av

R i (t0)dt0

i.e. they consists of the average positions of each bead over some averaging time� av . As was shown in ref.[9], the mean
path of entangled polymer has a free energy of a semi‡exible chain, i.e. the mean paths should be smooth on small
length scales and of course follow the chain random walk on large scales. In this paper we report simulation results
of 100 chains made ofN = 150 beads, which are connected with …nitely-extensible nonlinear (FENE) springs and
interact with purely repulsive truncated Lennard-Jones potentials. Besides that, we add harmonic bending potential as
described in ref.[10] with coe¢ cientkb = 3 . This is done to create more entangled system relatively cheaply. The time
step of the simulation is �t = 0 :012, and the system was run for much longer than the longest relaxation time to ensure
proper equilibration. According to the tube theory, the number of entanglements in our system is in the range of 7-15
depending on the de…nition, and the relaxation time of the strand between entanglements� e � 300� 1000. For mean
paths, we will use � av = 1200; or 105 timesteps, unless speci…ed otherwise. We have also analyzed chains of di¤erent
lengths and chains without bending potentials. However, for clarity and in the interest of space, we do not include these
results unless they produce something qualitatively di¤erent from ourN = 150 and kb = 3 chains.



Figure 1: Illustration of mean path and contacts, for N = 150; kb = 3 system. (a) Instantaneous positions of one chain



Figure 3: (a) Time evolution of the minimum distance between two chains — a tight contact is clearly ideti…able for
time 47 < t=� av < 112





Our contact map algorithm has three parameters: mean path averaging time� av , the cut-o¤ distance which de…nes
a contact dcut , and the coe¢ cientCl in eq.6. The last parameter has only minor in‡uence on determining the position of
entanglements but not on the life time distribution or other important properties. In contrast, the …rst two parameters



Figure 5: Time evolution of the local linking number for the same entanglement as in Fig.3.

With the de…nitions of entanglement slack and local linking number at hand, we can now investigate their probability



Figure 6: Entanglement slack distribution for contacts with di¤erent cut-o¤ distance and chain sti¤ness and for di¤erent
entanglement life times.

Figure 7: Probability density to …nd entanglements with certain slack and local linking number, normalized by the
maximum density. Dashed lines show contour plot for all entanglements with lifetime smaller than50� av , and solid
lines — for entanglements with lifetime longer than50� av :
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Figure 8: Left: Randomly selected entanglements withq < 1:5 and � > 100 at one moment of time for the mean path
analysis. Right: the same from analysis of mean paths with con…gurational averaging over 50 trajectories, forq < 2
and � > 50.

Figure 9: All mean paths entangled with the pink chain with tight longlived entanglements.
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Figure 10: Probability density that a randomly selected entanglement within a certain slack range will have a lifetime
� .

5 Results and discussion



Figure 11: Entanglement survival probability function P (t) compared with stress relaxation (circles), end-to-end relax-
ation (triangles) and orientation tensor auto-correlation (squares) functions.

faster. Note that according to Fig.6 there are very few entanglements withq < 1, so decreasing t5(a)1(re)-394(v)28(e)-12with



Figure 12: Entanglement density along the chain for di¤erent entanglement slack. Open symbols show all entnglements,
whereas …lled symbols - only entanglements with life time� > 50.

where the disentanglement time � d is the characteristic time of the longest mode,L is the tube length and D c is
center-of-mass di¤usion coe¢ cient along the tube (one-dimensional di¤usion). Including CLF has two e¤ects of (s; t)
function. First, it will decrease signi…cantly faster close to the ends of the tube. Second, the relaxation of the middle
segments of the chain will still be described by eq.7, but with an e¤ective tube lengthL ef f , which is reduced by CLF
as compared to the originalL .

We would like to compare and contrast entanglement survival probability with the tube survival probability. An
entanglement in our de…nition is made by two chains, and therefore is characterized by two participating monomer



Figure 13: Entanglement survival probability for t = 64; 128; 256; 512 in units of � av = 1200. The chain is N = 150
with bending energy kb = 3 :

is then simply given by
� (t) =

p
P (t)

which is what we used in Fig.11 (dashed line).
We followed this procedure and computed (s; t) for di¤erent times, and …tted them with Doi-Edwards expression

eq.7, as shown in Fig.14. We have used two …tting parameters and successfully …tted all times simultaneously, excluding
points with js � 1=2j > 0:35, which are a¤ected by CLF and other end-e¤ects. The …tting parameters were the terminal
time � d and an e¤ective tube length�d



Figure 14: Tube survival probability extracted from the entanglement survival probability for 5 di¤erent times (symbols)
compared to Doi-Edwards predictions with e¤ective tube length.

Figure 15: Entanglement survival probability along s1 = s2 and s2 = 1=2 lines (symbols) compared with predictions
obtained from  (s; t)



Figure 16: Closest distance to the chain end at the moment of entanglement creation.



Figure 17: Mean square displacement of entanglement position in real space for chains with bending (kb = 3) and
di¤erent lengths. For comparison, the usual mean square displacement of the middle monomer is also shown.



a better name would be the tube Kuhns step. Indeed, the Kuhn step is de…ned in exactly the waya is de…ned. In
turn, Z is then a number of tube Kuhn steps. The physical meaning ofa and Z are the following: if we construct
a freely jointed chain with the same contour length and the same average square end-to-end distance, this equivalent
chain must have Z steps of lengtha. Note that this de…nition does not assume that the tube is a freely-jointed chain.
Interpreting tube theory equations in this precise manner shows that the number of entanglements, however we choose



References

[1] H. Meyer, et al., European Polymer Journal E 26, 25 (2008).

[2] A. E. Likhtman, Polymer Science:A Comprehensive Reference(Elsevier B.V., 2012), vol. 1, pp. 133–179.

[3] D. Richter, et al., Macromolecules27, 7437 (1994).

[4] M. Rubinstein, R. H. Colby, Polymer Physics (Oxford University Press, 2003).

[5] A. E. Likhtman, Macromolecules38, 6128 (2005).

[6] S. K. Sukumaran, A. Likhtman, Macromolecules42, 4300 (2009).

[7] E. Ben-Naim, G. S. Grest, T. A. Witten, A. R. C. Baljon, Phys. Rev. E 53, 1816 (1996).

[8] R. Yamamoto, A. Onuki, Phys. Rev. E 70, 41801 (2004).

[9] D. J. Read, K. Jagannathan, A. E. Likhtman, Macromolecules41, 6843 (2008).

[10] A. E. Likhtman, S. K. Sukumaran, J. Ramirez, Macromolecules40, 6748 (2007).

[11] A. E. Likhtman, M. S. Talib, B. Vorselaars, J. Ramirez, Macromolecules46, 1187 (2013).

[12] A. Widmer-Cooper, P. Harrowell, H. Fynewever,Physical Review Letters93, 135701 (2004).

[13] W. Bisbee, J. Qin, S. T. Milner, Macromolecules44, 8972 (2011).

[14] E. W. Dijkstra, Numerische Mathematik 1, 269 (1959).

[15] D. J. MacKay, Information Theory, Inference, and Learning Algorithms (Cambridge University Press, 2003).

[16] A. E. Likhtman, Soft Matter, submitted (2013).

[17] J. Cao, A. E. Likhtman, Phys. Rev. Lett. 104 (2010).

[18] C. Tsenoglou,Polymer pp. 1762–1767 (1991).

[19] M. Doi, S. F. Edwards, The theory of polymer dynamics(Clarendon Press, New York, USA, 1986).

[20] M. Doi, J. of Polym. Sci. 21, 667 (1983).

[21] A. E. Likhtman, T. C. B. McLeish, Macromolecules35, 6332 (2002).

[22] R. Everaers,et al., Science303, 823 (2004).

[23] C. Tzoumanekas, D. N. Theodorou,Macromolecules39, 4592 (2006).

[24] R. S. Hoy, K. Foteinopoulou, M. Kroger, Phys. Rev. E 80, 031803 (2009).

[25] J. Qin, S. T. Milner, Soft Matter 7, 10676 (2011).

[26] A. E. Likhtman, "Microscopic de…nition of Entanglement", March APS meeting, Portland, Oregon, 2010; Society
of Rheology Annual Meeting, Santa Fe, New Mexico, 2010;.

19



Table of contents …gure
"Microscopic de…nition of polymer entanglements"Alexei E. Likhtman, M. Ponmurugan

20


	Cover_14_07
	ent1c

