A POINTWISE CHARACTERISATION OF THE PDE SYSTEM OF VECTORIAL CALCULUS OF VARIATIONS IN L¹

BIRZHAN AYANBAYEV AND NIKOS KATZOURAKIS

Abstract. Let n; N 2 N with Rⁿ open. Given H 2 C²(R^N R^{Nn}); we consider the functional (1) E_1 (u; O) := ess sup H(; u; Du); u 2 W¹; H_P (; u; Du) H (; u; Du) = 0;

where $[\![A]\!]^? := \operatorname{Proj}_{R(A)^?}$. Herein we establish that generalised solutions to (2) can be characterised as local minim1ll3r lof-4196(21ou 930(cal)r1(cte)-1(r)1(i1931(6i050)olutiono of (regular) maps u : \mathbb{R}^n ! \mathbb{R}^N are valued, whilst subscripts of H denotes derivatives with respect to the respective variables k; ; P). We use the symbolisations $x = (x_1; ...; x_n)^>$, $u = (u_1; ...; u_N)^>$, $D_i @=@,xwhilst Latin indices i; j; k; ... will run in f 1; ...; ng and Greek indices ; ; ;... will run in f 1; ...; Ng. Further, for any linear map A : <math>\mathbb{R}^n$! \mathbb{R}^N , the notation $[A]^?$ used above denotes the orthogonal projection onto the orthogonal complement of its rangeR(A) \mathbb{R}^N :

(1.4)
$$[A]^? := \operatorname{Proj}_{R(A)^?}$$

Also, $\setminus O$ b " means that O is open and \overline{O} . In index form, F_1 reads

$$F_{1}(x; ; P;X) := \frac{X}{i} H_{P_{i}}(x; ; P) \frac{X}{i} H_{P_{j}}(x; ; P)X_{ij} + H_{i}(x; ; P)P_{i}$$

$$+ H_{x_{i}}(x; ; P) + H(x; ; P) \frac{X}{i} [H_{P}(x; ; P)]^{2}$$

$$\frac{X}{i} H_{P_{i} P_{j}}(x; ; P)X_{ij} + \frac{X}{i} H_{P_{i}}(x; ; P)P_{i}$$

$$+ \frac{X}{i} H_{P_{i} x_{i}}(x; ; P) + H(x; ; P);$$

where = 1;:::; N. Note that, although H is C², the projection map $\llbracket H_P(; u; Du) \rrbracket^2$ is discontinuous when the rank of $H_P(; u; Du)$ changes. Further, we remark that because of the perpendicularity of H_P and $\llbracket H_P \rrbracket^2$, the system can be decoupled into two independent systems which we write in a contracted fashion:

 $\begin{array}{l} \mathsf{H}_{\mathsf{P}}(\;;u;\mathsf{D}u)\,\mathsf{D}\;\;\mathsf{H}(\;;u;\mathsf{D}u)\;\;=\;0\,;\\ \\ \vdots\;\;\;\mathsf{H}(\;;u;\mathsf{D}u)\,[\![\mathsf{H}_{\mathsf{P}}(\;;u;\mathsf{D}u)]\!]^{?}\;\;\;\mathsf{Div}\;\;\mathsf{H}_{\mathsf{P}}(\;;u;\mathsf{D}u)\;\;\;\mathsf{H}\;(\;;u;\mathsf{D}u)\;\;=\;0\,; \end{array}$

When $H(x; ; P) = jPj^2$ (the Euclidean norm on R^{Nn} squared), the system (1.2)-(1.4) simpli es to the so-called 1 -Laplacian:

(1.5)
$$_1 u := Du Du + jDuj^2 [Du]^? I : D^2 u = 0:$$

The scalar caseN = 1 rst arose in the work of G. Aronsson in the 1960s [A1, A2] who initiated the area of Calculus of Variations in the space L^1 . The eld is fairly well-developed today and the relevant bibliography is vast. For a pedagogical introduction to the topic accessible to non-experts, we refer to [K8]. We just mention that in the scalar case, generalised solutions to the respective PDE which is commonly referred to as the Aronsson equation and simpli es to

$$H_{P}(; u; Du) = H_{P}(; u; Du)^{>} D^{2}u + H_{P}(; u; Du)Du + H_{x}(x; ; P) = 0$$

are understood in the viscosity sense (see [C, CIL, K8]). The study of the vectorial caseN 2 started much more recently and the full system (1.2)-(1.4) rst appeared in the work [K1] of one of the authors in the early 2010s and it is being studied quite systematically ever since (see [K2]-[K7], [K9]-[K13], as well as the joint works of the second author with Abugirda, Pryer, Croce and Pisante [AK], [CKP], [KP, KP2]).

In this paper we are interested in the characterisation of appropriately de ned generalised vectorial solutionsu : R^n ! R^N to (1.2)-(1.4) in terms of the

and

$$O(u) := Argmax H(;u;Du) : \overline{O} :$$

We conclude the introduction with some rudimentary facts about generalised

and hence

$$\frac{1}{r} r() r(0) = \frac{1}{r} R(;y^{0}) = R(0;y^{0});$$

where $y^0 \ge \overline{O}$ is any point such that $R(0; y^0) = \max_{\overline{O}} R(0;)$. Hence, we have

$$\underline{D}r(0^{+}) = \liminf_{\substack{l \ 0^{+}}} \frac{1}{-}r() r(0)$$

$$\max_{y^{0}2\overline{O}} \liminf_{\substack{l \ 0^{+}}} \frac{1}{-}R(;y^{0}) R(0;y^{0})$$

$$= \max_{y^{2O}(u)} \liminf_{\substack{l \ 0^{+}}} \frac{1}{-}R(;y) R(0;y)$$

$$= \max_{O(u)} \liminf_{\substack{l \ 0^{+}}} \frac{1}{-}H ;u + A; Du + DA H ;u;Du)$$

$$= \max_{O(u)} \liminf_{\substack{l \ 0^{+}}} \frac{1}{-}H(;u;Du) + H ;u;Du A + H_{P}(;u;Du):DA$$

$$+ O j DAj^{2}$$

Note that $F_1^{?}(x; ; P; X) 2 R^N$, A

for any (x; ; X) 2 $R^{N} R_{s}^{Nn^{2}}$. (B) In view of the mutual perpendicularity of the two components oF₁ (see (3.1)-(3.2)), (A) is a consequence of the following particular results:

$$H_{P}(; u; Du) F_{1}^{k}(; u; Du; D^{2}u) = 0$$
 in ;

in the D-sense, if and only if

$$E_1$$
 (u; O) E_1 (u + A; O); 8 O b ; 8 A 2 A $_O^{k;1}$ (u)

and also

H(;u;Du) H_P(;u;Du)
$$^{?}$$
 F[?]₁(;u;Du;D²u) H(;u;Du) = 0 in ;

in the D-sense, if and only if

$$E_1$$
 (u; O) E_1 (u + A; O); 8 O b ; 8 A 2 A $\stackrel{?}{}_{O}$; (u):

We note that in the special case of C² solutions, Corollary 1 describes the way that classical solutions u : \mathbb{R}^n ! \mathbb{R}^N to (1.2)-(1.4) are characterised.

Remark 8 (About pointwise properties of C¹ D-solutions). Let $u : \mathbb{R}^n$! \mathbb{R}^N be a D-solution to (1.2)-(1.4) in C¹(; \mathbb{R}^N). By De nition 3, this means that for any D²u 2 Y ; $\overline{\mathbb{R}}_{S}^{Nn^2}$,

 F_1 x; u(x); Du(x); X_x = 0; a.e. x 2 and all X_x 2 supp D^2 u(x) :

By De nition 2, every di use hessian of a putative solution is de ned a.e. on as

is clearly satis ed at x. If H_P x; u(x); Du(x) \in 0, then we select any direction normal to the range of H_P x; u(x); Du(x) 2 R^{Nn}, that is

$$n_x 2 R H_P x; u(x); Du(x)$$
 R^N

which means $n_x^> H_P x$; u(x); Du(x) = 0. Of course it may happen that the linear map $H_P x$; u(x); $Du(x) : R^n$

and by applying Lemma $\frac{5}{n}$), we have

$$0 \max_{z^2 \overline{O} \cdot (x)} H_P z; u(z); Du(z) : DA(z) + H z; u(z); Du(z) A(z)$$

$$!^{"! 0} H_P x; u(x); Du(x) : F_1^k x; u(x); Du(x); X_x$$

and hence

$$H_{P}$$
 x; u(x); Du(x) F_{1}^{k} x; u(x); Du(x); X_x 0;

for any 2 \mathbb{R}^{N} . By the arbitrariness of we deduce that

$$H_P x; u(x); Du(x) F_1^{\kappa} x; u(x); Du(x); X_x = 0$$

for any $D^2u\,2\,Y$ $\,$; $\overline{R}_s^{Nn\,^2}$, x 2 $\,$ and $\,X_x\,2\,$ supp $\,D^2u(x)$, as desired. Conversely, we $\,x\,O$

Proof of Corollary 1. If $u \ge C^2(; \mathbb{R}^N)$, then by Lemma 4 any di use hessian of u satis es $D^2u(x) = {}_{D^2u(x)}$ for a.e. $x \ge 2$. By Remark 8, we may assume this happens for all $x \ge 2$. Therefore, the reduced support of $D^2u(x)$ is the singleton set f ${}_{D^2u(x)}$