A POINTWISE CHARACTERISATION OF THE PDE SYSTEM OF VECTORIAL CALCULUS OF VARIATIONS IN $L¹$

BIRZHAN AYANBAYEV AND NIKOS KATZOURAKIS

 R^n open. Given H 2 C²(R^{N} R^{Nn}); Abstract. Let n; N 2 N with we consider the functional (1) E₁ (u; O) := ess_sup H(; u; Du); u 2 W^{1;} H_P(; u; Du) H (; u; Du) = 0;

where $[A]$ [?] := Proj _{R(A)}? Herein we establish that generalised solutions to
(2) can be characterised as local minim1ll3r lof-4196(21ou 930(cal)r1(cte)-1(r)1(i193l(6i050)olutiono

of (regular) maps u: Rⁿ ! R R^N are valued, whilst subscripts of H denotes derivatives with respect to the respective variables κ ; $; P$). We use the symbolisations $x = (x_1; \dots; x_n)^>$, $u = (u_1; \dots; u_N)^>$, D_i $\mathbb{Q} = \mathbb{Q}$ *x*whilst Latin indices i; j; k; ... will run in f1; :::; ng and Greek indices; ; ; ::: will run in f1; :::; Ng. Further, for any linear map A : R^n ! R^N , the notation ${[A]}^?$ used above denotes the orthogonal projection onto the orthogonal complement of its rangeR (A) \mathbb{R}^N :

$$
[\![A]\!]^? \; := \; \mathsf{Proj}_{R(A)^?} :
$$

Also, \O b " means that $\,$ O is open and $\,overline{O}$ $\,$. In index form, $\,$ F₁ reads

$$
F_{1}(x; ; P; X) := \begin{cases} X & X \\ H_{P_{i}}(x; ; P) & H_{P_{j}}(x; ; P)X_{ij} + Y & H(x; ; P)P_{i} \\ \vdots & \vdots \\ H_{x_{i}}(x; ; P) + H(x; ; P) & \text{[H}_{P}(x; ; P) \text{]}^{2} \end{cases}
$$

$$
\begin{cases} X & H_{P_{i}P_{j}}(x; ; P)X_{ij} + Y & H_{P_{i}}(x; ; P)P_{i} \\ \vdots & \vdots \\ X & H_{P_{i}x_{i}}(x; ; P) & H(x; ; P) \end{cases};
$$

where $\;$ = 1 ; :::; N . Note that, although H is C², the projection map [[H_P (; u; Du)]]? is discontinuous when the rank of H_P (; u; Du) changes. Further, we remark that because of the perpendicularity of H and $[[H_P]]^2$, the system can be decoupled into two independent systems which we write in a contracted fashion: 8

 \overline{a} : H_P (; u; Du) D H(; u; Du) = 0; $H(|:u; Du)$ $H|_{P}(|:u; Du)$ $\vert P^{2}$ Div $H_{P}(|:u; Du)$ H $(|:u; Du) = 0$:

When H(x; ; P) = $|P|^2$ (the Euclidean norm on R^{Nn} squared), the system (1.2)-(1.4) simplies to the so-called 1 -Laplacian:

(1.5)
$$
1 \, u := Du \, Du + jDuj^2 [Du]^2 \, 1 \, :D^2u = 0
$$

The scalar caseN = 1 rst arose in the work of G. Aronsson in the 1960s $[A1, A2]$ who initiated the area of Calculus of Variations in the space L¹. The eld is fairly well-developed today and the relevant bibliography is vast. For a pedagogical introduction to the topic accessible to non-experts, we refer to $[K8]$. We just mention that in the scalar case, generalised solutions to the respective PDE which is commonly referred to as the Aronsson equation and simpli es to

$$
H_P()
$$
; u; Du) $H_P()$; u; Du)^{>2}u + H (; u; Du)Du + H_x(x; ; P) = 0

are understood in the viscosity sense (see $[C, CIL, K8]$). The study of the vectorial caseN $\,$ 2 started much more recently and the full system (1.2) - (1.4) rst appeared in the work $K1$ of one of the authors in the early 2010s and it is being studied quite systematically ever since (see $[K2]$ -[K7], $[K9]$ -[K13], as well as the joint works of the second author with Abugirda, Pryer, Croce and Pisante [AK], [CKP], [KP, KP2]).

In this paper we are interested in the characterisation of appropriately de ned generalised vectorial solutionsu : R^n \qquad ! $\qquad R^N$ to (1.2)-(1.4) in terms of the

and

$$
O(u) := \text{Argmax} \quad H(\;; u; Du) : \overline{O} :
$$

We conclude the introduction with some rudimentary facts about generalised

and hence

$$
\frac{1}{2} r(2) r(0) = \frac{1}{2} R(2; y^{0}) R(0; y^{0}) ;
$$

where y 0 2 $\overline{\mathrm{O}}$ is any point such that R(0; y 0) = max $_{\overline{\mathrm{O}}}$ R(0;). Hence, we have

$$
\underline{D}r(0^{+}) = \liminf_{\begin{array}{l} 0^{+} \\ 0^{+} \end{array}} \frac{1}{0^{+}} r(1) r(0)
$$
\n
$$
\max_{y^{0} \ge 0} \liminf_{\begin{array}{l} 0^{+} \\ 0^{+} \end{array}} \frac{1}{0^{+}} R(y^{0}) R(0; y^{0})
$$
\n
$$
= \max_{y \ge 0} \liminf_{\begin{array}{l} 0^{+} \\ 0^{+} \end{array}} \frac{1}{0^{+}} R(y) R(0; y)
$$
\n
$$
= \max_{\begin{array}{l} 0 & \text{if } 0^{+} \\ 0^{+} \end{array}} \liminf_{\begin{array}{l} 0^{+} \\ 0^{+} \end{array}} \frac{1}{0^{+}} H(y^{0}) + A(y^{0}) + B(y^{0}) + B(y^{0}) + C(y^{0}) + D(y^{0}) + D(y^{0
$$

Note that $F_1^2(x; ; P; X)$ 2 R^N, A

for any $(x; ; X)$ 2 R^N Nn ² s . (B) In view of the mutual perpendicularity of the two components of $\frac{1}{1}$ (see (3.1)-(3.2)), (A) is a consequence of the following particular results:

$$
H_P
$$
 (; u; Du) F_1^k (; u; Du; D²u) = 0 in ;

in the D-sense, if and only if

$$
E_1
$$
 (u; O) E_1 (u + A; O); 8 O b ; 8 A 2 A^{k;1}_O (u)

and also

$$
H(; u; Du) H_P(; u; Du) \stackrel{?}{=} F_1^2(; u; Du; D^2u) H(; u; Du) = 0 in ;
$$

in the D-sense, if and only if

$$
E_1
$$
 (u; O) E_1 (u + A; O); 8 O b ; 8 A 2 A²;¹ (u):

We note that in the special case of C^2 solutions, Corollary 1 describes the way that classical solutions $u : R^n$
 R^N to $(1.2)-(1.4)$ are characterised.

Remark 8 (About pointwise properties of C^1 D-solutions). Let $u : R^n$! R R^N be a D-solution to (1.2)-(1.4) in $C^1($; R^N). By De nition 3, this means that for any D²u 2 Y $\therefore \overline{R}_s^{\text{Nn}^2}$,

F₁ x; u(x); Du(x); X_x = 0; a.e. x 2 and all X_x 2 supp $D^2u(x)$:

By De nition 2, every di use hessian of a putative solution is de ned a.e. on as

is clearly satis ed at x. If H_P x; $u(x)$; Du(x) θ 0, then we select any direction normal to the range of H_P x; $u(x)$; Du(x) 2 R^{Nn}, that is

 \sim

$$
n_x
$$
 2 R H_P x; u(x); Du(x)⁷ R^N

which means $n_x > H_P$ x; $u(x)$; $Du(x) = 0$. Of course it may happen that the linear map H_P x; $u(x)$; Du(x) : Rⁿ

and by applying Lemma 5a), we have

0
$$
\max_{z \ge \overline{O} \cdot (x)} H_P(z; u(z); Du(z) : DA(z) + H(z; u(z); Du(z) - A(z))
$$

\n
$$
\prod_{i=1}^{n} H_P(x; u(x); Du(x) : F_{1}^{k} x; u(x); Du(x); X_x
$$

and hence

$$
H_P
$$
 x; u(x); Du(x) F_1^k x; u(x); Du(x); X_x 0;

for any $2 R^N$. By the arbitrariness of we deduce that

$$
H_P
$$
 x; u(x); Du(x) F_1^k x; u(x); Du(x); X_x = 0

for any D²u 2 Y $\;\; ; \overline{\mathsf{R}}_{\mathsf{s}}^{\mathsf{N} \mathsf{n}^{\,2}}\;$, x 2 and $\;\mathsf{X}_{\mathsf{x}}\;$ 2 supp $\;\mathsf{D}^2 \mathsf{u}(\mathsf{x})\;$, as desired. Conversely, we x O

Proof of Corollary 1. If u 2 $C^2($; R^N), then by Lemma 4 any di use hessian of u satis es D²u(x) = $D^2u(x)$ for a.e. x 2 . By Remark 8, we may assume this happens for all x 2. Therefore, the reduced support of $D^2u(x)$ is the singleton set $f_{D^2u(x)}$