
 
 

 

 
y 2012 

 
 
 

Competing Edge Networks 
 

by 
 
 

rindrod 
 
 

 

 
ent of Mathematics and Statistics 

School of Mathematical 
and Physical Sciences 
 

Departm





the same group of nodes, where each edge type has its own discrete time
dynamics, and series of adjacency matrices detailing its evolution. Since these
edge types act upon the same group of nodes they may be superimposed onto
a single graph, providing the different edge types are clearly differentiated.
The work presented in this paper considers such a network where the different



in the case of highly asymmetric competition.

2. Competing Edge Dynamics

First we introduce some terminology to define our competing evolving net-
works.

Following [8, 7, 10] we define an evolving network, over discrete time steps
indexed by k = 1, 2, ...., via a sequence of adjacency matrices, say {Ak}. We
shall assume that all edges are undirected and we do not allow any edges
connecting a vertex with itself. Thus all of our adjacency matrices lie in the
set Sn of binary, symmetric, n × n matrices having zeros along their main
diagonals. We assume the evolving network dynamic is first order in time:
at the (k + 1)th time step each edge in Ak+1 will have a birth or death rate
that is conditional on Ak. However no new vertices will enter, nor shall any
existing vertices be permanently removed from the evolving network. At each
time step the evolving network is thus a random network conditional on the
evolving network at the previous time step, with a probability distribution
P (Ak+1|Ak), defined as Ak+1 ranges over Sn.

We shall assume that presence of each each edge in Ak+1 is determined in-
dependently of all other edges. This means that it is sufficient to specify the
conditional expectation that each edge is present, given by

< Ak+1|Ak >=
∑

Ak+1∈Sn

Ak+1P (Ak+1|Ak),

rather than dealing with full probability distribution. In fact for such edge-
independent conditional random networks we may write

P (Ak+1|Ak) =
∏

i<j

(< Ak+1|Ak >)
(Ak+1)ij
ij (1 − (< Ak+1|Ak >)ij)

1−(Ak+1)ij ,

demonstrating their equivalence.

Notice that since distinct edges may be conditionally dependent on some



Let the sequence {Ak} within Sn denote a Red evolving network defined over
a set of n vertices. Similarly let the sequence {Bk} within Sn denote a Blue
evolving network defined over the same set n vertices. Then, extending the
above ideas, we will assume that both evolving networks have a first order
edge-independent dynamic such that each network at each time step is a
random network conditionally dependent upon both networks at the previous



Notice that since both Ak+1 and Bk+1 are dependent upon Ak and Bk, there
is therefore no ‘first/late mover advantage’ [6] for the Red or Blue network.

Figure 1 shows the evolution of various synthetic networks in terms of the
edge density for the Red and Blue networks, where each simulation starts
from the same initial pair of matrices, A1 and B1. Their evolution is modelled
according to (1) and (2), with n = 39, and the same parameter values for
both Red and Blue networks: ω = 1/25, ǫ = 1/110, µ = 1/17, δ = 1/600
and γ = 1/600. Notice that multiple apparently stable equilibria exist and
that they are reachable from the same initial network pair at the first time
step. This highlights the significance of identifying these equilibria for a given
network, and motivates the analysis in the next section.

3. Mean Field Approximation

In order to identify and analyse the long term equilibria, we take the mean
field approximation introduced in [8]. Symmetry of the dynamics implies
there are no preferred vertices or edges (all edges satisfy the same rules since
the birth and death rates have no explicit edge dependencies), so we assume
that we may write < Ak >≈ pk1 and similarly < Bk >≈ qk1 where pk

and qk represent the edge densities of the Red and Blue networks at the kth
time step; and hence that these networks are approximated by Erdos-Renyi
random graphs. Then the mean field approximation for the dynamics of this
system is reduced to a nonlinear iteration of over the unit square:

pk+1 = pk(1 − ωA − µAqk) + (1 − pk)(δA + ǫA(n − 2)pk
2 − γAqk) (3)

qk+1 = qk(1 − ωB − µBpk) + (1 − qk)(δB + ǫB(n − 2)qk
2 − γBpk). (4)

Notice that 0 ≤ pk, qk ≤ 1 for all k, and our parameters should satisfy several
constraints. In (3) we require:

(a) (1−ωA −µAqk) ≥ 0, and hence, since qk ≤ 1, we must have ωA +µA ≤ 1;

(b) (δA + ǫA(n − 2)pk
2 − γAqk) ≥ 0, and hence, since pk ≥ 0 and qk ≤ 1, we

must have δA − γA ≥ 0;

(c) (δA + ǫA(n − 2)pk
2 − γAqk) ≤ 1, and hence, since pk ≤ 1 and qk ≥ 0, we

must haven δA + ǫA(n − 2) ≤ 1.
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Figure 1: Three separate simulations of competing networks, modelled according to (1)
and (2). In each case the edge densities of the competing networks are plotted against
one another at each timestep. Notice that each simulation is performed with the same
network parameter values and initial matrix pair, however evolve towards distinct network
positions.
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These three constraints hold similarly for the Blue network’s parameters.

At equilibrium, where, say, pk = p and qk = q for all k, we may rearrange (3)
and (4) into the following form,

q =
ǫA(n − 2)(1 − p)p2 + (1 − p)δA − pωA

γA(1 − p) + pµA

= fA(p), (5)

p =
ǫB(n − 2)(1 − q)q2 + (1 − q)δB − qωB

γB(1 − q) + qµB

= fB(q), (6)

where the functions fA and fB differ only in their (suppressed) parameter
values.

The mean field approximation retains the nonlinear nature of the full stochas-
tic iteration, but it is itself a deterministic iteration (over (p, q) space), since
the stochastic evolution has been smoothed away by projecting the expected
value of the adjacency matrix into its mean field representation. This approx-
imation is likely to become unreliable where the original evolution is sensitive
to small perturbations within the network structures (see [8] for further read-
ing). This certainly would include situations where one or other network is
very sparse and also where the pair are close to any unstable equilibrium or
other regions of instability, for the mean field dynamics.

4. Identifying System Equilibria for Symmetrical Competition

Before locating the equilibria for our system we first make the following sim-
plification that equalizes the competition: we shall assume that the param-
eter values for both the Red and Blue networks are equal, i.e., δA = δB = δ
for every parameter in (3) and (4). Hence (5) and (6) become

q = f(p), p = f(q), (7)

where

f(y) =
ǫ(n − 2)(1 − y)y2 + (1 − y)δ + yω

γ(1 − y) + yµ
.

Now consider the one dimensional iteration defined on [0,1], indexed by t =
1, 2, ...,

yt+1 = f(yt). (8)
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Then equilibria for the mean field iteration (3) and (4), necessarily satisfying
(7), are represented by either fixed point equilibria, y∗ say, for (8); or a period
two, or “flip”, solution for (8), say y1 = f(y2), y2 = f(y1) (y1 6= y2). The
first case leads to a symmetrical equilibrium for (3) and (4), with p = q = y∗;
the second case leads to a mirror image pair of non-symmetric equilibria for
(3) and (4), with (p, q) = (y1, y2) and (y2, y1).

Once an equilibrium is identified, its stability is determined by the spectral
radius of the Jacobian obtained by linearizing (3) and (4) about that



Figure 2: An example of fixed point curves for a mean field approximation of a competing
edge network with specified parameters resulting in nine intersections.
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The remaining non symmetric equilibria for (3) and (4) may be identified by
considering two-periodic “flip-solutions” for (8). These may occur specifically
when any fixed point for (8) (corresponding to a symmetric equilibrium for
(3) and (4)) undergoes a flip bifurcation, when the system parameters change
so that the slope of f goes from above to below -1 at that equilibrium,
whence a pair of period-two solutions will be born. For (3) and (4) th



Figure 3: A bifurcation map for varying values of ǫ(n − 2) (x-axis) and µ (y-axis). The



Figure 4: Parameter values chosen are ǫ(n − 2) = 37/110 and µ = 1/17, resulting in an
associated mean field fixed points graph with nine applicable roots. Of these roots, points



Figure 6: Parameter values chosen are ǫ(n − 2) = 17/44 and µ = 1/17, resulting in an
associated mean field fixed points graph with five applicable roots. With respect to Figure
5, two more roots are lost due to only possessing a single first order solution. Of these
roots, points A, B and C are found to be stable, whereas the others are unstable.

Figure 7: Parameter values chosen are ǫ(n − 2) = 31/110 and µ = 1/17, resulting in
an associated mean field fixed points graph with seven applicable roots. With respect to
Figure 4, two roots are lost due to non-bifurcation of point C. Of these roots, points A, D
and E are found to be stable, whereas the others are unstable.
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Figure 8: Parameter values chosen are



Given fB(fA(p)) − p = 0, from (5) and (6), this occurs where p is the root of
a ninth order polynomial r(p), say. Then by direct calculation

r(0) = δA
2ǫB(δA − γA) + γA(δB(δA − γA) + δAωB). (10)

Recall both that all parameters are positive and γA ≥ δA: hence r(0) > 0.
Notice also that,

r(1) = −µA
3(δB − γB) − µA

2ωA(δB − γB) − µA
2µBωA

−ǫBµAωA
2 − ǫBωA

3 − µA
2ωAωB. (11)

Then similarly r(1) < 0.

It follows that there exists an odd number of applicable roots satisfying
(5) and (6) in [0, 1], even without equality between network parameters by
the intermediate value theorem. We would expect this to be the case since
applicable roots can only be lost in pairs, through the coalescence of two
roots or a pitchfork bifurcation.

6. Discussion

In this paper we have introduced a model for networks that compete edge-
wise over a fixed set of vertices. Both networks inhibit the other’s growth
(through lower edge birth rates) and encourage the other’s demise (through
greater edge death rates).

The nonlinear stochastic competition equations yield to a mean field anal-
ysis that results in an associated nonlinear deterministic system. This in
turn indicates there may be multiple dynamic steady states; regions of sta-
bility, with some sensitivity to the stochastic details found close to unstable
equilibria; and a sensitivity to sparse initial conditions.

The applications we have in mind are situations where one peer-to-peer com-
munication network competes and gradually displaces the other. For example
where the emergence of BlackBerry Messenger has created a competing net-
work against SMS messages, resulting in a decreased edge density for SMS
communication over this userbase [2]. Our analysis illustrates how the ulti-
mate fate of such competitions may depend upon early sensitive and stochas-
tic behaviour.
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