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THE FULL INFINITE DIMENSIONAL MOMENT PROBLEM ON
SEMI-ALGEBRAIC SETS OF GENERALIZED FUNCTIONS

M. INFUSINO � ;+ , T. KUNA + , A. ROTA +

Abstract. We consider a generic basic semi-algebraic subset S of the space of
generalized functions, that is a set given by (not necessarily countably many)
polynomial constraints. We derive necessary and su�cient conditions for an in-

result completely characterizes the support of the realizing measure in terms of
its moments. As concrete examples of semi-algebraic sets of generalized func-
tions, we consider the set of all Radon measures and the set of all the measures
having bounded Radon-Nikodym density w.r.t. the Lebesgue measure.

Introduction

It is often more convenient to consider characteristics of a random distribution
instead of the random distribution itself and try to extract information about the
distribution from these characteristics. In this paper, we are more concretely in-
terested in distributions on functional objects like random �elds, random points,
random sets and random measures. The characteristics under study are polynomials
of these objects like the density, the pair distance distribution, the covering func-
tion, the contact distribution function, etc.. This setting is considered in numerous
areas of applications: heterogeneous materials and mesoscopic structures [44], sto-
chastic geometry [29], liquid theory [14], spatial statistics [43], spatial ecology [30]
and neural spike trains [7, 16], just to name a few.

The subject of this paper is the full power moment problem on a pre-given subset
S of D 0(Rd), the space of all generalized functions onRd. This framework choice is
mathematically convenient and general enough to encompass all the aforementioned
applications. More precisely, our paper addresses the question of whether certain
prescribed generalized functions are in fact the moment functions of some �nite
measure concentrated onS. If such a measure does exist, it will be calledrealizing.
The main novelty of this paper is to investigate how one can read o� support
properties of the realizing measure directly from positivity properties of its moment
functions.

To be more concrete, homogeneous polynomials are de�ned as powers of lin-
ear functionals on D 0(Rd) and their linear continuous extensions. We denote
by P C1

c
(D 0(Rd)) the set of all polynomials on D 0(Rd) with coe�cients in C1

c (Rd),
which is the set of all in�nite di�erentiable functions with compact support in Rd.
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In this paper, we try to �nd a characterization via moments of measures con-
centrated on basic semi-algebraic subsets ofD 0(Rd), i.e. sets that are given by
polynomial constraints and so are of the following form

S =
\

i 2 Y

�
� 2 D 0(Rd)

�
� Pi (� ) � 0

	
;

where Y is an arbitrary index set (not necessarily countable) and eachPi is a
polynomial in P C1

c
(D 0(Rd)). Equality constraints can be handled using Pi and

� Pi simultaneously. As far as we are aware, the in�nite dimensional moment
problem has only been treated in general on a�ne subsets [4, 2] and cones [42] of
nuclear spaces (these results are stated in Section 2 and Subsection 5.3). Special
situations have also been handled; see e.g. [46, 3, 17].

Previous results.
Characterization results via moments are built up out of �ve completely di�erent
types of conditions

I. positivity conditions on the moment sequence
II. conditions on the asymptotic behaviour of the moments as a sequence of their

degree
III. properties of the putative support of the realizing measure
IV. regularity properties of the moments as generalized functions
V. growth properties of the moments as generalized functions.

Conditions of type IV and V are only relevant for the in�nite dimensional moment
problem. The general aim in moment theory is to construct a solution which
is as weak as possible w.r.t. some combination of the above di�erent types of
conditions, since it seems unfeasible to get one solution which is optimal in all
types simultaneously.

Let us give a review of some previous results on which our approach is based
and describe the di�erent types of conditions involved in each of them.
Given a sequencem of putative moments, one can introduce on the set of all poly-
nomials the so-called Riesz functionalL m , which associates to each polynomial its
putative expectation. If a polynomial P is non-negative on the prescribed sup-
port S, then a necessary condition for the realizability ofm on S is that L m (P) is
non-negative as well. The question whether this condition alone is also su�cient
for the existence of a realizing measure concentrated onS � Rd is answered by the
Riesz-Haviland theorem [36, 15]; for in�nite dimensional versions of this theorem
see e.g [24, 25, 28] for point processes and [19, 20] for the truncated case. The
disadvantage of this type of positivity condition is that it may be rather di�cult
and also computationally expensive to identify all non-negative polynomials onS,
especially if the latter is geometrically non-trivial.

A classical result shows that all non-negative polynomials onR can be written
as the sum of squares of polynomials (see [32]). Hence, it is already su�cient for
realizability on S = R to require that L m is non-negative on squares of polynomials,
that is, m is positive semide�nite. For the moment problem on S = Rd with
d � 2, the positive semide�niteness ofm is no longer su�cient, as already pointed
out by D. Hilbert in the description of his 17th problem. However, the positive
semide�niteness ofm becomes su�cient if one additionally assumes a condition of
type II, that is, a bound on a certain norm of the n� th putative moment m(n ) . For
example, one could require thatjm(n ) j does not grow faster thanBC n n! or than
BC n (n ln(n))n for some constantsB; C > 0. The weakest known growth condition
of this kind is that the sequencem is quasi-analytic (see Appendix 6). We will call
such a sequencedetermining, because this property guarantees the uniqueness of
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the realizing measure. The determinacy condition in the in�nite dimensional case
additionally involves the types IV and V.

Beyond the results for S = Rd, for a long time the moment problem was only
studied for speci�c proper subsetsS of Rd rather than general classes of sets. How-
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We assume that eachH k is embedded topologically intoH0. Let 
 be the projective
limit of the family ( H k )k2 K endowed with the associated projective limit topology
and let us assume that 
 is nuclear, i.e. for eachk1 2 K there exists k2 2 K such
that the embedding H k2 � H k1 is quasi-nuclear.

Let us denote by 
 0 the topological dual space of 
. We control the classical
rigging by identifying H0 and its dual H 0

0. With this identi�cation one can de�ne
the duality pairing between elements in H k and in its dual H 0

k = H � k using the
inner product in H0. For this reason, in the following we will denote by hf; � i the
duality pairing between � 2 
 0 and f 2 
 (see [1, 2] for more details).

Consider the n� th ( n 2 N0) tensor power 
 
 n of the space 
 which is de�ned
as the projective limit of H 
 n

k ; for n = 0, H 
 n
k = R. Then its dual space is

(1)
�

 
 n � 0

=
[

k2 K

�
H 
 n

k

� 0
=

[

k2 K

(H 0
k ) 
 n =

[

k2 K

H 
 n
� k ;

which we can equip with the weak topology.
A generalized process is a �nite measure� de�ned on the Borel � � algebra on 
 0.

Moreover, we say that a generalized process� is concentrated ona measurable sub-
set S � 
 0 if � (
 0n S) = 0.
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Proposition 1.3.
If � is a generalized process on
 0 with generalized moment functions (in the sense
of 
 0) of any order, then for any n 2 N and for any f (n ) 2 
 
 n we have

Z


 0
hf (n ) ; � 
 n i � (d� ) < 1 and hf (n ) ; m(n )

� i =
Z


 0
hf (n ) ; � 
 n i � (d� ):

For a generalized processes� the moment functions m(n )
� are given by an explicit

formula. The moment problem, which in an in�nite dimensional context is often
called the realizability problem, addresses exactly the inverse question.

Problem 1.4 (Realizability problem on S � 
 0).
Let N 2 N0 [ f + 1g and let m = ( m(n ) )N

n =0 be such that each
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one de�nesr � := r � 1
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Corollary 4.2.
The semi-algebraic setS de�ned as in (8) is measurable w.r.t. the Borel� � algebra
� (� ind

w ) generated by the weak topology onD 0
ind (Rd).

Proof.
The previous proposition implies that S 2 � (� ind

s ). As (D 0
ind (Rd); � ind

s ) is a Lusin
space and so Suslin,� (� ind

w ) and � (� ind
s ) coincide (see [40, Corollary 2, p.101]).

Hence,S 2 � (� ind
w ).

�

In the following, we are going to investigate the full realizability problem (see
Problem 1.4) on S of the form (8). Let us introduce the version of the Riesz linear
functional for the moment problem on D 0

proj (Rd).

De�nition 4.3.
Given m 2 F

�
D 0

proj (Rd)
�
, we de�ne its associated Riesz functionalL m as

L m : P C1
c

�
D 0

proj (Rd)
�

! R

P(� ) =
NP

n =0
hp(n ) ; � 
 n i 7! L m (P) :=

NX

n =0

hp(n ) ; m(n ) i :

Note that in the case when the sequencem is realized by a non-negative measure
� 2 M � (S) on a subsetS � D 0

proj (Rd), then a direct calculation shows that for
any polynomial P 2 P C1

c
(D 0

proj (Rd))

(9) L m (P) =
Z

S
P(� ) � (d� ):

The Riesz functional allows us to state our main result in a concise form.

Theorem 4.4.
Let m 2 F

�
D 0

proj (Rd)
�

be determining andS be a basic semi-algebraic set of the
form (8). Then m is realized by a unique non-negative measure� 2 M � (S) if and
only if the following inequalities hold

(10) L m (h2) � 0; L m (Pi h2) � 0 ; 8h 2 P C1
c

�
D 0

proj (Rd)
�

; 8i 2 Y:

Equivalently, if and only if the functional L m is non-negative on the quadratic
module Q(P S ).

Despite of the apparently abstract character of the determinacy condition given
in De�nition 2.2, the latter becomes actually concrete whenever one can explicitly
construct the set E . This is possible for the nuclear spaceDd
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For such a setE , using (4), we get that

mn � cdn
k ( n )

1

0

B
@ sup

z 2 Rd

kzk� n

sup
x 2 [� 1;1]d

q
k(n )

2 (z + x)

1

C
A

n

km(2n ) k
1
2

H 
 2n

� k (2 n )

:

Remark 4.6.
The more regularity is known on the sequencem the weaker is the restriction on
the growth of them(2n ) required in Theorem 4.4. Let us discuss two extremal cases.

� If each m(n ) is in H 
 n
� k wherek = ( k1; k2(r )) 2 I with both k1 and k2 inde-

pendent ofn, then bothck ( n )
1

and sup
z 2 Rd

kzk� n

sup
x 2 [� 1;1]d

q
k(n )

2 (z + x) in Lemma 4.5

are constant d

q
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�

Proposition 4.10.
If m is realized by a measure� 2 M � (D 0

proj (Rd)) and m is determining, then the
sequenceP m is also determining.

Proof.
Let us �rst recall that Dproj (Rd) = proj lim

k2 I
H k ; where I is as in De�nition 3.1 and

H k := W k1
2 (Rd; k2(r )dr ) for any k = ( k1; k2(r )) 2 I (see Section 3.1).

Since m is determining in the sense of De�nition 2.2, there exists a subsetE
total in Dproj (Rd) such that for any n 2 N0, mn < 1 and the classCf mn g is
quasi-analytic, where

mn :=
r

sup
f 1 ;:::;f 2n 2 E

�
�hf 1 
 � � � 
 f 2n ; m(2n ) i

�
� :

It is easy to see that, sincem is realized by a measure� 2 M � (D 0
proj (Rd)), the

sequence (mn )n 2 N0 is also log-convex.
We will show that there exists a �nite positive constant cP such that

(12) ~mn :=
r

sup
f 1 ;:::;f 2n 2 E

�
�hf 1 
 � � � 
 f 2n ; (P m)(2n ) i

�
� �

p
cP m2n :

The latter bound is su�cient to prove that the sequence P m is determining. In
fact, the log-convexity of (mn )n 2 N0 and the quasi-analiticity of Cf mn g imply that
the classCf

p
cP m2n g is also quasi-analytic (see Lemma 6.8 and Proposition 6.5).

Hence, (12) gives thatCf ~mn g is also quasi-analytic.

It remains to show the bound in (12).
Let us �x n 2 N. Using De�nition 4.7 and the assumption that m is realized by �
on D 0

proj (Rd), we get that for any f 1; : : : ; f 2n 2 C1
c (Rd)

�
�
�hf 1 
 � � � 
 f 2n ; (P m)(2n ) i

�
�
� �

NX

j =0

�
�
�
�
�

Z

D 0
proj (Rd )

hp( j ) ; � 
 j ihf 1 
 � � � 
 f 2n ; � 
 (2n ) i � (d� )

�
�
�
�
�

� cP

 Z

D 0
proj (Rd )

�
�hf 1 
 � � � 
 f 2n ; � 
 2n i

�
�2

� (d� )

! 1
2

= cP

�
�
�hf 
 2

1 
 � � � 
 f 
 2
2n ; m(4n ) i
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Since integrals of non-negative functions w.r.t. a non-negative measure are non-
negative, the inequalities in (10) hold.

Su�ciency
As already observed in Remark 4.8, the assumptions in (10) mean that the se-
quence m and P m are positive semide�nite. Since m is assumed to be deter-
mining, Theorem 2.3 guarantees the existence of a unique non-negative measure
� 2 M � (D 0

proj (Rd)) realizing m. On the one hand, according to Lemma 4.9 the
sequenceP i m is realized by the signed measurePi � , i.e. for any f (n ) 2 C1

c (Rnd )

(13) hf (n ) ; (P i m)(n ) i =
Z

D 0
proj (Rd )

hf (n ) ; � 
 n i Pi (� )� (d� ):

On the other hand, by Proposition 4.10, the sequenceP i m is also determining.
Hence, applying again Theorem 2.3, the sequenceP i m is realized by a unique non-
negative measure� 2 M � (D 0

proj (Rd)), namely for any f (n ) 2 C1
c (Rnd )

(14) hf (n ) ; (P i m)(n ) i =
Z

D 0
proj (Rd )

hf (n ) ; � 
 n i � (d� ):

Let A i :=
�

� 2 D 0
proj (Rd) : Pi (� ) � 0

	
and let us de�ne � +

i (B ) := � (B \ A i ) and
� �

i (B ) := � (B \ (D 0
proj (Rd) n A i )), for all B 2 B(D 0

proj (Rd)). Moreover, let us
consider the non-negative measures� +

i and � �
i given by � +

i (B ) :=
R

B Pi (� )� +
i (d� )

and � �
i (B ) := �

R
B Pi (� )� �

i (d� ), for all B 2 B(D 0
proj (Rd)). Hence, we have that

� = � +
i + � �

i and Pi � = � +
i � � �

i . According to this notation, (13) and (14) can
be rewritten as
(15)Z

D 0
proj (Rd )

hf (n ) ; � 
 n i � +
i (d� ) =

Z

D 0
proj (Rd )

hf (n ) ; � 
 n i � �
i (d� ) +

Z

D 0
proj (Rd )

hf (n ) ; � 
 n i � (d� ):

Sincem is determining and since� + � � , the sequencem+ consisting of all moment
functions of � + is also determining. By Proposition 4.10, the sequenceP i m

+ is
determining, too.
As the two non-negative measures� +

i and � �
i + � both realize the determining

sequenceP i m
+ , they coincide because Theorem 2.3 also guarantees the uniqueness

of the realizing measure. This implies that the signed measurePi � is actually a
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implies that there exists a �nite open subcover ofK " , i.e. there exists a �nite subset
J � Y such that K " �

S
i 2 J

�
D 0

ind (Rd) n A i
�

: Therefore, we have that

0 � � 0(K " ) � � 0

 
[

i 2 J

�
D 0

ind (Rd) n A i
�
!

�
X

i 2 J

�
��

D 0
ind (Rd) n A i

�
\ D 0

proj (Rd)
�

= 0 ;

where in the last equality we used (16). Moreover, by (17), we have that

� 0�
D 0

ind (Rd) n S
�

� � 0(K " ) + " = ":

Since this holds for any " > 0, we get � 0
�
D 0

ind (Rd) n S
�

= 0 and hence, 0 =
� 0

�
D 0

ind (Rd) n S
�

= �
�
(D 0

ind (Rd) n S) \ D 0
proj (Rd)

�
= �

�
D 0

proj (Rd) n S
�

:
�

Theorem 4.4 does still hold for any basic semi-algebraic setS which is subset of
D 0

ind (Rd) (instead of D 0
proj (Rd)) and gives a realizing measure actually concentrated

on S \ D 0
proj (Rd). If S \ D 0

proj (Rd) = ; , then there is no contradiction because
Theorem 4.4 shows that the only realizing measure is identically equal to zero,
and so we knowa posteriori that all the moment functions were zeros. However,
the caseS \ D 0

proj (Rd) 6= ; is very common, sinceD 0
proj (Rd) contains all tempered

distributions, Radon measures and all locally integrable functions. Hence, if at least
a single one of such generalized functions is contained inS then S \ D 0

proj (Rd) 6= ;
and Theorem 4.4 can be applied to get a non-zero realizing measure supported on
S, indeed on S \ D 0

proj (Rd). Note that in Theorem 4.4 it is not su�cient to just
assume that m 2 F

�
D 0

ind (Rd)
�
. However, the assumptionm 2 F

�
D 0

proj (Rd)
�

is
not a restrictive requirement in any application.

5. Applications

In this section we give some concrete applications of Theorem 4.4.
In Subsection 5.1, we present Theorem 4.4 in the �nite dimensional case. This the-
orem generalizes the results already know in literature about the classical moment
problem on a basic semi-algebraic set ofRd.
In Subsection 5.2, we study the case when we assume more regularity of type IV
on the putative moment functions, that is, we require that they are non-negative
symmetric Radon measures. The advantage of this additional assumption is that
it allows us to simplify the condition of determinacy and hence, to give an adapted
version of Theorem 4.4. In Subsection 5.3, we derive conditions on the putative
moment functions to be realized by a random measure, that is, we assumeS to be
the set of all Radon measures onRd. In this case, the fact that all the moment
functions are themselves Radon measures is a necessary condition and so the results
of Subsection 5.2 can be exploited. In Subsection 5.4, we consider the case when
S is the set of Radon measures with Radon-Nikodym densities w.r.t. the Lebesgue
measure ful�lling an a priori L 1 bound.

From now on let us denote byR(Rd) the space of all Radon measures onRd,
namely the space of all non-negative Borel measures that are �nite on compact sets
in Rd.

5.1. Finite dimensional case.
The d� dimensional moment problem on a closed basic semi-algebraic setS of Rd is
a special case of Problem 1.4 for 
 = H0 = Rd. Hence, Theorem 4.4 can be applied
also in the �nite dimensional case, where the conditionm := ( m(n ) )n 2 N0 2 F

�
Rd

�

holds for any multi-sequence of real numbers. In fact, if we denote byf e1; : : : ; edg
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the canonical basis ofRd then we have that for eachn 2 N0,

m
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As suggested by the name, the condition (18) is an in�nite-dimensional weighted
version of the classical Carleman condition, which ensures the uniqueness of the
solution to the d� dimensional moment problem (for d = 1 see [8], for d � 2 see
e.g. [41, 31, 5, 11]) .

Corollary 5.3.
Let m 2 F

�
R(Rd)

�
ful�ll the weighted Carleman type condition in De�nition 5.2

and let S � D 0
proj (Rd) be a basic semi-algebraic of the form(8). Then m is realized

by a unique non-negative measure� 2 M � (S) with

(19)
Z

S
h

1

k(n )
2

; � i n � (d� ) < 1 ; 8 n 2 N0;

if and only if the following inequalities hold

(20) L m (h2) � 0; L m (Pi h2) � 0; 8h 2 P C1
c

�
D 0

proj (Rd)
�

; 8i 2 Y;

and for any n 2 N0 we have

(21)
Z

R2nd

m(2n ) (dr 1; : : : ; dr 2n )
Q 2n

l =1 k(2n )
2 (r l )

< 1 :

Remark 5.4.
If m is realized by a non-negative measure� 2 M � (D 0

proj (Rd)) and m satis�es (18)
then (21) holds also for the odd orders.

Corollary 5.3 is essentially a consequence of the following proposition.

Proposition 5.5.
If m satis�es
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Hence, by choosingE as in Lemma 4.5, we have that

mn :=
r

sup
f 1 ;:::;f 2n 2 E

�
�hf 1 
 � � � 
 f 2n ; m(2n ) i

�
�

�

vu
u
u
t C2n

 

sup
f 2 E

kf kH ~k ( n )

! 2n Z

R2nd

m(2n ) (dr 1; : : : ; dr n )
Q 2n

l =1 k(2n )
2 (r l )

�

0

B
@Ccd

d d +1
2 e sup

z 2 Rd

kr k� n

sup
x 2 [� 1;1]d

q
~k(2n )

2 (z + x)

1

C
A

nvu
u
t

Z

R2nd

m(2n ) (dr 1; : : : ; dr 2n )
Q 2n

l =1 k(2n )
2 (r l )

:(23)

Then the condition (21) guarantees that the mn 's are �nite and (18) implies that
the classCf mn g is quasi-analytic.

�

Proof. (Corollary 5.3).
Since the necessity part follows straightforwardly, let us focus on the su�ciency.
Since m is determining by Proposition 5.5 and (20) holds by assumption, we can
apply Theorem 4.4 to get that m is realized by � 2 M � (S).

It remains to show (19). For any positive real numberR let us de�ne a function
� R such that

(24) � R 2 C1
c (Rd) and � R (r ) :=

�
1 if jr j � R
0 if jr j � R + 1 :

Sincem is realized by� 2 M � (S), for any n 2 N0 and for any positive real number
R we have that

Z

S
h

� R

k(n )
2

; � i n � (d� ) =
Z

Rnd

nY

l =1

� R (r l )

k(n )
2 (r l )

m(n ) (dr 1; : : : ; dr n ):

Hence, the monotone convergence theorem forR ! 1 and Remark 5.4 give (19).
�

Remark 5.6.
The proof of Proposition 5.5 is a particular instance of what we were pointing out in
Remark 4.6. In fact, the regularity assumed on the sequencem, that is m consisting
of Radon measures, allowed us to get the bound(23) from (18) and (21) for some
index ~k(n ) = ( ~k(n )

1 ; ~k(n )
2 ) with ~k(n )

1 =
�

d+1
2

�
and so independent ofn.

Note that to obtain this result it was important to use our de�nition of determining
sequence (see De�nition 2.2). In fact, if we used the one given in[2] involving the
norms km(2n ) kH 
 2n

� k (2 n )
(see Remark 2.4), we would have got~k(n )

1 >
� n (d)

(see Rn
d
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If S � D 0
proj (Rd) is a basic semi-algebraic of the form(8), then m is realized by a

unique non-negative measure� 2 M � (S) with
Z

S
h

1
k2

; � i n � (d� ) < 1 ; 8 n 2 N0;

if and only if the following inequalities hold

L m (h2) � 0; L m (Pi h2) � 0; 8h 2 P C1
c

�
D 0

proj (Rd)
�

; 8i 2 Y;

and for any n 2 N0 we have
Z

R2nd

m(2n ) (dr 1; : : : ; dr 2n )
Q 2n

l =1 k2(r l )
< 1 :

5.3. Realizability on the space of Radon measures R(Rd).

Example 5.8.
The set R(Rd) of all Radon measures onRd is a basic semi-algebraic subset of
D 0

proj (Rd), i.e.

(25) R(Rd) =
\

' 2C + ; 1
c (Rd )

�
� 2 D 0

proj (Rd) : � ' (� ) � 0
	

where � ' (� ) := h'; � i .

Proof.
The representation (25) follows from the fact that there exists a one-to-one cor-
respondence between the Radon measures onRd and the continuous non-negative
linear functionals on the spaceDproj (Rd). In fact, for any � 2 R (Rd) the functional

C1
c (Rd) ! R

' 7! h'; � i =
Z

Rd
' (r )� (dr )

is non-negative and it is an element ofD 0
proj (Rd). Conversely, by a theorem due

to L. Schwartz (c.f. [39, Theorem V] ), every non-negative linear functional on
C1

c (Rd) can be represented as integral w.r.t. a Radon measure onRd.
�

Using the representation (25), we obtain a realizability theorem forS = R(Rd),
namely Corollary 5.3 becomes

Theorem 5.9.
Let m 2 F

�
R(Rd)

�
ful�ll the weighted Carleman type condition (18). Then m is

realized by a unique non-negative measure� 2 M � (R(Rd)) with
Z

S
h

1

k(n )
2

; � i n � (d� ) < 1 ; 8 n 2 N0;

if and only if the following inequalities hold

L m (h2) � 0 ; 8h 2 P C1
c

�
D 0

proj (Rd)
�

;(26)

L m (� ' h2) � 0 ; 8h 2 P C1
c

�
D 0

proj (Rd)
�

; 8' 2 C+ ;1
c (Rd);(27)

Z

R2nd

m(2n ) (dr 1; : : : ; dr 2n )
Q 2n

l =1 k(2n )
2 (r l )

< 1 ; 8n 2 N0:(28)

Note that if � is concentrated onR(Rd) then m(n )
� 2 R (Rdn ) for all n 2 N0.
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The previous theorem still holds even whenm does not consist of Radon mea-
sures. In this case, instead of (18) and (28), one has to assume thatm is determining
in the sense of De�nition 2.2

The assumption (18) can be actually weakened by taking into account a result
due to S.N. �Sifrin about the in�nite dimensional moment problem on dual cones in
nuclear spaces (see [42]). Indeed, applying�Sifrin's results to the coneC+ ;1

c (Rd), it is
possible to obtain a particular instance of our Theorem 4.4 for the caseS = R(Rd)
(the latter is in fact the dual cone of C+ ;1

c (Rd)) but with the di�erence that in
the determinacy condition the quasi-analyticity of the mn 's is replaced by the so-

called Stieltjes condition
P 1

n =1 m
� 1

2n
n = 1 . As a consequence, the condition (18)

in Theorem 5.9 can be replaced by the following weaker one
1X

n =1

1
vu
u
t sup

z 2 Rd

kzk� n

sup
x 2 [� 1;1]d

q
~k(n )

2 (z + x) 4n

r R
R2nd

m (2 n ) (dr 1 ;:::;d r 2n )
Q 2n

l =1 k (2 n )
2 ( r l )

= 1 ;

which we call weighted generalized Stieltjes condition.

Remark 5.10.
The condition (26) can be rewritten as

X

i;j

hh( i ) 
 h( j ) ; m ( i + j ) i � 0; 8 h( i ) 2 C1
c (Rid );

and (27) as
X

i;j

hh( i ) 
 h( j ) 
 '; m ( i + j +1) i � 0; 8 h( i ) 2 C1
c (Rid ); 8' 2 C+ ;1

c (Rd ):

Recalling De�nition 4.7, we can restate these conditions as follows: the sequence
(m(n ) )n 2 N0 and its shifted version (( � ' m)(n ) )n 2 N0 are positive semide�nite in the
sense of De�nition 2.1.
In particular, if for each n 2 N0, m(n ) has a Radon-Nikodym density, that is there
exists � (n ) 2 L 1(Rn ; � ) s.t. m(n ) (dr 1; : : : ; dr n ) = � (n ) (r 1; : : : ; r n )dr 1 � � � dr n , then
(26) and (27) can be rewritten as

P

i;j

R
Rd ( i + j ) h=1) h=1
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where N is a positive integer and � ' is a smooth characteristic function of the
support of a function ' 2 Cc(Rd) (see (24)).
As a consequence of the equivalence of the two topologies, the associated Borel
� � algebras also coincide and they are equal to� (� proj

w ) \ R (Rd).

5.4.
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Remark 5.13.
Proceeding as in Remark 5.10, we can work out the analogy between the realizability
problem on Sc and the moment problem on[0; c]. Indeed, if each m(n ) has density
� (n ) w.r.t. the Lebesgue measure, then(33)
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Theorem 6.4 (The Denjoy-Carleman Theorem).
Let (M n )n 2 N0 be a sequence of positive real numbers. Then the following conditions
are equivalent

(1) Cf M n g is quasi-analytic,

(2)
1P

n =1

1
� n

= 1 with � n := inf k � n
n
p

M n ;

(3)
1P

n =1

1
n
p

M c
n

= 1 ,

(4)
1P

n =1

M c
n � 1

M c
n

= 1 ,

where(M c
n )n 2 N0 is the convex regularization of(M n )n 2 N0 by means of the logarithm.

Let us now state a simple result which has been repeatedly used throughout this
paper.

Proposition 6.5.
Let (M n )n 2 N0 be a sequence of positive real numbers. Then,Cf M n g is quasi-
analytic if and only if for any positive constant � the classCf �M n g is quasi-analytic.

In conclusion, let us introduce some interesting properties of log-convex se-
quences.

Remark 6.6.
For a sequence of positive real numbers(M n )n 2 N0 the following properties are equiv-
alent

(a): (M n )1
n =0 is log-convex.

(b):
�

M n
M n � 1

� 1

n =1
is monotone increasing.

(c): (ln( M n ))1
n =1 is convex.



THE FULL INFINITE DIMENSIONAL MOMENT PROBLEM ON SEMI-ALGEBRAIC SETS 23

where the last inequality is due to Proposition 6.7. Hence, if
1P

n =1

1
np M n

diverges then

1P

n =1

1
jn
p

M jn
diverges as well. On the other hand, if the series

1P

n =1

1
jn
p

M jn
diverges for

somej 2 N, then also
1P

n =1

1
np M n

diverges since the latter contains more summands.

�

6.2. Complements about the space C1
c (Rd).

Let us recall the de�nition of the inductive topology on C1
c (Rd) (see [35, Sec-

tion V.4, vol. I]) for a more detailed account on this topic).

De�nition 6.9.
Let (� n )n 2 N be an increasing family of relatively compact open subsets ofRd such
that Rd =

S

n 2 N
� n . Let us consider the spaceC1

c (� n ) of all in�nitely di�erentiable

functions on Rd with compact support contained in � n and let us endowC1
c (� n )

with the Frech�et topology generated by the directed family of seminorms given by

(36) k' k� a :=
X

j � j� a

max
r 2 � n

�
�D � ' (r )

�
� :

Then as sets
C1

c (Rd) =
[

n 2 N

C1
c (� n ):

We denote byD ind (Rd) the spaceC1
c (Rd) endowed with the inductive limit topology

� ind induced by this construction.
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De�nition 6.11 (Condition (D)) .
We say that the setK 0 � I satis�es Condition (D) if:
\For any pair k = ( k1; k2(r )) 2 K 0 there existsk0 = ( k0

1; k0
2(r )) 2 K 0 such that

� k0
1 � k1 + l (where l is the smallest integer greater thand

2 )

� k0
2(r ) �

�
max
j � j� l

j(D � q)( r )j
� 2

, 8 r 2 Rd, for some function q(r ) 2 Cl (Rd)

chosen such that

q2(r ) � k2(r ); 8 r 2 Rd and
Z

Rd , for some function

q
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6.3. Construction of a total subset of test functions.
In this subsection, we provide an outline of the proof of Lemma 4.5 about the
explicit construction of a set E of the kind required in De�nition 2.2. For conve-
nience, we give here the proofs only in the case whenE � D 0

proj (R). The higher
dimensional case follows straightforwardly.

For any n 2 N0, let k(n ) := (
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where the last equality is due to (38). Since� is in some spaceH � k ( n ) and as (37),
holds, we get that

(40) jhf y;p ; � " � � ij � k f y;p kH
k ( n ) k� " � � kH

� k ( n ) � c(1 + jpj)k ( n )
1 k� " � � kH

� k ( n ) ;

wherec := dk ( n )
1

(
p

2)k ( n )
1 +1 sup

x 2 [� 1;1]

q
k(n )

2 (x + y) and so it depends only onk(n )
1 ; k(n )

2 ; y.

Since� " is an approximating identity we get that

lim
" #0

k� " � � kH
� k ( n ) = k� kH

� k ( n )

The latter together with (40) imply that the function hf y;p ; � " � � i is uniformly
bounded in p and "
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It remains to construct an increasing sequence (dn )n of positive numbers not quasi-
analytic and such that (41) holds. First note that our requirement is equivalent to
de�ne an increasing sequence (dn )n of positive numbers such that

P 1
n =1

1
np dn

< 1

and limn !1
np dn
np cn

= 0 : Indeed, for eachC and for each " > 0 there exist N such

that for all n � N holds dn �
�

"
C

� n
cn and hence alsoCn dn � "n cn .

Our problem reduces to �nd, given a decreasing sequences (an )n of positive numbers
with

P 1
n =1 an < 1 , a decreasing sequence (bn )n of positive numbers such thatP 1

n =1 bn < 1 and limn !1
bn
an

= 1 :
For any k 2 N let us de�ne Nk := min f mj

P 1
n = m an � 1

k 2 g and also

bn := min

8
<

:
an

0

@1 +
X

k2 N : N k � n

p
k

1

A ; bn � 1

9
=

;
;

with b0 := a0

 

1 +
P

k2 N : N k =0

p
k

!

. Then

1X

n =1

bn �
1X

n =1

an

0

@1 +
X

k2 N : N k � n

p
k

1

A �
1X

n =1

an +
1X

k=1

k� 3=2 < 1 ;

It follows that lim n !1 bn = 0. Then latter together with the de�nition ( bn )n

implies that there exists an in�nite subsequence (bn j ) j � (bn )n such that

8 j 2 N : bn j = an j

0

@1 +
X

k2 N : N k � n j

p
k

1

A :

For such a subsequence we have that

(42) lim
j !1

bn j

an j

= lim
j !1

0

@1 +
X

k2 N : N k � n j

p
k

1

A =

 

1 +
1X

k=1

p
k

!

= 1 :

Now let us note that for any n 2 N we have either that bn
an

= bn � 1

an
� bn � 1

an � 1
or that

bn

an
=

an

 

1 +
P

k2 N : N k � n

p
k

1Xn
= a

A ; b

 

A ; b

 �
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