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2 Estimating the observation error covariance matrix with

the ensemble transform Kalman filter

Data assimilation techniques combine observations yn ∈ R
Np

at time tn with a model
prediction of the state, the background x

f
n ∈ R

Nm
, which is often determined by a previous

forecast. The observations and background are weighted by their respective errors, to
provide a best estimate of the state xa

n ∈ R
Nm

, known as the analysis. This analysis is
then forecast using the possibly non-linear model Mn to provide a background at the next
assimilation time,

x
f
n+1 = Mn(xa

n). (1)

We now give a brief overview of the ensemble transform Kalman filter (ETKF) [Bishop
et al., 2001, Livings et al., 2008] that we will adapt and the notation that is used in
this study. At time tn we have an ensemble, a statistical sample of N state estimates
{

xi
n

}

for i = 1 . . . N . These ensemble members are stored in a state ensemble matrix
Xn ∈ R

Nm
×N where each column of the matrix is a state estimate for an individual

ensemble member,
Xn =

(

x1
n x2

n . . . xN
n

)

. (2)

It is possible to calculate the ensemble mean,

x̄n =
1

N

N
∑

i=1

xi
n, (3)

and subtracting the ensemble mean from the state ensembles gives the ensemble perturba-
tion matrix

X′

n =
(

x1
n − x̄n x2

n − x̄n . . . xN
n − x̄n

)

. (4)

This allows us to write the ensemble covariance matrix as

Pn =
1

N − 1
X′

nX
′

n
T

. (5)

For the ensemble transform Kalman filter (ETKF) the analysis at time tn is given by,

x̄a
n = x̄f

n + Kn(yn −Hn(x̄f
n)), (6)

where x̄a
n is the analysis ensemble mean and x̄

f
n is the forecast ensemble mean. The possibly

non-linear observation operator H : RNp

→ RNm

maps the state space to the observation
space . The Kalman gain matrix,

Kn = Pf
nH

T
n (HnP

f
nH

T
n + Rn)−1, (7)

is a matrix of size Nm × Np where Hn is the observation operator linearised about the
background state. The observation error covariance matrix is denoted by Rn ∈ R

Np
×Np

and
P

f
n ∈ R

Nm
×Nm

is the forecast error covariance matrix. When the forecast error covariance
is derived from climatological data and assumed static, it is often denoted as Bn and known
as the background error covariance matrix.

Previously it has been assumed that the observation error covariance matrix R is diagonal.
However, with recent work showing that R nb K



2.1 The DBCP diagnostic







3.2.1 The observations

To create observations we must add errors from a specified dis



KS equation are given in Cox and Matthews [2000] and Kassam and Trefethen [2005]. The
truth is de�ned by the solution to the KS equation on the perio dic domain 0



spread. If the ensemble spread is not maintained the analysis and the estimation of the
observation error covariance matrix may be a�ected.

4.1 Results with a static R and frequent observations

We begin by considering the case when the true observation error covariance matrix is
static.

In Experiments 1L and 1K we use the standard EKTF for the assimilation. We begin by
setting the true matrix R t to R t = R D + R C , where R D = 0 :1I and R C = 0 :1C. The
Lorenz '96 and KS models are each run for 1000 assimilation steps. We assume thatR
is diagonal, with R 0 = diag(R t ). The standard ETKF is used to gain an estimate of R
after the assimilation. The background and analysis innovations are calculated throughout
the assimilation window. After the �nal assimilation these







covariance matrix to be calculated.

We showed it is possible to obtain a good estimate ofR using the DBCP diagnostic.
We then showed that estimating R within the ETKF worked well, with good estimates
obtained, the ensemble spread maintained and the analysis RMSE reduced compared to
the case where the matrixR is always assumed diagonal. We also showed that the method
does not work as well where the observations are less frequent, although this may be
dependent on the model. However the method still produces a reasonable estimate ofR ,
maintains the ensemble variance and the time-averaged analysis RMSE is lower than where
a diagonal R is used.

We next considered a case whereR varied slowly with time. We showed that the method
worked well where the true R was de�ned to slowly vary with time. The time-averaged
analysis RMSE was low and the ensemble spread was maintained. The estimates of the
correlation structure were good, suggesting that the method is capable of estimating a
slowly time-varying observation error covariance matrix. A case where the length-scale of
the observation error covariance varied more quickly was also considered, and the ETKFR
produced reasonable estimates of the observation error covariance matrix. We also showed
that the ability of the method to approximate the correlatio n structure was not sensitive to
the forecast error variances or the true magnitude of the observation error variance. This
suggests that the method would be suitable to give a time-dependent estimate of correlated
observation error. We note that the e�ectiveness of the method will depend on how rapidly
the synoptic situation and hence correlated error is changing and how often observations are
available. The correlated error will also be dependent on the dynamical system. For models
designed to capture rapidly developing situations, where representativity error and hence
correlated error is likely to change rapidly, assimilation cycling and observation frequency
within the assimilation is expected to be more frequent and hence more data is available
for estimating the observation error.
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Figure 1 { Rows of the true (solid) and estimated (dashed) covariance matrices a) Experi-
ment 1L. Observation error covariance RMSE: 0.002. b) Experiment 1K. Observation error
covariance RMSE: 0.010.
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Table 1 { Details of experiments executed using the Lorenz '96 model to investigate the
performance of the ETKF with observation error covariance estimation

Exp. True R Assimilation Obs Freq � 2
b , � 2

D , � 2
C Time Av Covariance

No. Method (time steps) analysis RMSE

RMSE2



Table 2
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