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Abstract



element methods. Assuming domains and data with su�cient regularity, the idea is to use
large mesh cells equipped with many plane waves where the solution is smooth, whereas small
cells are employed to resolve singularities of the solution at corners of the boundary. This
kind of hp approximation with polynomials has seen an amazing development starting from
the work of Babu�ska [1,10]; see [32] for a comprehensive exposition. It has also been adapted
to polynomial DG methods by several authors, see, for instance,[16,30,31,35]. Applications
to scalar wave propagation are reported in [7,23,24].

Results on the approximation of Helmholtz solutions by plane waves are pivotal. Here,
major progress has been achieved in [26, 27]. These works made use of Vekua's theory and,
thus, could exploit known results about the approximation of harmonic functions by harmonic
polynomials. Recently, results in this direction targeting harmonic functions that can be
extended analytically were obtained in [15], generalising earlier work by M. Melenk [20]. A
proof of exponential convergence of thehp-version of (polynomial) Tre�tz-DG method for
the Laplace problem was included.

The main result of this work (Theorem 6.5, Section 6) is a proof that the L 2-norm of
the discretisation error of a special PWDG method on very general,geometrically graded
meshes converges exponentially in a root of the number of degreesof freedom. This is
the �rst such result for a numerical method based on plane waves.For the proof, we had
to re�ne the duality arguments of [ 14], see Section4, and combine them with novel L 1 -
approximation estimates for plane waves given in Section5. The reason of the restriction
to two space dimensions is that the approximation estimates for harmonic functions we rely
on (see Proposition5.1) were derived in [15] using complex analysis arguments, and thus are
proved in 2D only. The error is bounded by a negative exponential ofthe square root of the
total number of degrees of freedom employed, while typical polynomial hp-schemes in two
dimensions only deliver exponential convergence in the cubic root ofthe same parameter,
e.g. see [1, Theorem 5.3]. The results of our analysis hold true also when circularwaves are
used instead of plane waves.

At this point we emphasise that our focus is on numerical approximation theory. We
deliberately ignore the key challenge of ill-conditioning of linear systems arising from PWDG
approaches,cf. [17, 18]. We even acknowledge that an implementation of the method inves-
tigated below may severely be a�ected by numerical instability, see Remark 6.7.

2 Scattering boundary value problem

As in [14, Section 2], let 
 D � R2 be a bounded, Lipschitz domain occupied by a sound-
soft material, which we assume to be star-shaped with respect to the origin 0. We denote
by � D := @
 D its boundary. We introduce another bounded Lipschitz domain 
 R with
boundary � R such that 
 D � 
 R , and dist(� D ; � R ) > 01. We set 
 := 
 R n 
 D and we
assume@
 to be piecewise analytic. It may have �nitely many corners c� , 1 � � � nc, which
we collect in the setC := f c� gn c

� =1 .
We focus on the following boundary value problem (BVP) for the Helmholtz equation:
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>:

� � u � k2u = 0 in 
 ;
u = 0 on � D ;

r u � n + ik#u = gR on � R ;

(1)

with gR 2 L 2(� R ), wavenumber k > 0, and # 2 R a non-dimensional, non-zero parameter.
We have written n for the outward-pointing unit normal vector �eld on @
.

2.1 Stability and Sobolev regularity

We denote by



norms (note that k has the dimension of the inverse of a length):

kvk2
`;k;D :=

X̀

j =0

k2( ` � j ) juj2j;D 8v 2 H ` (D ); ` 2 N:

We assume 
R to be star-shaped with respect to the ball2 B  R d
 , for some R > 0, where
d
 := diam(
).

Theorems 2.1, 2.2, and 2.3 of [



where
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We set b�( x) := b� 1;0;1(x)=
Q n c

� =1 minf 1; jx � xc jg, which is independent ofk.

Theorem 2.3. There exists a weight vector� 2 (0; 1)n c such that, if gR 2 B 1
� ;E(� R ), the

solution u to problem (







4.3 Trace inequalities

As technical tools we use the following trace inequalities:
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and thus, due to assumption(M3) ,
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and the result readily follows.

Since u � uhp 2 T(Th ), from Lemma 4.4 and the quasi-optimality ( 8), we immediately
deduce the following result.

Theorem 4.5. Assume the mesh properties(M1) { (M3) and that the solution u of (1)
belongs toT(Th ), and let uhp be the solution of (7). Then there exists a constant







The whole proof is just a modi�cation of those in Sections 3.4.2 and 3.5 of [



The norm of the harmonic polynomial V2[QN ] is immediately controlled by that of u using
the triangle inequality and recalling the de�nition of QN :

kV2[QN ]kL 1 (K ) � k V2[u]kL 1 (K ) + kV2[u] � V2[Qn ]kL 1 (K )

(23)
� C

�
kV2[u]kL 1 (K � ) + hK kr V2[u]kL 1 K



Assumption 6.1. Let 0 < � < 1 be a �xed grading parameter. The elements of every mesh
TL can be grouped into layersL L

` , 1 � ` � L , that is,

TL =
L[

` =1

L L
` ; L L

` \ L L
` 0 = ; if ` 6= `0;

such that:

(GM1) the L th layer L L
L contains the set of elements abutting a corner;

(GM2) the distance of an element from the nearest corner point dependsgeometrically on
its layer index (recalling that C = f c� gn c

� =1 is the set of corner points):

9C > 0 : C � 1� ` � dist(K; C) � C� ` 8K 2 L L
` ; 1 � ` < L; L 2 N; (33)

(GM3) the size of an element depends geometrically on its layer index:

9C > 0 : C � 1�



with d�eselecting the smallest integer greater than or equal toL 1+ � . The role of � is explained
in Section 6.5. For the sake of simplicity, we opt for equi-spaced plane wave directions (i.e.,
� = 1 in Proposition 5.4)

dp
m =

�
cos(2�

p m)

sin( 2�
p m)

�
; 0 � m < p; p 2 N;

which give rise to the local plane wave spaces

PWp;k (K ) :=
�

v 2 C1 (R2) : v(x) =
p� 1X
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The second tool is a set of special results about the approximationof polynomials by
plane waves which can be derived combining Lemma 3.10 and Proposition3.9 in [9]. In
that article, the estimates target a family of triangles and the unit square, here we need the
estimates on the unit disk only.

Lemma 6.3. For odd p � 5, k̂ > 0, and any p̂1 2 P1(B1), we can �nd v̂p 2 PWp;k̂ (B1) such
that

kp̂1 � v̂pk0;B 1
� Ck̂2 kp̂1k0;B 1

; (46)
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: (48)

Based on this lemma, we prove other auxiliary estimates.

Lemma 6.4. Fix odd p � 5. For every K 2 T
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The proof of Theorem6.5 shows that the rate~b of exponential convergence of the Tre�tz-
DG method and the layer number threshold L � only depend on: (i) the maximum number
of elements per layer, which is bounded (see (36)); (ii) the regularity parameter s relative to
the solution u; (iii) the mesh grading parameter� ; (iv) the parameter b from Proposition 5.1
(and [15, Corollary 4.11]), which is the exponential convergence rate for the approximation
of certain harmonic functions by harmonic polynomials.

Remark 6.6.
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