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1 Introduction

The Ultra Weak Variational Formulation (UWVF), originally proposed by
Cessenat and Despr�es in [4, 5], is a new-generation �nite element method
for the accurate simulation of time-harmonic acoustic, elastic, andelectro-
magnetic waves. The area of time-harmonic wave scattering is a subject of
much research, with applications in seismology, medical imaging, and radar
imaging.

We consider acoustic wave propagation, modelled in two dimensions by
the following Helmholtz boundary value problem (BVP):
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Here 
 � R2 is a bounded domain with Lipschitz boundary �; the density
� (x) and the wavenumber� (x) are real positive and may vary throughout
the domain. The coupling parameter� is real and positive, andf and g are
the volume and boundary source terms respectively. The parameter Q 2 C,
jQj � 1, allows di�erent types of boundary conditions: Q = 1, � 1 and
0 correspond to Neumann, Dirichlet, and impedance boundary conditions,
respectively.

The UWVF is a Tre�tz-type method: the exact solution of a Helmholtz
boundary value problem is approximated by a linear combination of basis
functions that, inside each mesh element, are solutions of the homogeneous
Helmholtz equation, i.e. equation (1a) with right-hand side f = 0. By incor-
porating information on the oscillatory behaviour of Helmholtz solutions into
the approximation space, the UWVF can produce accurate resultsrequiring
signi�cantly fewer degrees of freedom than standard �nite element methods,
in some cases for mesh sizes encompassing several wavelengths� .

The solution of the Helmholtz equation is often approximated using a
plane wave basis [3{ 5,7,9,11]; however, it is also possible to use other solutions
of the homogeneous Helmholtz equation, such as a Fourier{Besselfunctions
as in [13].

As with standard �nite element methods (FEM), the domain 
 is parti-
tioned into a polygonal mesh; however the solution variables are impedance
traces 1

�
@u
@n� i�u on the skeleton of the mesh. These traces are approximated

by the corresponding traces of a Tre�tz trial space and the approximation is
automatically achieved also in the element interiors if the discretised BVP is
homogeneous (f = 0), see [3, Theorem 4.1], [10, Theorem 4.5]. In [3,6,7,9]
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the UWVF has been shown to be a discontinuous Galerkin (DG) methodwith
Tre�tz basis functions, allowing a simpler and more general derivation of the
formulation (see e.g. [9, x3.2]) and a more straightforward error analysis.

In seismic imaging applications, point sources (monopoles or dipoles) are
used in the interior of the domain, for example to represent an explosive
sound source. Modelling this situation requires solving the inhomogeneous
Helmholtz equation for a non-zero and singular source termf , for example
a Dirac delta function. To date, the use of the UWVF to solve the inho-
mogeneous form of the Helmholtz equation has not received a greatdeal of
attention in the literature: typically, sources in the exterior of thedomain
have been simulated by imposing non-zero boundary conditions in BVPs
for the homogeneous Helmholtz equation, in order to demonstratesuperior
approximation properties of Tre�tz methods.

In [4{ 7] the UWVF with non-zero source termf has been investigated,
and both a priori analysis and numerical experiments have been presented.
Loeser and Witzigman [12] use UWVF to solve the Helmholtz equation (1a)
with a source termf = 1 in 
 S and f = 0 elsewhere, for an active region

 S � 
. The UWVF solution is found in the source-free region 
 n 
 S

only, after which, in an additional post-processing step, a standard �nite
element method (FEM) is used in the active region wheref is non-zero. In
practice, [12] suggests that the FEM mesh size in the active region should
be no larger than�= 30, where� is the problem wavelength, leading to a
potentially computationally expensive scheme.

Here, we investigate the applicability of the UWVF to seismic imaging
by considering the typical situation of an interior point source. We �rst
consider a domain of constant wave speed, and then extend our investigations
to the simulation of wave propagation through a layered velocity pro�le. We
present a simple yet accurate method to augment the UWVF in the case of a
localised non-zero source termf , which we call the Source Extraction UWVF.
In this approach, the domain 
 is split into two regions: an inner source
region containing the source, and an outer region comprising the remainder
of the domain. In the inner region, a particular radiating solution of the
inhomogeneous Helmholtz equation with sourcef is subtracted from the �eld,
so that the remainder of the wave�eld is amenable to a Tre�tz approximation
in the interior (this remainder is the wave�eld which is back-scattered from
the outer region into the inner region). In the outer region we solvefor the
total �eld. The solutions in the two regions are matched by prescribing the
jumps of the impedance and the conjugate-impedance traces across element
boundaries. If we consider a point source (a Dirac delta), then we subtract the
fundamental solution in the source region. However the method can be easily
generalised to other forms of sources, such as for a dipole source. A related
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approach based on splitting of outgoing and back-scattered �eldsis used
in [2, 17] for �nite di�erence methods in time domain. A similar approach
for the UWVF has been derived separately by Gabard in [6, Section 5.1] for
a system of linear hyperbolic equations, applied with accurate results to the
linearised Euler equations.

Details of the UWVF are given in Section2, with explanation given as to
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f vk dV; (4)

which holds for all v 2 H and for u 2 eH solution of (1a), and substituting
the term denoted byAk with the corresponding trace from the neighbouring
element or from the boundary condition. Note that complex wavenumbers�
(i.e. absorbing media) can be considered as in [3, Section 5].

The usual UWVF discretisation consists in restricting the variational
problem (3) to the discrete spaceHh =

Q K
k=1 spanf � k;l g

pk
l=1 � H de�ned

by the basis functions� k;l 2 Hk , 1 � k � K , 1 � l � pk , where pk is
the number of degrees of freedom located in 
k and may vary in di�erent
elements.

When solving the homogeneous Helmholtz equation, all of the integrals in
(3) are de�ned on the element boundaries (asf � 0 the only volume integral
in (3) vanishes). On the other hand, in the general case the right-hand side
of (3) includes an integral over all the elements where the source termf is
non zero (or point evaluations iff is a linear combination of point sources).

A standard choice of the Tre�tz basis functions� k;l , i.e. equispaced plane
waves or circular waves (Fourier{Bessel functions), allows high orders of ap-
proximation in the elements wheref = 0; see [16]. On the contrary, when
f 6= 0 inside 
 k , Tre�tz functions lose their approximation properties. The
use of plane waves in the inhomogeneous case can provide the same approxi-
mation of u as piecewise-linear polynomials only; this is supported by numer-
ical experiments that found moderately high orders of convergence for the
approximation of u on the skeleton of the mesh but only linear order in the
meshsizeh for the volume error measured in theL2(
)-norm, see [5, Tables
3.3 and 3.4] and [7, Section 5].

These two reasons, the integration on the mesh skeleton only and the



where � is the Dirac delta function and x0 2 
. In this case, the right-
hand side of the UWVF formulation (3) becomes

R

 k

f vk dV = � vk (x0);
f =2 L2(
) and u =2 H 1(
). As it might be expected, numerical tests using
the formulation (3) proved extremely inaccurate at representing the source,
with high errors in the element containingx0; numerical experiments for this
case are provided in Section4.1.

In order to introduce a modi�ed formulation, we now �x some notation.
We split the domain in two open regions 
S and 
 E , 
 = 
 S [ 
 E [ � S where
� S = @
 S (as illustrated in Figure 1) such that the two regions correspond
to a partition of the mesh: T = T S [ T E with 
 k 2 T S if 
 k � 
 S

and 
 k0 2 T E if 
 k0 � 
 E . On � S, we denote bynS the unit normal
vector outward pointing from 
 S, and setnE = � nS



where H 1
0 is the Hankel function of the �rst kind and order zero. ThenuI

is the fundamental solution of the Helmholtz equation (with constant pa-





In the spaceX we de�ne the impedance and the \adjoint impedance" trace
operators

I : H !









p L2(
) relative error, L2(
) relative error, N �

classical UWVF Source Extraction UWVF
9 4:6148� 10� 1 9:8941� 10� 3 6:7672
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Q
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1 0 0 1C 1
ID �/W 1
/H 1
/BPC 1
ID �
EI Q
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1 0 0 1C 1
ID �/W 1
/H 1
/38)-2.83448(1)-2.83857(4)-2.83448(0)-2.83857]TJ
ET
Q
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BI
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/W 1
/H 1
/BP1 1
ID �
EI Q
q 4.8 0 0 -145.2 1323.48 6256.4552 Tf
1 0 0 1C 1
ID �/W 1
/H 1
/BPC 1
ID �
EI Q
q 0 10 0 0 cm BT
/R20 11.9602 Tf
1 0 0 1 138.6 615.58 Tm
[(1)-2.83755(3)-2.83652]TJ
ET
Q
q 4.8 0 0 -145.2 1561.08 6256.48 cm
BI
 cm06rue
/W 1
/H 1
/BP4 1
ID �
EI Q
q
10 0 0 10 0 0 cm BT
/R20 11.9602 Tf
1 0 0 1 138.6 615.58 Tm
[(1)-2.83755(3)-2.83652]TJ
ET
Q
q 4.8 0 0 -145.2 1561.08 6256.48 Tf
3.23 cm06rue
/W6154� 10� 313
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(piecewise constant) wavenumber for a frequency of 5 Hz and theposition of
the point source. The same discretisations are used for the frequency 10 Hz,
resulting in the wavenumber in each element being doubled.

The angularly equispaced basis (11) is used, with R = 100 to replicate
the conventional plane wave basis. An initial maximum numberp = 15
of basis functions per element is set, and thenpk reduced if the condition
number of the submatrixDk is above the tolerance level of 1010. The range
of values taken bypk across the mesh and the total number of degrees of
freedom obtained for the frequencies 5 and 10 Hz and for the two meshes is
summarised in Table3.

Frequency K Range ofpK Total number of degrees of freedom
5 Hz 485 [8,. . . ,15] 5,162
5 Hz 771 [8,. . . ,13] 6,636
10 Hz 485 [11,. . . ,15] 7,417
10 Hz 771 [10,. . . ,15] 9,749

Table 3: The range of the values taken by the local number of degrees of
freedom pk and the total number of degrees of freedom

P K
k=1 pk obtained

with the adaptive procedure for the frequencies 5 and 10 Hz and for the two
meshes with 485 and 771 triangles shown in Figure4.

The upper and centre plots of Figure5 show the real part of the Source
Extraction UWVF solution for the frequency 5 Hz and for the discretisations
with K = 485 and K = 771 elements, respectively. The lower plot shows
the real part of a reference solution computed with a �nite di�erence scheme
for comparison. (This was obtained on a regular structured grid with 180
points per wavelength and using the method described in [8].) Figure 6 shows



Figure 5: Real part of the total �eld approximation in the smoothedMar-



Figure 6: Real part of the total �eld approximation in the smoothedMar-
mousi section with frequency 10 Hz: UWVF solution withK



of the discrete space. For a point source, we approximate the unknown back-
scattered �eld in a region surrounding the source, and match this to the
total �eld approximated in the remainder of the domain. In the considered
examples we use a Dirac delta point source; however, the augmentation of
the method can be easily generalised to other forms of source function, such
as dipoles and multipoles. Following on from work in [3], we show that the
Source Extraction UWVF is well-posed and satis�es the error bound(10) on
the mesh skeleton in the case of impedance boundary conditions andsu�-
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