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Pool label description range initial state

C1 Cf foliar C mass 0/500 332
C2 Cr �ne root C mass 0/500 313
C3 Cw wood C mass 0/30000 13121
C4 Cl fresh litter C mass 0/500 52
C5 Cs soil organic matter and woody matter C mass 0/15000 10024

Table 2.1: DALEC evergreen carbon pools with their respective range (gCm�2day�1).

Parameter label description range initial state

p1 Td decomposition rate 10�6=0:01 4:41 � 10�6

p2 Fg fraction of GPP respired 0.2/0.7
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[6]) or using automatic di�erentiation software (OpenAD, see [12]). Both approaches were
tested producing similar results up to machine precision. Here we work with a code derived
by hand.

The tangent linear model can be used to perform forward and backward sensitivity
analysis. Figure 2.2 shows the Jacobian matrix for the NEE for a time window of two
thousand days. This picture gives the sensitivity with respect to the normalized variables.
We see some di�erences among columns which represent the active variables. The columns

Fig. 2.2: Jacobian matrix for the NEE for 2000 days: each line represents the operator Hi

for i = 1; : : : ; 2000. The matrix is scaled to enhance the di�erent magnitudes.

corresponding to Cw, p1 and p6 keep the same gray color during all the time window; this
indicates that NEE is very weakly sensitive with respect to these variables. On the contrary
for Cf, p2, p3, p5 and p11 we see periodic oscillations showing a larger sensitivity of the NEE
with respect to those variables. The periodicity of the signal corresponds to the seasonal
variability of the climate drivers (temperature, solar irradiance). Further analysis of the
sensitivity of DALEC can be found in [3]. We will see in the next sections how these
features of the Jacobian matrix a�ect the model-data fusion problem.

3. An ill-posed inverse problem. The aim of data fusion is to determine the model
trajectory that best �ts the observed data. The best �t minimizes the errors between the
observations and the model predictions of the observations. We study the simplest case
that exhibits the di�culties inherent to fusing NEE observations with DALEC in order
to demonstrate and investigate the nature of the problem and propose simple methods to
overcome the di�culties. To do so we focus on the tangent linear operator Hi using basic
linear algebra and analysis.

We start with a perturbation x0 2 Rn, hereafter called the truth, and we generate N ,
N > n, exact observations y = (y1; : : : ; yN )T uniformly distributed in time ft1; : : : ; tNg by

(3.1) y = Hx0;
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where H denotes the observability matrix, that is the N � n matrix de�ned by

(3.2) H =

264 Ht1

...
HtN

375 :
Let ε 2 RN be a discrete white noise with variance �2. We study the e�ect of the noise on
the least square solution

(3.3) xLS = argmin kHx� (y + ε)k;

of the overdetermined linear system Hx = y+ε. We consider a singular value decomposition
of H of the form

(3.4) H = U�VT ;

where U is a N�N unitary matrix,
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� = 10�7 � = 10�2 � = 0:5

Cf 3.96e-14 2.87e-04 1.15e+00
Cr 1.07e-09 1.21e+00 1.58e+04
Cw 1.87e-08 2.29e+01 3.21e+05
Cl 4.67e-10 5.86e-01 7.65e+03
Cs 2.06e-10 4.45e-01 6.56e+02
p1 2.30e-06 2.65e+03 3.46e+07
p2 1.97e-14 1.11e-04 7.83e-02
p3 5.46e-14 9.83e-04 1.26e-01
p4 9.79e-10 1.17e+00 1.52e+04
p5 2.34e-14 8.43e-04 5.38e-01
p6 1.36e-08 1.41e+01 2.50e+05
p7 3.62e-11 4.03e-02 5.51e+02
p8 4.84e-10 5.86e-01 7.64e+03
p9 2.13e-10 4.42e-01 7.06e+02
p10 2.39e-14 1.38e-06 1.25e-01
p11 1.72e-14 1.03e-04 1.03e+00

� 1.35e-08 1.64e+01 2.31+05

Table 3.1: The change in the relative errors � and �i de�ned in equations (3.7) and (3.8)
as functions of �.

error � increases drastically as � increases, and for a realistic level of noise (� = 0:5) the
solution is not reliable. When � = 10�7 all variables are correctly estimated with at least six
digits accuracy but yet we can see di�erences among variables. With a standard deviation
� = 10�2 the parameters p1, p6, and the carbon pool Cw are far from their true value. More
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We now apply TSVD to our inverse problem. As previously we choose a perturbation x0

and we generate the N = 200 true observations y uniformly distributed in time ft1; : : : ; tNg
where y = (y1; : : : ; yN )T is given by

(4.3) yi = Hti
x0; i = 1; : : : ; N;

and �nally we add a white noise ε with standard deviation � = 0:5. We used Hansen’s
regularization tools [7] to perform the TSVD method. The truncation rank k = 7 is found
using the L-curve shown on Figure 4.1. Table 4.1 shows the regularized solution, the standard

Fig. 4.1: L-curve: log-log plot of the norm of the solution kxkk against the norm of the
residual kHxk � (y + ε)k parametrized by the regularisation parameter k. The blue curve
shows an interpolation of the discrete L-curve (red points); the green point corresponding to
k = 7 is the corner of the curve.

deviations and the relative errors. The last column of Table 4.1, presenting the relative error
in the regularized solution, can be compared with the last column of Table 3.1 which shows
the relative error of the unstable solution with the same level of noise. Whereas the relative
errors in the unstable solution range from 7:83 � 10�2 to 3:46 � 107 the relative errors in
the regularized solution range from 2� 10�2 to 1. The standard deviations are of the same
magnitude as the variables, but considering the large ranges for the variables (see Table
2.1 and 2.2) they nevertheless provide relatively narrow con�dence intervals. We see that
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x ν �i

Cf 53.2 56.9 0.080
Cr 34.7 67.3 0.357
Cw 1.9 2.7 0.999
Cl 6.5 16.0 0.689
Cs 1739.3 778.2 0.172
p1 -5.8E-10 4.2E-10 1.000
p2 0.12 0.056 0.217
p3 0.04 0.048 0.141
p4 0.11 0.13 0.346
p5 3.6E-4 5.4E-4 0.352
p6 3.7E-10 5.5E-10 0.999
p7 4.6E-4 7.3E-4 0.220
p8 4.8E-3 0.3E-3 0.204
p9 4.3E-6 1.8E-6 0.185
p10 1.3E-2 1.0E-2 0.020
p11 1.6 1.2 0.133

Table 4.1: TSVD solution: solution, standard deviation and relative error.

Fig. 4.2: NEE time series: true trajectory (red curve), NEE observations (red points),
trajectory obtained with the TSVD solution (blue), the blue shaded area is the 95% con�dence
interval for the regularized solution.

5. Concluding remarks. The problem of estimating parameters and initial stocks
for the DALEC model using NEE observations has been the subject of many papers in
recent years [5, 10, 11, 13]. Inverse modelling techniques such as Ensemble Kalman �lter
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model and we considered a simple inverse problem for the linearisation of DALEC using
synthetic observations. The small size of the problem allowed us to use basic linear algebra
to show the ill-posedness of the problem. We then considered the truncated singular value
decomposition and we showed that this method provides a robust solution.

Having found a regularization of this much studied model-data fusion problem, we are
investigating other techniques, and studying their application to more sophisticated models
of the carbon cycle. This work will be complemented by studies of the dynamical system
aspects of these models (cf. Chuter et al. 2013), and analyses of the performance of data
assimilation algorithms using eddy covariance measurements.
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