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Abstract. We explore the influence of the choice of attenuation fac-
tor on Katz centrality indices for evolving communication networks. For
given snapshots of a network observed over a period of time, recently
developed communicability indices aim to identify best broadcasters and
listeners in the network. In this article, we looked into the sensitivity of
communicability indices on the attenuation factor constraint, in relation
to spectral radius (the largest eigenvalue) of the network at any point
in time and its computation in the case of large networks. We proposed
relaxed communicability measures where the spectral radius bound on
attenuation factor is relaxed and the adjacency matrix is normalised in
order to maintain the convergence of the measure. Using a vitality based
measure of both standard and relaxed communicability indices we looked
at the ways of establishing the most important individuals for broadcast-
ing and receiving of messages related to community bridging roles. We
illustrated our findings with two examples of real-life networks, MIT re-
ality mining data set of daily communications between 106 individuals
during one year and UK Twitter mentions network, direct messages on
Twitter between 12.4k individuals during one week.
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1 Introduction

Today’s interconnected world with millions of users of mobile devices, computers
and sensors leaving digital traces provides social scientists with previously unseen
opportunities to create and validate their theories on a large scale. These social
networks, captured in digital world, present us with research challenges: they
are large, multi-layered and dynamic, i.e. they evolve from moment to moment.
Thus, there is a need for the methods developed for regular and arbitrary static
networks to be extended and adapted to dynamic, evolving networks.

One of the very important and well researched characteristics of an individual
(a node) in a social network is its centrality score. Centrality measures the rela-
tive importance of a node and determines its involvement in a network. Although
different centrality measures were proposed, tested and compared on undirected,



directed and weighted networks (for reviews see [3,16]), only relatively recently
research focused on centrality in evolving networks [9,13].

For static networks, Katz centrality [15] computes the relative influence of
a node within a network by measuring the number of the immediate neighbors
and all the other nodes in the network that connect to the node under con-
sideration through the immediate neighbors. Walks made to distant neighbors



of nodes and edges as in the real-world networks, the spectral radii of all three
types of networks were much smaller then the real-world one in the Internet AS
topology case. This is important because the spectral radius is also found to be
connected to epidemic spreading in networks (see [18,5]).

In the following section we discuss how communicability indices are related to
spectral radius and propose a new centrality measure which relaxes convergence
constraints previously imposed by the spectral radius. We then create vitality
measure based on centrality indices and show how to detect the individuals whose
lack of existence would result in the biggest changes in centrality in evolving
networks. We apply our findings to two real-life networks, and conclude with the
discussion.

2 Relaxed Communicability



2.2 Spectral Radius Bound

In the case where existing communicability indices are used (3), Katz centrality
for each Ai can be written as

(I − αAi)
−1 =

∞∑
k=0

αkAk
i (4)

and in order that (4) converges in standard matrix norm, one has that the atten-
uation factor α < 1

�(Ai)
and similarly α < 1

max(�(Ai))
, i = 0, . . . ,M for (3). On

the other hand, looking at each individual Ai, if α is interpreted as a probability
that, once sent, a message will be successfully transmitted by any receiving node



where l ∈ N is the expected path length, we have that α will always be less
than 1 and we can set parameter l on a desired path length depending on a
context, i.e. what kind of centrality we are interested in. Thus, to obtain relaxed
communicability indices, one should choose a length of path l depending on the
application, calculate α from (7) for given l, initialise b to be all-ones vector
and multiply it with α and matrix Ai normalised with 2-norm of Ai iteratively.
Summing up all iterative factors up to the order n, which depends on how small
one’s approximation error needs to be, gives the result for Ai. Results need to
be multiplied for all consecutive Ais. In the case of a small graph, Q can be
obtained directly from (3) using computed α and replacing A with A

∥A∥ .

2.4 Vitality Measure

In order to rank the nodes by importance during a time period we formulated
vitality-based measure by computing the corresponding centrality indices in the
absence of one node at time. For a series of adjacency matrices Ai1 , · · · , Ai2

we compute communicability indices using both standard and relaxed commu-
nicability indices. Furthermore, for each vertex k, we compute Qk,which is ob-
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Fig. 2. MIT data:Spectral radii of A1 to A365 matrices.

Fig. 3. MIT data: An example of a daily network (its largest connected component),
on the day 32.

Table 1. Ranking (in descending order, top 1 to bottom 106) of broadcast vs. relaxed
broadcast

Vertex Rank (broadcast) Rank (relaxed broadcast)

10 71 21

45 35 25

59 85 28

71 71 21



Fig. 4. Standard vs. relaxed broadcast indices, left, and standard vs. exponential broad-
cast indices, right.

users, and if user A’s tweet contained ”@B”, an edge between A and B was cre-
ated. Only reciprocated edges were kept and multi-edges were ignored. All daily
tweets were aggregated into a daily network, so we finished with 7 daily undi-
rected graphs with 12408 nodes and around 2.7k edges in average. We computed
both communicability and relaxed communicability indices, both using rank ob-
tained from communicability, and rank obtained from vitality based measure
(deleting each node and computing the sum of differences for all the other nodes
as described earlier).

3.3 Results

Fig. 5. Top 50 vertices according to the ranking based on standard (left) and relaxed
(right) broadcast.

Although the computation of vitality measure is quite demanding (one needs
to recompute communicability matrices for each node once) this is feasible as
the daily networks are quite sparse. At 12408 vertices and 7 time-steps, this col-
lection contains relatively big, but not large networks. Their broadcast indices
decrease quickly so we ranked the indices from largest to smallest with respect





References

1. P. Bonacich. Power and centrality: A family of measures. American Journal of
Sociology, 92:1170–1182, 1987.

2. Phillip Bonacich and Paulette Lloyd. Eigenvector-like measures of centrality for
asymmetric relations. Social Networks, 23(3):191 – 201, 2001.

3. Stephen P. Borgatti and Martin G. Everett. A graph-theoretic perspective on
centrality. Social Networks, 28(4):466 – 484, 2006.

4. Ronald S. Burt. Brokerage and closure: An introduction to social capital. Eur
Sociol Rev, 23(5):666–667, 2007.

5. C. Castellano and R. Pastor-Satorras. Thresholds for epidemic spreading in net-
works. Physical Review Letters, 105:218701, 2010.

6. J. J. Crofts and D. J. Higham. Googling the brain: Discovering hierarchical and
asymmetric network structures, with applications in neuroscience. Internet Math-
ematics (Special Issue on Biological Networks, 2011.

7. Kinkar Ch. Das and Pawan Kumar. Some new bounds on the spectral radius of
graphs. Discrete Mathematics, 281(1-3):149 – 161, 2004.

8. N. Eagle, A. S. Pentland, and D. Lazer. Inferring friendship network structure
by using mobile phone data. Proceedings of the National Academy of Sciences,
106:15274–15278, 2009.

9. E. Estrada and N. Hatano. Communicability in complex networks. Physical Review
E


	Cover_13_09.pdf
	centrality

