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Abstract

Homophily and social influence are the fundamental mechanisms that drive
the evolution of attitudes, beliefs and behaviour within social groups. Ho-
mophily relates the similarity between pairs of individuals’ attitudinal states
to their frequency of interaction, and hence structural tie strength, while so-
cial influence causes the convergence of individuals’ states during interaction.
Building on these basic elements, we propose a new mathematical modelling
framework to describe the evolution of attitudes within a group of interacting
agents. Specifically, our model describes sub-conscious attitudes that have



1. Introduction

Our attitudes and opinions have a reciprocal relationship with those
around us: who we know depends on what we have in common, while si-
multaneously our beliefs influence, and are influenced by, those of our peers.
These two mechanisms—homophily and social influence—underpin a wide
range of social phenomena, including the diffusion of innovations [1, 2, 3, 4, 5],
complex contagions [6, 7, 8], collective action [9, 10, 11], opinion dynam-
ics [12, 13, 14, 15, 16, 17, 18, 19, 20] and the emergence of social norms
[21, 22, 23]. Thus homophily and social influence represent the atomistic
ingredients for models of social dynamics [24]. Starting with these basic ele-
ments, we investigate a new type of modelling framework intended to describe
the coevolution of sub-conscious attitudinal states and social tie strengths in
a population of interacting agents.

The first ingredient in our modelling framework, homophily, relates the
similarity of individuals to their frequency of interaction [25]. Thus ho-



evolution is driven by homophily. Although our model is built on the notions
of homophily and social influence described above, we point out that differ-
entiating between the effects of these processes, particularly in observational
settings, may be very difficult [35, 36].

Social scientists have developed ‘agent-based’ models that incorporate ho-
mophily and social influence in order to examine a variety of social-phenomena,
including group stability [37], social differentiation [38] and cultural dissemi-
nation [39], where a culture is defined as an attribute that is subject to social
influence. In such models, an agent’s state is typically described by a vector of





introduction, we shall more specifically assume that (1) is drawn from a class
of activator-inhibitor systems.

Now suppose that the individuals are connected up by a dynamically
evolving weighted network. Let A(t) denote the N × N weighted adjacency
matrix for this network at time t, with the ijth term, Aij(t), representing the
instantaneous weight (frequency and/or tie strength) of the mutual influence
between individual i and individual j at time t. Throughout we assert that
A(t) is symmetric, contains values bounded in [0,1] and has a zero diagonal
(no self influence). We extend (1) and adopt a first order model for the
coupled system:

ẋi = f(xi) + D





between choices of D and df(x∗), where there is a window of instability for an
intermediate range of λ, is know as a Turing instability. Turing instabilities
occur in a number of mathematical applications and are tied to the use of
activator-inhibitor systems (in the state space equations, such as (1) here),
where inhibitions diffuse faster than activational variables.

Now we can see the possible tension between homophily and Turing insta-
bility in the attitude dynamics when the timescale of the evolving network, α,
is comparable to the changes in agents’ states. There are two distinct types of
dynamical



described here.

3. Examples

We wish to consider activator-inhibitor systems as candidates for the
attitudinal dynamics in (1) and hence (3). The simplest such system has
M = 2, with a single inhibitory variable, x(t), and a single activational vari-
able, y(t). Let xi(t) = (xi(t)tis2541]TJ
/R3]TJ
/R36.97011 Tf
6.6 -1.8 T6010(x)0it)





with the eigenvalues of the Laplacian λi. When one or more of the λi
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are dynamic and their evolution is driven by homophily. In some sense, the
corresponding elements of our model are like a continuous-time version of the
Flache and Macy model. However, Flache and Macy consider the weights
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