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strate, by comparison with an “exact” reference solution (computed using a conventional BEM with a large
number of degrees of freedom), that these HNA approximationspaces can approximate the highly oscillatory
solution of the transmission problem accurately and efficiently, even at high frequencies. The development of
an HNA BEM based on these approximation spaces will be reported separately (Groth et al., 2013).

The main difficulty in the generalisation of the HNA methodology to the penetrable case is that the high
frequency asymptotic behaviour is significantly more complicated than in the impenetrable case. In particular,
the boundary of the scatterer represents the interface between two media with different wave speeds, and hence
two different wavenumbers, and we expect to need to modify the ansatz (1.1) to include terms oscillating at both
wavenumbers. In addition to the phenomena of reflection and diffraction that occur in the impenetrable case, in
the penetrable case we observe a new phenomenon,refraction, which occurs when a wave propagating in the
exterior medium is transmitted into the scatterer and vice versa. One key difficulty this presents is that a wave
propagating inside the scatterer can undergo multiple (in fact, infinitely many) internal reflections/diffractions
(this is described in more detail in§3). We therefore expect that, in order forvm, m= 1,2, . . ., to be non-
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We shall assume throughout thatk1 > 0 and thatk2 ∈ C, with Re[k2] > 0 and Im[k2] > 0; when Im[k2] > 0
the scatterer is partially absorbing. The unique solvability of this BVP is well known (see, e.g., Laliena et al.
(2009, Proposition 2.1 and Corollary 3.4), which follows from results in Costabel & Stephan (1985) and Torres
& Welland (1993), and also the related result Marmolejo-Olea et al. (2012, Corollary 8.5)).

Now we state a BIE formulation for (2.2)–(2.5). Note that, inthis paper, we only actually solve this BIE
(using a standardhp-BEM) in order to compute reference solutions for our examples in§4. The main reason for
including this here is as a motivation for why we want to understand the approximation properties of the bound-
ary solution (as mentioned in§1, we will describe a BEM based on the HNA approximation spaceproposed in
this paper in Groth et al. (2013)). Ifu1 andu2 satisfy the BVP, then a form of Green’s representation theorem
holds, namely (cf., e.g., Chandler-Wilde et al. (2012a, Theorems 2.20 and 2.21))

u1(x) = ui(x)+
∫

Γ

(

u1(y)
∂Φ1(x,y)

∂n(y)
(
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We remark that other BIE formulations of the transmission problem are also possible - see, e.g., Costabel &
Stephan (1985), Rapún & Sayas (2008), Laliena et al. (2009), Hsiao & Xu (2011). Moreover, the approximation
results we derive in the following sections are equally relevant for any direct BIE formulation, not just the
particular one (2.8) described above.

3 Hybrid numerical-asymptotic approximation space

Our proposed high frequency HNA approximation space for theunknownv = (u,∂u/∂n) in the BIE (2.8) is
constructed in two stages. First we decompose

v(x) = vgo(x)+vd(x)
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to polygons/polyhedra. For polygons/polyhedra, however,the fact that the boundaryΓ is composed of straight
sides/faces means that the GO approximation consists of a collection of beamsof rays propagating in the same
direction and with the same amplitude. Each beam can be thought of as a plane wave with an associated propa-
gation direction and amplitude, restricted to a certain subset ofR2. As a result, one does not need to discretise
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see the discussion in Remark 3.1 below). The algorithm then tracks these limiting rays as they propagate across
the interior of the scatterer, determines the points at which they re-intersect the boundary, and generates new
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most important phases. For a detailed exposition of the GTD f
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wedge at speedc1, which shed new rays propagating into the interior medium. Atypical ray path is shown as a
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v+1 eik1s, v+2 eik2s

v−
1 e−ik1s, v−

2 e−ik2s

P jP j+1

s

FIG. 4: Illustration of overlapping geometrically graded meshes used to approximate the amplitudes
v+1 , v+2 , v−

1 , v−
2 associated with the phase functions (3.3) on a typical sideΓj .

where 0< σ < 1 is a grading parameter. A smaller grading parameter represents a more severe grading - in all
of our experiments we takeσ = 0.15, as in Hewett et al. (2012). Given a vectorp ∈ (N0)

n, we letPp,n(0,L)
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with the radial distancer i produced any beam boundaries associated with primary transmitted beams, we check
whether these beam boundaries intersect the sideΓj . If they do, we put new mesh points at the intersection
points; see Figure 5 for an illustration of this procedure. Since there are at most two such beam boundaries, the
sideΓj gets subdivided into at most three elements. On each of theseresulting elements we approximatewi by
a single polynomial of degreep, wherep is the same as for the Approximation Space 1 amplitudes. Carrying
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Space 2 to bothu and∂u/∂n onΓ
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accurate for each approximation space. However, onΓ3, the side in shadow, Approximation Space 2 provides a
much better fit. This is not surprising, since this space alsoincludes the effect onΓ3 of the diffracted wave from
P2, which, for this incident direction, is relatively stronger than the effects onΓ1 andΓ2 of the diffracted waves
from P3 andP1
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a range of values ofk1, for ξ = 0.05, and for angles 1, 2, 3 and 4. Here and throughout this section we take
p= 4 for both Approximation Spaces 1 and 2, as detailed in§
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k1 ξ ||u−ugo||
||u||

||u−U1||
||u||

||u−U2||
||u||

|| ∂u
∂n −( ∂u

∂n )go
||

|| ∂u
∂n ||

|| ∂u
∂n −W1||
|| ∂u

∂n ||
|| ∂u

∂n −W2||
|| ∂u

∂n ||

5 0.05 1.88× 10−1 1.66× 10−2 2.57× 10−3 1.56× 10−1 1.62× 10−2 1.97× 10−3

10 0.05 1.37× 10−1 1.03× 10−2 1.35× 10−3 7.76× 10−2 1.03× 10−2 1.26× 10−3

20 0.05 1.00× 10−1 8.41× 10−4 3.72× 10−4 5.60× 10−2 1.53× 10−3 1.35× 10−3

40 0.05 7.25× 10−2 2.23× 10−4 2.20× 10−4 4.04× 10−2 1.04× 10−3 1.04× 10−3

80 0.05 5.19× 10−2 2.58× 10−4 2.58× 10−4 2.88× 10−2 7.69× 10−4 7.69× 10−4

160 0.05 3.69× 10−2 2.31× 10−4 2.31× 10−4 2.05× 10−2 6.49× 10−4 6.49× 10−4

5 0.025 2.19× 10−1 3.03× 10−2 5.53× 10−3 1.55× 10−1 2.94× 10−2 4.14× 10−3

10 0.025 1.54× 10−1 4.09× 10−2 4.49× 10−3 9.87× 10−2 4.41× 10−2 3.73× 10−3

20 0.025 1.10× 10−1 1.15× 10−2 2.00× 10−3 6.35× 10−2 1.12× 10−2 2.22× 10−3

40 0.025 8.09× 10−2 7.01× 10−4 3.37× 10−4 4.58× 10−2 1.19× 10−3 1.04× 10−3

80 0.025 5.85× 10−2 3.42× 10−4 3.41× 10−4 3.30× 10−2 7.69× 10−4 7.69× 10−4

160 0.025 4.19× 10−2 2.80× 10−4 2.80× 10−4 2.35× 10−2 6.44× 10−4 6.44× 10−4

5 0.0125 2.48× 10−1 4.05× 10−2 8.02× 10−3 1.90× 10−1 3.94× 10−2 5.96× 10−3

10 0.0125 1.84× 10−1 7.88× 10−2 9.46× 10−3 1.35× 10−1 8.07× 10−2 7.69× 10−3

20 0.0125 1.28× 10−1 4.53× 10−2 9.42× 10−3 8.05× 10−2 4.41× 10−2 8.49× 10−3

40 0.0125 9.13× 10−2 1.05× 10−2 2.66× 10−3 5.03× 10−2 1.01× 10−2 2.56× 10−3

80 0.0125 6.69× 10−2 1.87× 10−3 1.79× 10−3 3.61× 10−2 1.04× 10−3 9.07× 10−4

160 0.0125 4.84× 10−2 7.52× 10−4 7.52× 10−4 2.60× 10−2 6.68× 10−4 6.68× 10−4

5 0 2.57× 10−1 5.30× 10−2 1.16× 10−2 2.30× 10−1 5.17× 10−2 8.57× 10−3

10 0 2.15× 10−1 1.43× 10−1 1.95× 10−2 1.99× 10−1 1.49× 10−1 1.60× 10−2

20 0 1.79× 10−1 1.48× 10−1 2.82× 10−2 1.65× 10−1 1.47× 10−1 2.25× 10−2

40 0 1.50× 10−1 1.34× 10−1 3.07× 10−2 1.39× 10−1 1.31× 10−1 2.37× 10−2

80 0 1.25× 10−1 1.17× 10−1 3.17× 10−2 1.17× 10−1 1.13× 10−1 2.30× 10−2

160 0 1.04× 10−1 1.00× 10−1 2.81× 10−2 9.80× 10−2 9.58× 10−2 2.07× 10−2

Table 1: Relative errors in approximation ofu and∂u/∂n, using GO and each approximation space, for a range
of values of
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A.2 An interface between two media with arbitrary absorption

We now consider the canonical problem of the reflection/refraction of an incident plane wave of the general
form (A.3) propagating in a medium with refractive indexµ1+ iξ1 at a planar interface with a second medium
with refractive indexµ2+ iξ2. We assume that in the first medium the field takes the formu= ui +ur , where
ui is the incident plane wave andur is a reflected plane wave, and that in the second medium the field takes the
form u = ut , whereut is a transmitted plane wave. We also assume that both the total field u and its normal
derivative are continuous across the interface, which implies that, on the interface,

ui +ur = ut and
∂ui

∂n
+

∂ur

∂n
=

∂ut

∂n
, (A.6)

wheren is a vector normal to the interface. We write the wavesui , ur andut in the general form (A.3) as:

ui = Ai exp{ik0(Didi + iEiei) · x},
ur = Ar exp{ik0(Didr + iEier) · x},
ut = At exp{ik0(Dtdt + iEtet) · x},

(A.7)

where we have assumed a priori the same “apparent refractiveindex” for the reflected wave as for the incident
wave. Given the parametersAi , di , ei , Di and Ei describing the incident wave, we wish to determine the
parametersAr , At , dr , er , dt , et , Dt andEt
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or, in the notation of Figure 10, simply as
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Having justitifed the choice of the positive square root in (A.21), we can state the formulae forDt andEt :

Dt =

√

1
2

(

µ2
2 − ξ 2

2 + D̃2
i + Ẽ2

i +
√

(µ2
2 − ξ 2

2 − D̃2
i + Ẽ2

i )
2+4(D̃iẼi − µ2ξ2)2

)

,

Et =
√

D2
t +ξ 2

2 − µ2
2 ,

(A.26)

where the non-negative square root is taken in both equations.

A.2.4 Normal components of transmitted direction vectors
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• When|di · t| = 1 (i.e.di · n = 0), we takedt to point into the second medium. We note that ifEi = 0 then
vi = 0, and soR= −1 andT = 0 (i.e. the solution is identically zero).

We now turn toet
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