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APPROXIMATION BY HARMONIC POLYNOMIALS IN STAR-SHAPED
DOMAINS AND EXPONENTIAL CONVERGENCE OF TREFFTZ HP -DGFEM∗

R. HIPTMAIR†, A. MOIOLA‡, I. PERUGIA§, AND CH. SCHWAB¶

Abstract. We study the approximation of harmonic functions by means of harmonic polynomials in two-
dimensional, bounded, star-shaped domains. Assuming that thefunctions possess analytic extensions to aδ-neigh-
bourhood of the domain, we prove exponential convergence of the approximation error with respect to the degree of
the approximating harmonic polynomial. All the constants appearing in the bounds are explicit and depend only on
the shape-regularity of the domain and onδ.

We apply the obtained estimates to show exponential convergence with rateO(exp(−b
√

N)), N being the
number of degrees of freedom andb > 0, of ahp-dGFEM discretisation of the Laplace equation based on piecewise
harmonic polynomials. This result is an improvement over the classical rateO(exp(−b

3
√

N)), and is due to the use
of harmonic polynomial spaces, as opposed to complete polynomial spaces.

1. Introduction. We fix a domain that meets the following requirements, see Figure1.1.
ASSUMPTION1.1. The domainD ⊂ C is open and satisfies



gleaned in Section3 by means of fairly intricate estimates. A result similar to Theorem1.2
was stated in [25, Theorem 2.2.10]; the novelty of the present contribution lies in theexplicit
expressionsfor the constantsC andb in terms of the parametersδ, ρ andρ0 only.



such that, for anyw ∈ ∂D,
a) there exists a cone3 with vertexw, opening angleΛπ and heightH0 contained inD,
b) there exists an infinite cone with vertexw and opening angleλπ contained inC\D.

The proof is postponed to LemmaA.1 in AppendixA. The uniform cone conditions imply
thatD is Lipschitz (see, e.g., [16, Theorem 1.2.2.2]).

REMARK 1.3. If D is convex, we could chooseρ0 = ρ. However, in order to avoid
the discussion of special cases, we will always assumeρ0 < ρ, obviously with no loss of
generality.

We also notice that, in the convex case, the exterior cone condition holds withλ = 1
(the cone is a half plane throughw that does not intersectD), while for the interior cone





3. Distance estimates for level lines of ϕD. We need precise quantitative information
of how far the level linesLh move away from∂D ash increases. It is provided by the
following key result.

THEOREM 3.1. Let Lh be theh-level line of the conformal mapping ofD. Define
0 < ξ ≤ 1 as

ξ :=





2

π
arcsin

ρ



the minimum ish2





Then|ψ′(0)| ≤ (1−ρ)2

ρ0
and the proof is complete.

The inverse ofΨ is given byΨ−1(reiθ) = 1
ψ(θ)re

iθ or, in Cartesian coordinates (after

the identification ofC with R2),

Ψ−1(r cos θ, r sin θ) =

(
r

ψ(θ)
cos θ,

r

ψ(θ)
sin θ

)
=: (F1, F2). (4.1)

Of course,Ψ−1 is Lipschitz continuous as well, and an estimate for its Lipschitz constant is
given in the next Lemma.

LEMMA 4.2. The functionΨ−1 : C → C



where

CD = 4π
√
2LψLΨ−1 ,

withLψ andLΨ−1 as in Lemma4.1and Lemma4.2, respectively.
Proof. Fix w0 ∈ Lh, and assume, with no loss of generality, thatw0 is on the positive

real axis. Defined := w0 − ψ(0) and notice thatd(w0, ∂D) ≤ d ≤ 1.
Settingw(θ) := Ψ(eiθ) = ψ(θ)eiθ ∈ ∂D, using Lemma4.2, Lemma4.3andψ(θ) < 1,

we obtain, for allθ ∈ [−π, π],

|w(θ) − w0|2 ≥ L−2
Ψ−1 |Ψ−1(w(θ)) − Ψ−1(w0)|2 = L−2

Ψ−1 |eiθ − w0/ψ(0)|2 (4.2)

≥ L−2
Ψ−1C

2
B

[
θ2 +

(
w0

ψ(0)
− 1

)2
]
= L−2

Ψ−1C
2
B

[
θ2 +

(
w0 − ψ(0)

ψ(0)

)2
]

> L−2
Ψ−1C

2
B

[
θ2 + (w0 − ψ(0))2

]
=

4

π2
L−2
Ψ−1(θ

2 + d2) =: L2
D(θ

2 + d2).

Then,
∫

∂D

1

|w − w0| dw =

∫ π

−π

1

|w(θ) − w0| |w
′(θ)| dθ

Lem.4.1
≤ Lψ

∫ π

−π

1

|w(θ) − w0| dθ

(4.2)
≤ LψL

−1
D

∫ π

−π

1√
θ2 + d2

dθ ≤ 2
√
2LψL

−1
D

∫ π

0

1

θ + d
dθ

≤ 2
√
2LψL

−1
D

(
log(π + d) − log



Define the sequence of complex polynomials{ωp}p∈N with

ωp(w) :=

p−1∏

k=0

(
w − ϕ(e2πik/p)

)
,

whereϕ



Sinceϕ is a curve parametrisationϕ : ∂B1+3h → L3h,

length(L3h) ≤ 2π(1 + 3h) sup
|z|=1+3h

|ϕ′(z)| ;

this, together with the lower bound ofd(Lh, L3h) and the upper bound of|ϕ′(z)| given in
Lemma2.1, and the bounds in Lemma4.6, gives

‖f − qp‖L∞(IntLh)
≤ 8(1 + 3h)5ϕ′(∞)2

6h3ρ2
(3h2)−CD

(
1 + h

1 + 3h

)p
‖f‖L∞(IntL3h)

≤ 4ϕ′(∞)2

31+CDρ2
h−3−2CD

(
1 + h

1 + 3h

)p
(1 + 3h)5 ‖f‖L∞(IntL3h)

≤ 20(1 − ρ)2

3ρ2
h−3−2CD

(
1

1 + h

)p
‖f‖L∞(IntL3h)

,

where in the last step we have used31+CD > 3, |ϕ′(∞)| < 1 − ρ, 1+h
1+3h ≤ 1

1+h , and
(1 + 3h)5 < 5, sinceh ≤ ρ/4 ⇒ h < 1/8. The use of Lemma4.6(and thus of Lemma4.4)
is legitimate due to the hypothesis imposed onh andδ. The result of the theorem follows
from the bound ofCD derived in Remark4.5.

Obviously, Theorem1.2 from the Introduction is an immediate consequence of Theo-
rem4.7: given0 < h < h∗, just defineC := Cappr(h

∗(δ))−.∈∈8∞494∞4 T5LY
1



‖u‖W 1,∞(S) := ‖u‖L∞(S) + diam(Dδ) ‖∇u‖L∞(S) .

THEOREM 4.10.Fix 0 < δ ≤ 1/2, and leth satisfy(4.4). For any real, harmonic func-
tionu in the inflated domainDδ defined in(4.3), there is a sequence of harmonic polynomials
{Qp}p≥1 of degree at mostp such that

‖u−Qp‖L∞(D) ≤ Capprh
−α(1 + h)−p ‖u‖W 1,∞(IntL3h)

,

|u−Qp|W j,∞(D) ≤ Cappr

(
2j

CIh2

)j
h−α(1 + h)−p ‖u‖W 1,∞(IntL3h)

,

‖u−QcψTd
[53354]TJ
7]TJ
/R27ψ9.96264ψTf
5.70586ψ0ψTd
2844]TJ
/R27ψ9.96264ψT55519(p)-1.073(p)-1.073903(1)-222.692(+)-0.855519(p)-1.073(p)-7ψ04ψTd
[(h)-0.352881]T6�ψT3677.4ψ-2.98828ψTd
[(W)-1.17ψd5881.98906ψTd
[(()-0.52512]TJ
/R34ψ6.97385ψTf
3.11406ψ0ψTd
[(D)-0.34833]TJ
/R36ψ6.97385ψTf
6.73203ψ0ψTd
[())-0.52512]TJ
/R27ψ9.96264ψTf
6.37227ψ3.34805ψ30ψTd
[())-0.5251I10ψTf)L3h



and the previous inequalities.
From Theorem1.2, with the same considerations as in the proof of Theorem4.10, we

obtain the following result.
COROLLARY 4.11. Fix 0 < δ ≤ 1/2 and j ∈ N0. There existC > 0 and b > 0,

depending only onρ, ρ0, δ andj, such that, for any real-valued, harmonic functionu which
is bounded along with its first-order derivatives in the inflated domainDδ defined in(4.3),
there is a sequence of harmonic polynomials{Qp}p of degree at mostp such that

|u−Qp|W j,∞(D) ≤ C e−bp ‖u‖W 1,∞(Dδ)
,

|u−Qp|Hj(D) ≤ C e−bp ‖u‖W 1,∞(Dδ)
.

REMARK 4.12. The constantsC andb in Theorem1.2and Corollary4.11depend onδ
only throughh∗(δ) defined in(4.4).

The boundedness off , u and ∇u in Theorem1.2 and Corollary4.11 is assumed only
in order to write estimates withL∞-norms in the wholeDδ on the right-had side. Actually,
the estimates hold true also with‖f‖L∞(IntL3h)

and ‖u‖W 1,∞(IntL3h)
respectively, on the

right-hand side, for any0 < h < h∗, with no need of assuming boundedness off , u and∇u
in Dδ.

REMARK 4.13. The interpolating polynomialsqp (andQp) in Theorem1.2, Theorem
4.7 and Corollary4.9 (Theorem4.10 and Corollary4.11, respectively) interpolate exactly
the functionf (u, respectively) in at leastp+1 points lying on the boundary ofD. The exact
location of the points depend on the conformal mapϕD. This fact follows from the definition
of qp given in the proof of Theorem4.7and the relationsu = Re f andQp = Re qp.

5. Application: exponential convergence of Trefftz hp-dGFEM. In this section, we
outline how to apply the estimates of Corollary4.11and prove exponential convergence of
a Trefftzhp-dGFEM for the mixed Laplace boundary value problem (BVP), i.e. a FEM with
discontinuous, piecewise harmonic, polynomial basis functions on a geometrically graded
mesh. We establish exponential convergence with rateO(exp(−b

√
N)), for someb > 0,

in terms of the overall numberN of degrees of freedom. This result is an improvement
over the classical rateO(exp(−b 3

√
N)) shown for inhomogeneous problems in [2, 4]; this

improvement is due to the use of harmonic polynomials, instead of complete polynomials, in
the trial spaces.

Since we rely on thehp-dGFEM theory from [37], we restrict ourselves to the case of
(straight) polygonal domains and meshes comprising (straight) triangles or parallelograms.
The extension to curvilinear domains and mesh elements would require to develop, for such
elements, several tools as polynomialhp-inverse estimates, scaling estimates of Sobolev
seminorms, and approximation estimates for linear and bilinear polynomials near corners.
This goes beyond the scope of this paper.

5.1. The Laplace BVP. Without further explanation, we use the notation for the weight-
ed Sobolev spaces (Hm,l

β (Ω)) and the countably normed spaces (Bℓβ(Ω) andCℓβ(Ω)) from [2,

§2], along with the analyticity and analytic continuation results given in [2–5].
Let Ω ⊂ R2 be a bounded, Lipschitz polygon with cornerscν , 1 ≤ ν ≤ na, whose

boundary is partitioned into a Dirichlet and a Neumann boundaryΓ[0] andΓ[1], respectively,

such that the interiors ofΓ[0] andΓ[1] do not overlap andΓ
[0] ∪ Γ

[1]
= ∂Ω. Moreover, we

assume thatΓ[0] has positive 1-dimensional measure. Consider the following (well-posed)
boundary value problem: giveng[i], i = 0, 1, findu ∈ H1(Ω)



γ0u
∣∣
Γ[0] = g[0] onΓ[0], γ1u

∣∣
Γ[1] = g[1] onΓ[1]. (5.1b)

Here,γ0 andγ1 denote trace and normal derivative operators, respectively.

There exists a weight vectorβ ∈ (0, 1)na such that, ifg[i] ∈ B
3
2 −i
β (Γ[i]), i = 0, 1, prob-

lem (5.1) admits a unique solutionu which belongs toC2
β(Ω), [2, Theorem 3.5]. Moreover,

as in [2, page 841], it can be proved that there exist two constantsCu > 0 anddu ≥ 1 such
that

|(Dαu)(x0)| ≤ Cu

(
du

Φ(x0)

)k
k! ∀x0 ∈ Ω, α ∈ N2

0, |α| = k ≥ 1, (5.2)

whereΦ(x0) :=
∏na

ν=1 min{1, |x0 − cν |}, thusu admits a real analytic continuation to the
set

N (u) :=
⋃

x0∈Ω\
⋃na

ν=1 cν

{
x ∈ R2 : |x − x0| < Φ(x0)

2du

}
⊂ R2. (5.3)

5.2. Trefftz hp-dGFEM. We now formulate thehp-dGFEM discretisation of the BVP
(5.1) on geometric mesh familiesMσ = {T ℓ

σ }∞
ℓ=1 in Ω, with increasing numberℓ of layers

and geometric grading factor0 < σ < 1.

5.2.1. Geometric meshes. Given ℓ ∈ N, the meshT ℓ
σ is a partition of the domainΩ

into open triangles or parallelogramsΩℓij (such thatΩ =
⋃
i,j Ω

ℓ

ij andΩℓij ∩ Ωℓi′j′ = ∅ if
(i, j) 6= (i′, j′)). The elements are grouped inlayers, denoted byLℓσ,i, 1 ≤ i ≤ ℓ, such that

T ℓ
σ =

ℓ⋃



(GM3) The size of an elementΩℓij depends geometrically on its layer indexi: ∃ 0 < κ3− ≤
κ3+ < ∞, independent ofσ, ℓ, i andj, such that for allT ℓ

σ ∈ Mσ andΩℓij ∈ T ℓ
σ ,

κ3− σ
i ≤ hℓij ≤ κ3+ σ

i.

(GM4) For ℓ ≥ 2, T ℓ
σ is obtained fromT ℓ−1

σ by only refining the elements in the layer
Lℓ−1
σ,ℓ−1 adjacent to the domain corners, forming two new layersLℓσ,ℓ−1 and Lℓσ,ℓ.

Equivalently, the elements ofLℓσ,i are uniquely defined for allℓ ≥ i+ 1:

Lℓσ,i = Lℓ′σ,i ∀i ∈
{
1, 2, . . . ,min(ℓ, ℓ′) − 1

}
; Lℓσ,ℓ =

ℓ′⋃

i=ℓ

Lℓ′σ,i ∀ℓ′ > ℓ ≥ 1.

(5.4)
Note that (GM2) and (GM3) imply that the diameter of an element Ωℓij is proportional to

its distance from the domain corners:

κ3−

κ2+
rℓij ≤ hℓij ≤ κ3+

κ2





PROPOSITION5.3. [37, Theorem 2.3.7, Corollary 2.4.2] Letβ ∈ (0, 1)na be such that
the analytical solutionu to (5.1) belongs toC2

β(Ω). If either θ = 1 andα is positive, or

θ = −1 andα is sufficiently large, then thehp-dGFEM (5.9) admits a unique solution.
Moreover, letπT : H2,2

β (Ω) → Vp(T ℓ
σ ) be an arbitrary operator such that, for every

elementK ∈ T ℓ
σ , there exist at least two zeros ofη := u − πT u in K. For θ = ±1 (with

sufficiently largeα, if θ = −1), it holds

‖u− uθh‖2dG (5.10)

≤ C p2
{ ∑

K∈T ℓ
σ

|η|2H1(K) +
∑

K∈T ℓ
σ \Kℓ

σ

h2K |η|2H2(K) +
∑

K∈Kℓ
σ

h
2(1−β[K])

K |η|2H2,2
β

(K)

}

whereC > 0 is independent ofσ, ℓ andp. Here,Kℓ
σ := Lℓσ,ℓ ⊆ T ℓ

σ designates the set of
elements abutting at domain corners and, for anyK ∈ Kℓ

σ, β[K] := sup{βν : cν ∈ ∂K}.

5.3. Exponential convergence of hp-dGFEM. We apply the approximation estimates
proved in Section4.2 to establish exponential convergence of thehp-dGFEM scheme. We
begin with the following lemma, which puts in relation the domain of analyticity ofu and the
geometric meshMσ.

LEMMA 5.4. Let Mσ be a family of geometric meshesT ℓ
σ on Ω satisfying Assump-

tion 5.1, and letu be the solution of the BVP(5.1) onΩ. Then, there existsδ∗ > 0 u



i.e., Ωℓij



Remark4.13guarantees that the interpolation is exact in at leastp+1 points on the boundary
of Ωℓij . From the usual scaling of Sobolev seminorms|·|Hk(Ωℓ

ij)
≤ C(hℓij)

1−k |·|Hk(Ω̂ℓ
ij)

, we

obtain
∑

1≤i≤ℓ−1, 1≤j≤Ĵ(i)

(
|η|2H1(Ωℓ

ij)
+ (hℓij)

2 |η|2H2(Ωℓ
ij)

)
≤ Cℓe−bℓ,

with C andb depending only onu, σ, Ω andMσ. Here we used the fact that the number of
elements inT ℓ

σ isO(ℓ), as proved in Lemma5.2.
The assertion is then obtained by combining the last bound with the one previously ob-

tained for the elements incident to the corners, usingℓ = O(
√
N), and noting thatπT (u)

interpolatesu at least in two points per element, thus Proposition5.3 applies, and thehp-
dGFEM error is bounded by the approximation error.

REMARK 5.6. In standard FEM convergence analysis, approximation estimates are
derived only forfew reference elements, which are then mapped to the “physical” mesh el-
ements. For Trefftz schemes this is usually not possible: spaces made of harmonic functions
(or harmonic polynomials) are not invariant under general a



has openingθ



sinceθw ≥ θ, we have the second (exterior) cone condition.
REMARK A.2. If D is a polygon with interior angles{αkπ}Nk=1 and satisfies the hy-

pothesis of LemmaA.1, then

2

π
arcsin

ρ1
ρ2

≤ αk ≤ 2 − 2

π
arcsin

ρ1
ρ2

k = 1, . . . , N.

Appendix B. Proof of the upper bound (3.2) for non convex domains. We consider
first the case of polygonal domains (with straight sides) in SectionB.1, then we extend the
result to more general curvilinear domains in SectionB.2. We recall that we are assuming
0 < h ≤ 1.

B.1. Polygonal domains. Denote by{αCk π}nC

k=1 and{αNCk π}nNC

k=1 the convex and non
convex internal angles, respectively, ofD, by {wCk }nC

k=1 and{wNCk }nNC

k=1



α1π

−β1π

α2π

β2π

α3π
β3π

α4π−β4π
α5π

β5π

α6π−β6π −β∗π

(1 + β∗)π

D

Dcππ
c



consequently, as can be inferred from FigureB.2,
∣∣∣1 − zCnfar,1

∣∣∣ ≤
∣∣1 − zNC2

∣∣ . (B.2)

1

zNC2

zNC1

zC3,1

. . .
. . .zCnC,1−1,1

zCnfar,1
= zCnC,1,1

zCnfar,2
= zC1,2

zC1,2

. . .

zCnC,2,2

zC1,1

zC2,1

FIG. B.2. The location of the pre-verticeszk ’s in case ii) with two non consecutive non convex corners. The

four dashed segments have lengthsmax
{

∣

∣1− zNC
1

∣

∣ ;
∣

∣

∣
1−



In order to conclude, we only need to prove (B.3).
Consider the counterclockwise oriented part of∂D formed by the consecutive
(oriented) sidessi, i = 1, . . . ,m := nC,1 + 3, abuttingwNC1 , wCj,1, j =

1, . . . , nC,1, andwNC2 . Let ℓi be the oriented line containingsi, i = 1, . . . ,m.
SinceD is star-shaped with respect toBρ0 , thenBρ0 lies in the intersection of
the half planes lying on the left of theℓi’s.
LetK be the infinite cone obtained by intersecting the right half planes gener-
ated byℓ1 andℓm. Its opening is(1 + β∗)π < π, with β∗ < 0 (cf. FiguresB.1
andB.3).
DefineD′ := D \K; D′



of consecutive convex angles. With a similar notation as before, we can write

T ≤
∫

S

n∏

i=1

[ nNC,i∏

j=1

∣∣y − zNCj,i
∣∣βNC

j,i

nC,i∏

j=1

∣∣y − zCj,i
∣∣βC

j,i

]
dy.

Setting, fori = 1, . . . , n,

nfar,i = argmax
j=1,...nC,i

∣∣1 − zCj,i
∣∣ , nnear,i = argmin

j=1,...nNC,i

∣∣1 − zNCj,i
∣∣ ,

we can boundT as

T ≤
∫

S

n∏

i=1

[ ∣∣y − zNCnear,i

∣∣
∑

j β
NC
j,i

∣∣y − zCfar,i
∣∣
∑

j β
C
j,i

]
dy =:

∫

S

P (y) dy.

We order the blocks in such a way that
∣∣1 − zNCnear,i

∣∣ ≤
∣∣1 − zNCnear,i+1

∣∣ i = 1, . . . , n− 1,
∣∣1 − zCfar,i

∣∣ ≤
∣∣1 − zCfar,i+1

∣∣ i = 1, . . . , n− 1;

consequently (see FigureB.4),
∣∣1 − zCfar,i

∣∣ ≤
∣∣1 − zNCnear,i+1

∣∣ i = 1, . . . , n− 1. (B.6)

Thus, we have

P (y) ≤
∣∣y − zNCnear,1

∣∣
∑

j β
NC
j,i

[ n−1∏

i=1

∣∣y − zNCnear,i+1

∣∣
∑

j β
C
j,i+

∑
j β

NC
j,i+1

]
(2 + h)

∑
j β

C
j,n .

1

zCfar,1

zCfar,2

zCfar,3

zCfar,4

zCfar,5

zCfar,6

zNCnear,1

zNCnear,2

zNCnear,3

zNCnear,4

zNCnear,5

zNCnear,6

FIG. B.4. The pre-verticesz·
k

satisfy the ordering relation(B.6). Notice thatzNC
near,1 andzC

far,n
(in the picture

n = 6) do not enter the relation. Therefore it is not relevant which one betweenzC
far,1

andzNC
near,1 is closest to1.

The number of pre-vertices lying in the upper and in the lowerhalf of the complex plane does not affect the ordering
of the distances.

We consider the term with indexn − 1 in the product and look at its exponent
(
∑

j β
C
j,n−1 +

∑
j β

NC
j,n );

25



a) if it is ≥ 0



0

R1

R2

x1

x2

y1

y2

ℓ1

ℓ2

ε

ηπ

Cη

w

FIG. B.5. The geometric configuration in LemmaB.1.

Proof. We consider the limit caseη = 2
π arcsin R1

R2
< 1. Then,R2 sin

ηπ
2 = R1 and, as

depicted in FigureB.6, the linesℓ1 andℓ2 are parallel to each other. Therefore, wheneverη
is smaller than this threshold value,ℓ1 andℓ2 will intersect on the central half line ofas



0

R1

R1

R2

x1

x2

y1

y2

ℓ1

ℓ2

ηπ

Cη

FIG. B.6. The limit caseη = 2
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