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quite interesting in practice. Furthermore, it is widely acknowledged that quantiles are more robust

to outliers than regression function.

Conditional quantiles are widely studied when the explanatory variable X lies within a finite

dimensional space. There are many references on this topic (see Gannoun et al. (2003a)).

During the last decade, thanks to progress of computing tools, there is an increasing number of

examples coming from different fields of applied sciences for which the data are curves. For instance,

some random variables can be observed at several different times. This kind of variables, known as

functional variables (of time for instance) in the literature, allows us to consider the data as curves.

The books by Bosq (2000) and Ramsay and Silverman (2005)) propose an interesting description

of the available procedures dealing with functional observations whereas Ferraty and Vieu (2006)

present a completely non-parametric point of view. These functional approaches mainly rely on

generalizing multivariate statistical procedures in functional spaces and have been proved to be

useful in various areas such as chemiomertrics (Hastie and Mallows (1993) and Quintela-del Ŕıo

and Francisco-Fernández (2011)), economy (Kneip and Utikal (2001)), climatology (Besse et al.

(2000)), biology (Kirkpatrick and Heckman (1989)), Geoscience (Quintela-del Rı́o and Francisco-

Fernández (2011)) or hydrology (Chebana and Ouarda (2011)). These functional approaches are

generally more appropriate than longitudinal data models or time series analysis when there are,

for each curve, many measurement points (Rice (2004)).

In the univariate case (i.e. Y ∈ R and X



extension of multivariate quantiles based on norm minimization and on the geometry of multivariate

data clouds.

In contrast, relative little attention has been paid to the multivariate conditional quantiles

(Y ∈ Rd and X ∈ Rs) and their large sample properties. Cadre (2001) defined the conditional

L1-median and provided its uniform consistency on a compact subsets of Rs. Recently, De Gooijer

et al. (2006) have introduced a multivariate conditional quantile notion, which extends the definition

of unconditional quantiles by Abdous and Theodorescu (1992), to predict tails from bivariate time

series. Cheng and De Gooijer (2007) have generalized the notion of geometric quantiles, defined

by Chaudhuri (1996), to the conditional setting. They have established a Bahadur-type linear

representation of the u-th geometric conditional estimator as well as the asymptotic normality in

the i.i.d. case.

The purpose of this paper is to add some new results to the non-parametric estimation of the

conditional L1-median when Y is a random vector with values in Rd while the covariable X take its

values in some infinite dimensional space F . As far as we know, this problem has not been studied in

literature before and the results obtained here are believed to be novel. Moreover, our motivation for

studying this type of robust estimator is due to its interest in some practical applications. Note also

that, it would be better to predict all components of a vector of random variables simultaneously in

order to take into account the correlation between them rather than predicting each of component

separately. For instance, in EDF (French electricity company) the estimation of the minimum

and the maximum of the electricity power demand represents an important research issue for both

economic and security reasons. Because an underestimation of the maximum consumed quantity



of the results in Section 3 are relegated to the Appendix.

2 Notations and definitions

Let us consider a random pair (X, Y ) where X and Y are two random variables defined on the same

probability space (Ω, A, P). We suppose that Y is Rd-valued and X is a functional random variable

(f.r.v.) takes its values in some infinite dimensional vector space (F , d(·, ·)) equipped with a semi-

metric d(·, ·). Let x be a fixed point in F and F (.|x) be the conditional cumulative distribution

function (cond. c.d.f) of Y given X = x. The conditional L1-median, µ : F −→ Rd, of Y given

X = x, is defined as the miminizer over u of

arg min
u∈Rd

E[(‖Y − u‖ − ‖Y ‖) | X = x] = arg min
u∈Rd

∫
(‖y − u‖ − ‖y‖) dF (y | x). (1)

The general definition (1



Notice that Hx(u) is bounded whenever E
[
‖Y − u‖−1 | X = x

]
<



3 Main Results

3.1 Further notations and hypotheses

Let x be a given point in F and Vx a neighbourhood of x. Denote by B(x, h) the ball of center

x and radius h, namely B(x, h) = {x′ ∈ F : d(x, x′) ≤ h}. For (", u) ∈ R × Rd, denote by

Gx′
! (u) = E

[
‖Y − u‖! | X = x′], for x′ ∈ F . Our hypotheses are gathered here for easy reference.

(H1) K is a nonnegative bounded kernel of class C1 over its support [0, 1] such that K(1) > 0.

The derivative K ′ exists on [0, 1] and satisfy the condition K ′(t) < 0, for all t ∈ [0, 1] and

|
∫ 1

0 (Kj)′(t)dt| < ∞ for j = 1, 2.

(H2) For x ∈ F , there exists a deterministic nonnegative bounded function g and a nonnegative

real function φ tending to zero, as its argument tends to 0, such that

(i) Fx(h) := P(X ∈ B(x, h)) = φ(r) · g(x) + o(φ(h)) as h → 0.

(ii) There exists a nondecreasing bounded function τ0 such that, uniformly in s ∈ [0, 1],
φ(hs

,
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Comments on the Hypotheses



Theorem 3.2 Assume (H1)-(H2), (H3)(i) and (H4)(i) and condition (10) hold true. Then, we

have

lim
n→∞

µn(x) = µ(x) a.s. (12)

3.3 Asymptotic normality



with δk,j = 1 if k = j and zero otherwise and Mk,j(Yi, u) = [δk,j − (Y j
i −uj)(Y k

i −uk)
‖Yi−u‖2 ]/



(ii)



and the matrix Hx(µ) by

Hx
n(µn) =

n∑

i=1

wn,i(x)M(Yi, µn).

Making use of the decomposition of Fx(u) in (H



4.1 Simulation example

Let us consider a bi-dimensional vector Y = (Y1, Y2) ∈ R2 and X(t) is a Brownian motion trajec-

tories defined on [0, 1]. The eigenfunctions of the covariance operator of X are known to be (see

Ash and Gardner (1975)), for j = 1, 2, . . .

fj(t) =
√

2 sin{(j − 0.5)πt}, t ∈ [0, 1].

Let (f1(t))t∈[0,1] (resp. (f2(t))t∈[0,1]) be the first (resp. the second) eigenfunction corresponding to

the first (resp. second) greater eigenvalue of the covariance operator of X. It is well known that

f1(t) and f2(t) are orthogonal by construction, i.e. < f1, f2 >:=
∫ 1

0 f1(t)f2(t) = 0.

We modelize then the dependence between Y and X by the following model:

• Y 1 =
∫ 1

0 f1(t)X(t) dt + ε

• Y 2 =
∫ 1

0 f2(t)X(t) dt + ε

where ε is a standard normal random variable.

Figure 1: Sample of 200 simulated couples of observations (Xi, Yi)i=1,...,200. The left box contains

the covariates Xi and in the right one we present their associated vectors Yi.

We have simulated n = 200, 700 independent realizations (Xi, Yi), i = 1, . . . , n. To deal with the

Brownian random functions Xi(t), their sample were discretized by 100 points equispaced in [0, 1].

In Figure 1, we plot a 200 simulated couples (Xi, Yi)i=1,...,200 as described above. The left box

contains the covariates Xi and in the right one we present the associated vectors Yi = (Y 1
i , Y 2

i ).

We aim to assess, for a fixed curve X = x, the performance of the asymptotic conditional

confidence ellipsoid given by (18) in finite sample. For that we have first to estimate µ(x). Three

12









F̂ j(· | Xi) is the conditional distribution function estimator of the component Y j given X =

Xi. Ferraty and Vieu (2006), p. 56, have proposed a Nadaraya-Watson kernel estimator of the

conditional distribution, F j(· | X = Xi), when covariate takes values in some infinite dimensional

space. This estimator is given by

F̂ j(yj | X = Xi) =
160∑

k=1

1l{Y j
k ≤yj}K(d(Xi, Xk)/hn)

/ 160∑

k=1

K(d(Xi, Xk)/hn), yj ∈ R.

To apply this approach, we used the Ferraty and Vieu’s R/routine funopare.quantile.lcv1 to esti-

mate µ̂j(Xi). The optimal bandwidth is chosen by the cross-validation method on the k nearest

neighbours (see Ferraty and Vieu (2006), p.102 for more details).

(iii) Conditional Multivariate Median (CMM)

The approach that we propose here supposes the covariate X is a curve and the response Y is a

vector. For each i = 1, . . . , 160 in the learning sample we take

Ŷi = µ̂(Xi),

where

µ̂(Xi) = arg min
u∈R3

160∑

j=1

wn,j(Xi)‖Y

i



CMM VCCM NF

Mean Q0.25 Q0.5 Q0.75 Mean Q0.25 Q0.5 Q0.75 Mean Q0.25 Q0.5 Q0.75

Moist. 1.301 0.479 1.100 2.202 1.776 0.460 1.879 2.383 7.222 1.663 6.374 11.44

Fat 1.565 0.430 1.500 2.401 2.343 0.925 1.716 2.867 9.758 2.328 8.4 15.24

Prot. 1.125 0.300 0.800 1.437 1.313 0.518 1.182 1.806 2.446 0.787 2.329 3.394

R(Ŷ ) 2.638 1.349 2.530 3.623 3.561 1.877 2.909 3.799 12.6 3.523 10.6 19.27

Table 1: Distribution of absolute errors for Moisture, Fat and Protein and global estimation error

of the vector Y.

The used bandwidth for each curve Xi in the test sample is the one obtained for the nearest

curve in the learning sample. Because the spectrometric curves presented in Figure (3) are very

smooth, we can choose as semi-metric d(·, ·) the L2 distance between the second derivative of the

curves. This choice has been made by Attouch et al. (2009) and Ferraty et al. (2007) for the same

spectrometric curves.

Both (CMM) and (NF) methods take into account the covariance structure between variables

of of the vector Y. In fact, the correlation coefficients between Y1 = moisture, Y2 = fat and

Y3 = protein are given by ρ1,2 = −0.988, ρ1,3 = 0.814 and ρ2,3 = −0.860. As we can see moisture,



5 Concluding remarks

In this paper, we have introduced a kernel-based estimator for the L1-median of a multivariate con-



Since Gx
n,1 is independent of u, it follows from decomposition (21

u



Lemma 5.3 (i) Under conditions (H1)-(H2) (H3)(i), we have

sup
u∈Rd

|Bx
n(u)| = Oa.s.(h

β). (23)

(ii) If in addition that (H1)-(H2) hold true and condition (10) is satisfied, we have

sup
u∈Rd

|Rx
n(u)| = Oa.s.

(
hβ

√
log n

nφ(h)

)
(24)

Proof of Lemma 5.3. Recall that

Bx
n(u) = G

x
n,2(u) − Gx(u).

Conditioning by X and using the definition of Gx(u) and condition (H3)(i), one has

|Bx
n(u)| =

∣∣∣∣
1

E∆1(x)
E {∆1(x)E[‖Y1 − u‖ | X]} − Gx(u)

∣∣∣∣

=

∣∣∣∣
1

E∆1(x)
E

{
∆1(x)(GX(u) − Gx(u))

}∣∣∣∣

≤ sup
x′∈B(x,h)

|Gx′
(u) − Gx(u)| = Oa.s.(h

β).

The later quantity is independent of u, this leads to supu∈Rd |Bx
n(u)| = Oa.s.(hβ).



We have

sup
||u||≤nγ

|Gx
n,2(u) − G

x
n,2(u)|

≤ max
1≤j≤kd

n

sup
u∈Sn,j

|Gx
n,2(u) − Gx

n,2(uj)| + max
1≤j≤kd

n

|Gx
n,2(uj) − G

x
n,2(uj)|

+ max
1≤j≤kd

n

sup
u∈Sn,j

|Gx
n,2(u) − G

x
n,2(uj)| := In,1 + In,2 + In,3. (25)

Observe now that

sup
u∈Sn,j

|Gx
n,2(u) − Gx

n,2(uj)| ≤ 1

nE(∆1(x))

n∑

i=1

sup
u∈Sn,j

∣∣∣||Yi − u|| − ||Yi − uj ||
∣∣∣ ∆i(x)

≤ 1

nE(∆1(x))

n∑

i=1

∆i(x) sup
u∈Sn,j

||u − uj || = bnGx
n,1,

and

sup
u∈Sn,j

|Gx
n,2(u) − G

x
n,2(uj)| ≤ E

[
sup

u∈Sn,j

|Gx
n,2(u) − Gx

n,2(uj)|
]

= bn.

If we denote by αn =
√

nφ(h)/ log



In order to apply an exponential type inequality, we have to give an upper bound for E (|Zn,1(x)|m).

It follows from the above inequality that

E (|Zn,1(x)|m) ≤ C
m∑

k=0

(
m

k

)
E

[
(‖Y1 − uj‖∆'

1(x))k
]

[E(‖Y1 − uj‖∆'
1(x))]m−k .

On the other hand, we have for any k ≥ 2

E
[
(‖Y1 − uj‖∆'

1(x))k
]

= E
[
(∆'

1(x))kE
(

‖Y1 − uj‖k | X1

)]

= E
[
(∆'

1(x))kGX1
k (uj)

]
.



that

P (|In,2| ≥ ε) ≤ 2kd
n exp

(
−ε2

0 log n

[
1

2(1 + ε0
√

vn)

])
≤ 2kd

nn−ε2
0 .

One may choose ε0 large enough such that

∑

n

P (|In,2| ≥ ε) < ∞.

We conclude by Borel-Cantelli lemma and (26) that

αn sup
||u||≤nγ

|Gx
n,2(u) − G

x
n,2(u)| = Oa.s(αn

√
vn) = Oa.s(1).

Next, we have

sup
u∈Rd

αn|Gx
n,2(u) − G

x
n,2(u)| ≤ sup

||u||≤nγ
αn|Gx

n,2(u) − G
x
n,2(u)| + sup

||u||>nγ
αn|Gx

n,2(u) − G
x
n,2(u)|

= sup
||u||>nγ

αn|Gx
n,2(u) − G

x
n,2(u)| + Oa.s.(1),

in view of the above result. Now, we have

αn sup
u:||u||≥nγ

|Gx
n,2(u) − G

x
n,2(u)|

≤ αn sup
u:||u||≥nγ

|Gx
n,2(u)| + αn sup

u:||u||≥nγ
|Gx(u)| + αn sup

u
|Gx(u) − G

x
n,2(u)|. (27)

The last term in (27) is zero for large n, since conditioning by X, one may write

αn|Gx
n,2(u) − Gx(u)| = αn|Bx

n(u)| = Oa.s.(h
β
nαn) =a.s. (1)

in view Lemma 5.3 (i) whenever condition (10)(ii) is satisfied. For the second term in (27), we have

αn sup
||u||>nγ

Gx(u) ≤ αn

nγ
sup

||u||>nγ
||u||Gx(u) = o(1),

whenever γ > 1/2 and the condition (11) is satisfied.

Moreover, we have for any ε > 0

P
{

αn sup
u:||u||≥nγ

|Gx
n,2(u)| ≥ ε

}

≤ P




αn sup
u:||u||≥nγ

1

nE(∆1)

∑

i:||Yi−u||>nγ/2

||Yi − u||∆i(x)|| ≥ ε/2






+ P




αn sup
u:||u||≥nγ

1

nE(∆1)

∑

i:||Yi−u||≤nγ/2

||Yi − u||∆i(x)|| ≥ ε/2




 := Jn,1 +

n

E
≥



To treat Jn,1, denote by

An(ω) := {ω : αn sup
||u||>nγ

1

n

n∑

i=1:||Yi−u||>nγ/2

||Yi − u||∆i ≥ ε/2}.

The event An(ω) is nonempty if and only if there exists at least i0 (1 ≤ i0 ≤ n) such that

||Yi0 − u|| > nγ/2. Thus ”An(ω) (= ∅” ⊂ ∪n
i=1{ω : ||Yi − u|| ≥ nγ/2}. It follows from Markov’s

inequality, if E(||Y1 − u||) < ∞, that

P (An(ω) (= ∅) = O(n−(γ−1)) and
∑

n

P (An(ω) (= ∅) < ∞,

whenever γ > 1, which implies that Jn,1 = oa.s.(1) by Borel-Cantelli Lemma.

To deal with Jn,2, let us denote by

Bn(ω) := {ω : αn sup
u:||u||≥nγ

1

nE(∆1)

∑

i:||Yi−u||≤nγ/2

||Yi − u||∆i(x)|| ≥ ε/2}.

Bn(ω) is nonempty if and only if there exists at least i0 (1 ≤ i0 ≤ n



Proof of Theorem 3.2.

We have from the definitions of µ(x) and µn(x) and the existence and the uniqueness of these

quantities that:

Gx(µ(x)) = inf
u∈Rd

Gx(u) and Gx
n(

G
n

(

x
n

R dG

xn

(G



Concerning the first term, observe that

‖H̃x
n(ξn(i)) − H̃x

n(µ)‖ ≤ 1

n E(∆1(x))

n∑

i=1

‖M(Yi, ξn(j)) − M(Yi, µ)‖ ∆i(x)

:= An + Bn, (32)

where

An :=

√
d

nE(∆1(x))

n∑

i=1

∣∣∣‖Yi − µ‖ − ‖Yi − ξn(j)‖
∣∣∣∆i(x)

‖Yi − µ‖ ‖Yi − ξn(j)‖

and

Bn :=
1

nE(∆1(x))

n∑

i=1

∆i(x)

∣∣∣
∣∣∣‖Yi − ξn(j)‖ U(Yi − µ) UT (Yi − µ) − ‖Yi − µ‖ U(Yi − ξn(j)) UT (Yi − ξn(j))

∣∣∣
∣∣∣

‖Yi − µ‖ ‖Yi − ξn(j)‖ .

Using Theorem 3.2 and the triangular inequality we can easily see that



We have to show that each term Kn,i (i = 1, 2) is asymptotically negligible. We have

‖Kn,1‖2 = tr(KT
n,1Kn,1) =

d∑

k=1

d∑

j=1

∑



The result may be obtained by applying the Liapounov Central Theorem Limit. For this propose,

we have to prove the following Lindeberg condition:

∀δ



Lemma 5.7 Under conditions (H1)-(H2) and (H4)(ii), we have

σ2(x) = lim
n→∞

V ar

(
1√
n

n∑

i=1

"t Ãi

)
=

M2

M2
1 g(x)

"tΣx(µ)".

Proof of Lemma 5.7. Since the random variables ("tÃi)i=1,...,n are i.i.d. with mean zero, it follows

that

σ2(x) = lim
n→∞

V ar

(
1√
n

n∑

i=1

"t Ãi

)
= lim

n→∞
V ar("tÃ1) = lim

n→∞
E

(
("tA1)2

)
.

On the other hand, making use of the properties of conditional expectation one may write

E
[(

"tA1
)2

]
=

φ(h)

(E∆1)2
E

[
∆1"tU(Y1 − µ)

]2
=

φ(h)

(E∆1)2
E

[
∆2

1W X1
2 (µ)

]

Making use of the condition (H4)(ii) and the fact that the functions W x
2 (·) is bounded, we obtain

E

Wxx)W1

2 (
(x))



A1 := E
[
K

(
d(x, X1)

h

)
ψ(d(x, X1))

]
=

∫ 1

0
K(t)ψ(th)dF (th),

where F is the cumulative distribution function of the real random variable d(x, X). On the other



Write

V x
n (µn) =

M1,n
√

M2

M1
√

M2,n

√
nFx,n(h) (nφ(h)g(x))−1 T x

n (µn) [T x(µ)]−1 × M1√
M2

√
nφ(h)g(x) T x(µ) (µn − µ)

:= V x
n,1 × V x

n,2. (33)

Making use of Theorem 3.3
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