




2010] and it has been suggested that part of the correlation comes from representativity error rather
than the instrument error or errors in the observation operator [Stewart, 2010, Weston, 2011]. Until
recently it has been assumed that it is too expensive to include correlated observation error matrices
in assimilation schemes and that it is only feasible to use a diagonal observation error covariance
matrix. The effect of correlated error is reduced by using techniques such as observation thinning
[Lahoz et al., 2010] or superobbing [Daley, 1991], and variance inflation [Hilton et al., 2009, Whitaker
et al., 2008]. Calculations are also simplified by assuming that the observations errors are the same
at each model level [Dee and Da Silva, 1999]. Efforts are being made to find methods of reducing the
cost of using correlated observation error matrices [Stewart et al., 2012a, Stewart, 2010, Healy and
White, 2005, Fisher, 2005]. Once these methods are in place it will be important to have accurate
estimates of the covariance matrices, as these are required to obtain the optimal estimate from
any data assimilation system [Houtekamer and Mitchell, 2005, Stewart et al., 2008]. It is therefore
important to understand how to estimate representativity error.

Despite the difficulties in calculating correlated error, there have been some attempts. The
Hollingsworth and Lönnberg method [Hollingsworth and Lönnberg, 1986] has been used to calculate
the statistics of the innovations. A method proposed by Desroziers et al. [2005] makes use of infor-
mation from the first guess and analysis departures and yields an approximation to the observation
error covariance matrix. Once the innovation statistics or the observation error covariances have
been calculated, the background and/or instrument error terms can be subtracted to leave an ap-
proximation of forward model error for specific observing instruments. Other methods [Daley, 1993,
Liu and Rabier, 2002] assume that observations can be written as a projection of a high resolution
model state on to observation space with the representativity error being the difference between
this high resolution projection and the model representation of the observation. Many of these
approaches yield a static approximation of representativity error, but Janjic and Cohn [2006] show
that it is state dependent and correlated in time.

Work has been carried out by Stewart [2010], Stewart et al. [2009, 2012b] and Bormann and
Bauer [2010] to calculate estimates of the full observation error covariance matrix. They show that
the observation error covariance matrices for observing instruments such as IASI, AMSU-A, HIRS
and MHS contain significant correlations. In particular the correlations for the humidity channels
are more significant than those for temperature. The calculated matrices contain contributions from
both the representativity error and the instrument error. Due to the complex nature of observation
error statistics it is not known what portion of the error is representativity error. As humidity fields
contain smaller scale features than temperature fields, it is possible that it is the representativity
error that contributes to the more significant error correlations.

In this paper we investigate whether the significant correlations are representativity error. We
calculate the representativity error for temperature and humidity data over the UK using a method
described by Daley [1993] and Liu and Rabier [2002]. We investigate whether representativity error is
more significant for humidity than temperature, and whether one approximation of representativity
error is suitable for all pressure levels.

In section 2 we describe the method used for calculating representativity error. We then describe
the model and available data in section 3. Our experimental design is given in section 4 and we



2 Representativity Error

2.1 Representativity Error

Forward model error,
ǫ
R = y − H(xm), (1)

is the difference between the noise free observation vector, y, of length p and the mapping of the
exact model state vector, xm, of length N into observation space using the possibly non-linear
observation operator H. The noise free observation vector is a theoretical construct that represents
an observation measured by a perfect observing instrument, i.e. with no instrument error. It is
related to the actual measurement via the equation

yo = y + ǫ
I, (2)

where yo is the observation vector and ǫ
I is the instrument error.

The covariance of the forward model error E[ǫR
ǫ

RT
] = RH is included in the observation error

covariance matrix R = RH + RI, where RI = E[ǫI
ǫ

I T
] is the instrument error covariance matrix.

To calculate the representativity errors in this paper we use a method defined by Daley [1993] and Liu





3 The Model and Data

In this study we calculate representativity error for both temperature and specific humidity over the
UK. The calculation of representativity error by the method of Liu and Rabier [2002] assumes that
the actual state can be taken from a high resolution model. As our actual state we take data from
the Met Office UKV model. The UKV model is a variable resolution model that covers the UK; at
its highest resolution the domain has 1.5km grid boxes. The model data used is at this resolution.
The boundary data for the model is interpolated to the 1.5km grid from the 4km resolution regional
model.

In this work we calculate representativity error using the assumption that the model state is a
truncation of high resolution data. For the majority of our experiments we chose a truncation factor
that gives a model grid spacing equivalent to the grid spacing that is used in the Met Office NAE
model. The Met Office NAE model has a grid spacing of 12km (in mid-latitudes) and covers Europe
and the North Atlantic.

3.1 The data available

We use temperature and humidity data over the UK available for two cases. The first case, Case 1,
consists of data from 7 August 2007 at times 0830UTC, 0900UTC and 0930UTC on an area over
the southern UK that covers −3.04oW to 3.71oE and 49.18oN to 53.36oN. In this case there are
partly clear skies with convection occurring over the south east [Eden, 2007]. The second set of
data, Case 2, is from 6 September 2008 at 1400UTC, 1430UTC and 1500UTC and covers −5.00oW
to 1.20oE and 52.5oN to 56.00oN. In this case a deep depression is tracking slowly east-northeast
across England [Eden, 2008]. The data is available on a 300 × 300 grid of latitude and longitude
lines at each of 43 pressure levels.

3.2 Creating samples from the data

There are some limitations to the data. Data near the boundar



Table 1 – Variances for the true state

Temperature log(Specific Humidity)
(K2) ((kg/kg)2)

Case 1 0.6638 0.0812
Case 2 0.1934 0.0178

3.3 Data processing

To create surrogate samples from each available sample the data must be detrended. Detrending
gives data on a homogeneous field; this is required by our chosen method for calculating representa-
tivity error. Data is detrended by removida be46(s)-1.99849(t)-025.086(fi)-6(t)-1-6(l)2(i)2(d)-3(e)-154(u)-6(s)-1.99849is





Table 2 – Representativity error (RE) variances for Case 1. The values given in brackets are a comparison
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A Representativity error variance

Here we show why the representativity error variance does not alter when calculated with differ-
ent numbers of observations. We do this by considering the calculation of the elements of the
representativity error matrix.

Representativity error is calculated using Eq. (11). The matrices are:

• F with j = 1 . . . p and k = 1 . . . M . Elements defined as in Eq. (4).

• Fm with j = 1 . . . p and k = 1 . . . Mm. Elements defined as in Eq. (4).

• W with j = 1 . . . M and k = 1 . . . M= 1 . .



RH
j,j =

M
∑

l=1

exp(2ijlπ
p

)ŵlŝlŵl exp(−2ijlπ
p

), (18)

=

M
∑

l=1

ŵlŝlŵl. (19)

This does not depend on p and hence we do not expect the variance to change when we use different
numbers of observations to calculate representativity error.

We now show that the correlation structure depends only on the distance between observations
and not the number of observations.

Our model has Nm grid points separated by a spacing ∆x and we have p observations. The
distance between consecutive observations is Nm∆x

p
. Suppose we have two observations separated

by a distance d and assume that these are observation j and observation k. Then we have

d =
(jk)(Nm∆x)
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