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Abstract: We show that the four-dimensional variational data assimilation method (4DVar) can be interpreted as a form of Tikhonov
regularisation, a very familiar method for solving ill-posed inverse problems. It is known from image restoration problems that L1-
norm penalty regularisation recovers sharp edges in the image more accurately than Tikhonov, or L2-norm, penalty regularisation.
We apply this idea from stationary inverse problems to 4DVar, a dynamical inverse problem, and give examples for an L1-norm
penalty approach and a mixed Total Variation (TV) L1-L2-norm penalty approach. For problems with model error where sharp
fronts are present and the background and observation error covariances are known, the mixed TV L1-L2-norm penalty performs
better than either the L1-norm method or the strong-constraint 4DVar (L2-norm) method. A strength of the mixed TV L1-L2-norm
regularisation is that in the case where a simplified form of the background error covariance matrix is used, it produces a much more
accurate analysis than 4DVar. The method thus has the potential in numerical weather prediction to overcome operational problems
with poorly tuned background error covariance matrices.
Copyright c⃝ 2010 Royal Meteorological Society
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1 Introduction

Data assimilation is a method for combining model fore-
cast data with observational data in order to forecast more
accurately the state of a system. One of the most popu-
lar data assimilation methods used in modern numerical
weather prediction is four-dimensional variational data
assimilation (4DVar) (Sasaki (1970); Talagrand (1981);
Lewis et al. (2006)), which seeks initial conditions such
that the forecast best fits both the observations and the
background state (which is usually obtained from the pre-
vious forecast) within an interval called the assimilation
window. Currently, in most operational weather centers,
systems and states of dimension O(107) or higher are
considered, whereas there are considerably fewer obser-
vations, usually O(106) (see Daley (1991); Nichols (2010)
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Using these adjoint equations we avoid having to compute
Mi,i−1(xi−1) several times. We note that �i, i = 0; : : : ; N
are vectors whereas ∇�i, i = 0; : : : ; N are square matrices
of the dimension of the system state.

The approximate Hessian g∇∇J (x0) and∇J (x0) are
then used in (3), which is equivalent to a linearised least





RESOLUTION OF SHARP FRONTS IN 4DVAR 5

and

v+ = max(v; 0); v− = max(−v; 0):

Problem (20) can then be written as

min
z,v+,v−

{[
f
0

]
−

[
G
�I

]
z

2

2

+ 1T v+ + 1T v−

}
:

(21)
subject to the constraints

�D(C
1/2
B z + xb

0) = v+ − v−; (22)
v+; v− ≥ 0: (23)

Here 1 denotes the vector of all ones of appropriate size.
This problem can then be written as

min
w

{
1

2
wT Hw + cT w

}
(24)

subject to
Ew = g and Fw ≥ 0; (25)

where

w =

 z
v+

v−

 ; H =

 2(GT G + �2I) 0 0
0 0 0
0 0 0

 ;

c =

 −2GT f
1
1

 ; E =
[

�DC
1/2
B −I I

]
;

F =

 0 0 0
0 I 0
0 0 I

 ; g = −�Dxb
0;

and the block matrices I and 0 as well as the vectors 1
of all ones in the matrices H , E, F and c are of appro-
priate size. The objective function in (24) is convex as
H is symmetric positive semi-definite. In order to solve
the quadratic programming problem (24) with constraints
(25) we use the MATLAB in-built function quadprog.m,
which readily solves problems of the form (24),(25). For
our problem we use an active-set quadratic programming
strategy (also known as a projection method), which is
described in Gill et al. (1981). For details on the imple-
mentation of the MATLAB quadratic programming tool
we refer to the MATLAB Product Documentation Matlab
(R2012a).

In the following sections we consider a square wave
propagated by the linear advection equation as an exam-
ple. We use a ‘true’ model (from which we take the obser-
vations) and another model, which is different from the
truth and hence introduces a model error. For the differ-
ent regularisation approaches we keep the regularisation
parameter � fixed, as we are only investigating the influ-
ence of the norm in the regularisation term, but not the
size of the regularisation parameter �. In all the exam-
ples we observe that the new edge-preserving mixed TV
L1-L2-norm regularisation indeed gives better results than
the standard L2-norm approach and the simple L1-norm
regularisation.

5 Numerical experiments

We consider the linear advection equation

ut + ux = 0; (26)

on the interval x ∈ [0; 1], with periodic boundary condi-
tions. We discretise the equation using the upwind scheme

Un+1
j = Un

j − ∆t

∆x

(
Un
j − Un

j−1

)
; (27)

where j = 1; : : : ; N , and the CFL condition ∆t < ∆x

Nancy
Highlight
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Figure 1. Results for 4DVar applied to the linear advection equation where the initial condition is a square wave. We take imperfect
observations every 20 points in space and every 2 time steps. 4DVar leads to bad oscillations in the initial condition and also to a phase

error in the forecast.
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Figure 2. Results for L1 regularisation for the same data as in Figure 1.
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Figures 1 - 3 show the results for this example. We only
present the case for imperfect noisy observations, as it is
the most realistic one. In the next subsection we consider
a non-diagonal background error covariance matrix - for
which we present the results for cases (1)-(3). We also note
that a summary of results is presented in Table I.

In the plots the true solution is represented by a thick
dot-dashed line (called ’Truth’ in the legend). This true
solution is unknown in practice. We take (noisy) obser-
vations by perturbing the true trajectory using zero-mean
Gaussian noise. The model solution (which is derived
from the upwind method) is shown as a dashed line (called
’Imperfect model’ in the legend). This solution represents
the model solution, that is the solution that is obtained if
we use the correct initial conditions and the (imperfect)
model. It represents the best solution that we are able
to achieve (if data assimilation gives us the perfect ini-
tial condition), as the model error is always present. The
solution obtained from the assimilation process by incor-
porating the (perfect/partial/noisy) observations is given
by the solid line (called ’Final solution’ in the legend).

The result for 4DVar is shown in Figure 1 (minimi-
sation problem (17)), that for L1-regularisation in Fig-
ure 2 (minimisation problem (16)) and that for mixed
TV L1-L2-norm regularisation in Figure 3 (minimisation
problem (24)). The analysis obtained by 4DVar and L1-
regularisation is very inaccurate, with many oscillations
and large over/undershoots near the discontinuities (first
plots in Figures 1 and 2). When L1-norm regularisation
with the gradient (mixed TV L1-L2
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Figure 4. Results for 4DVar. We take perfect observations at each point in time and space over the assimilation interval which is
40 time steps. The four plots show the initial conditions at t = 0 and the result after 20, 40 and 80 time steps. We choose B with

Bij = 0.01 e
− |i−j|

2L2 , where L = 5.
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Figure 5. Results for mixed TV L1-L2-norm regularisation for the same data as in Figure 4.
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Figure 6. Results for 4DVar for the same data as in Figure 4 but with perfect observations every 20 points in space and every 2 time

steps for B with Bij = 0.01 e
− |i−j|

2L2 , where L = 5.
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Figure 7. Results for mixed TV L1-L2-norm regularisation for the same data as in Figure 6.
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Figure 8. Results for 4DVar for the same data as in Figure 1, but for B with Bij = 0.01 e
− |i−j|

2L2 , where L = 5.
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Figure 9. Results for mixed TV L1-L2-norm regularisation for the same data as in Figure 8, but for B with Bij = 0.01 e
− |i−j|

2L2 , where
L = 5
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condition in standard 4DVar (first plot in Figure 4) and the
forecast is slightly better than the forecast in 4DVar. For
the case of partial perfect observations we obtain similar
results. Mixed TV L1-L2-norm regularisation (Figure 7)
gives better intitial conditions than standard 4DVar (Fig-
ure 6).

Finally, Figures 8 and 9 show the results for partial
noisy observations. Note that with this choice of B, the
results for 4DVar (Figure 8) are better than the results for
the diagonal matrix B (Figure 1) because information is
spread via the covariance matrix B, and we see that the
oscillations in the analysis are significantly reduced. It is
notable, however, that the mixed TV L1-L2-norm regu-
larisation (Figure 3) eliminates oscillations in the analysis
even when the matrix B provides no smoothing. More-
over, where correlations are taken into account via the
matrix B, then mixed L1-L2-norm regularisation (Figure
9) gives still better results than 4DVar (Figure 8). The
quantities of the errors in the initial conditions for this
particular case are summarised in the fifth row of Table I
where we see that the errors using mixed TV L1-L2-norm
regularisation are the smallest.

5.3 Changing the length of the assimilation window

Again, we take the same experimental data as in Subsec-
tion 5.1; this time, however, we reduce the size of the
assimilation window from 40 time steps to 5 time steps
and carry out the following test: we take imperfect obser-
vations every 5 points in space and every 2 time steps with
Gaussian noise of mean zero and variance 0:01. For the
background we again take the truth perturbed by Gaussian
noise with covariance B taken from (29) with �2

b = 0:01.
Figures 10 and 11 show the results for a reduced size of
the assimilation window. The first observation that we can
make is that again the regularisation using the mixed TV
L1-L2-norm (Figure 11) is consistently better than that
using the L2-norm (Figure 10). Standard 4DVar produces
oscillations, in particular in the initial conditions, whereas
the mixed TV L1-L2-norm regularisation does not show
any oscillations. The oscillations in the initial conditions
in standard 4DVar then lead to errors in the forecast (see
plots for t = 5, t = 20 and t = 45 in Figure 10). Again,
for 4DVar, the forecast of the analysis does not keep the
amplitude correctly (final plot in Figure 10), whereas the
mixed TV L1-L2-norm regularisation provides a more
accurate amplitude in the forecast (final plot in Figure 11).

5.4 Summary of initial condition errors

In Table I we summarise the analysis errors (the errors
between the analysis and the truth at t = 0, that is, the
initial condition errors) measured in the L2 vector norm
for the different regularisation techniques. The results are
shown for all three test cases described in Section 5.1
where either perfect observations are taken at all spatial
and time points, partial perfect observations are taken
less frequently in time and space, or partial imperfect
(noisy) observations are taken, also with less frequency.

We choose observation errors with covariance R = 0:01I
and assimilation windows of length 40 and length 5. We
consider the two background covariance matrices B =
�2
b I , and the double-sided exponential covariance matrix

B given by (29), with three different variances: �2
b = 1,

�2
b = 0:01 and �2

b = 0:005.
For the mixed TV L1-L2-norm regularisation

method, we also give results for different values of � in
(19). The emphasis on the sparsity of the gradient of the
initial condition depends on this regularisation parameter.
We have looked at three different values for � and the best
of all three results (that is the smallest error in the initial
condition) is underlined in the table. The regularisation
depends on the regularisation parameter, but investigat-
ing the influence of this parameter and finding the optimal
choice of � is beyond the scope of this paper. We remark
that for the plots in the previous subsections we have used
the value of � from the table that gives the smallest initial
condition error.

We see from the entries in the table that the errors
in the analysis at time t = 0 are consistently smaller for
mixed TV L1-L2-norm regularisation than for standard
4DVar or L1-norm regularisation. Mixed TV L1-L2-norm
regularisation gives an error of about one magnitude
smaller than standard 4DVar. We also observe from the
table that, for standard 4DVar, L1-norm regularisation
and mixed TV L1-L2-norm regularisation, the errors in
the initial condition (analysis) decrease as the variance
in the background error is reduced, that is, as the ratio
of the background to observation variance decreases.
This is consistent with the results of Haben et al. (2010),
which show that the standard 4DVar assimilation problem
becomes more well-conditioned (well-posed) as this ratio
decreases. These examples demonstrate that, even where
the noise in the background and observations is Gaussian
with known covariances, the standard 4DVar approach
does not produce as accurate an analysis as mixed TV L1-
L2-norm regularisation in the presence of sharp fronts and
model error.

6 Further experiments

We now investigate how the 4DVar and mixed TV L1 −
L2-norm regularisation methods perform in cases where
the position of the shock in the background is displaced
from the truth and where the frontal gradient of an
advected wave in the background is incorrect. As dis-
cussed in the introduction, it is recognized that if a shock
in the background field is displaced, then the 4DVar
method may not give a good analysis. Similarly, the assim-
ilation method may be unable to capture a sharp shock if
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Figure 10. Results for 4DVar applied to the linear advection equation where the initial condition is a square wave. We take imperfect
observations every 5 points in space and every 2 time steps over the assimilation interval which is 5 time steps. The four plots show the
initial conditions at t = 0 and the result after 5, 20 and 45 time steps. 4DVar leads to oscillations in the initial condition and a misplaced

discontinuity in the forecast.
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Figure 11. Results for mixed TV L1-L2-norm regularisation for the same data as in Figure 10. Mixed TV L1-L2-norm regularisation
gives the best possible result for the initial condition.
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Figure 12. Results for 4DVar for a shifted (and noisy) background and for background error covariance matrix B = 0.01I
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Figure 13. Results for mixed TV L1-L2-norm regularisation for the same data as in Figure 12.
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Figure 14. Results for 4DVar for a shifted (and noisy) background and for background error covariance matrix B taken from (29) with
σ2
b = 0.01
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Figure 15. Results for mixed TV L1-L2-norm regularisation for the same data as in Figure 14.

and 15. The initial condition in 4DVar is clearly recovered

poorly, with many oscillations (see first plot in Figure 14).

Furthermore, at the end of the assimilation window the

solution gives undershoots (see third plot in Figure 14)
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and the amplitude of the front is reduced (see second and
third plot in Figure 14). The solution at the initial time
provided by the mixed TV L1-L2-norm regularisation has
less oscillation present in the shock wave (see first plot
in Figure 15) and produces somewhat less distortion of
the wave front over the window (see second and third
plot in Figure 15). The errors in the analysis in this
case for the standard 4DVar and the mixed TV L1-L2-
norm regularisation (with � = 10) are similar, with a value
of 1:80. Both methods smear the shock front and both
produce an initial phase error which is reproduced in the
forecast.

The plots in Figures 14 and 15 show that choosing
an exponential (non-diagonal) covariance matrix B is not
necessarily advantageous when there is a sharp front with
a phase error. In this case both 4DVar and mixed TV L1-
L2-norm regularisation with a diagonal covariance matrix
B capture the shock front more accurately, but the mixed
TV L1-L2-norm technique also eliminates the oscillations
in the analysis arising from the effects of the model error
(see Figures 12 and 13).

In general, the mixed norm approach removes oscil-
lations and sharpens fronts - but the position of the shock
is not recovered precisely where there is a phase error in
the background.

6.2 A slanted front for the background

Finally, with the same experimental data as in Subsection
5.1 we consider a slanted background given by the slanted
square wave

ub
1(x; 0) =


−0:5 + 50

7 (x − 0:18); 0:18 < x < 0:32

0:5; 0:32 ≤ x ≤ 0:43

0:5− 50
7 (x − 0:43); 0:43 < x < 0:57

−0:5 < x <18 < x < 0:32





16 M. A. FREITAG, N. K. NICHOLS, C. J. BUDD

Acknowledgement

The authors thank Nathan Smith (University of Bath) for


	Cover_12_12.pdf
	BFN_NKN_vff_maths-preprint

