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Abstract.

In this paper we explore classification techniques for ill-posed problems. Two classes

are linearly separable in some Hilbert space X if they can be separated by a hyperplane.

We investigate stable separability, i.e. the case where we have a positive distance

between two separating hyperplanes. When the data in the space Y is generated

by a compact operator A applied to the system states ϕ ∈ X, we will show that in

general we do not obtain stable separability in Y even if the problem in X is stably

separable. In particular, we show this for the case where a nonlinear classification is

generated from a non-convergent family of linear classes in X.

We apply our results to the problem of quality control of fuel cells where we classify

fuel cells according to their efficiency. We can potentially classify a fuel cell using

either some external measured magnetic field or some internal current. However we
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of tumours [1]. In [4] the cancer area classification problem is investigated with voxels
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training patterns which are used for discrimination is high. We show that, in the case of

data generated by a compact integral operator, it cannot stay stable when the number

of measurement points tends to infinity.

Third, we investigate the application of classification algorithms to classify fuel

cells
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study particular nonlinear classes which are obtained from linear classes as intersections

of affine halfspaces Uℓ, ℓ = 1, ..., n, i.e.

C :=
n

⋂

l=1

Uℓ. (2.2)

In this case we can reduce the study of stability of the classification to the stability in the

linear case. For smooth classes, i.e. where the boundary of C is a smooth manifold in X,

we can locally approximate the general nonlinear classification by a linear classification,

such that in this case the stability analysis can also be carried over from the linear to

the nonlinear case.

The process of classification is given by the way to achieve a definition of a class C.

Definition 2.1 (Supervised Classification) Classification methods start with

some elements or samples x
(1)
1 , ..., x

(N1)
1 ∈ X, also known as a training set. The task

here is to define an appropriate set C1 ⊂ X such that all elements x
(ω)
1 , ω = 1, ..., N1

are in C1. Often, there are also elements x
(ω)
2 , ω = 1, ..., N2 of a complementary class

C2 = X \C1. We may also have access to some target values which indicate which class

these samples belong to. We call an algorithm a supervised classification algorithm, if

it takes the samples and corresponding target values as inpu
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when we study stable classifications in X and how they can be achieved on the images

in Y without the inversion of the operator A.

A generic example. As a first step towards the clarification of the situation we

first want to consider a special case. We use the singular value decomposition of the

operator A, compare [6], i.e. we have an orthonormal basis {ϕℓ ∈ X, ℓ ∈ N} in X and

an orthonormal basis {gℓ ∈ Y, ℓ ∈ N} and a monotonously decreasing sequence (µℓ)ℓ∈N

of positive real values such that

Aϕℓ = µℓgℓ, A
∗gℓ = µℓϕℓ (2.3)

for all ℓ ∈ N. We define a linear stable classification by

C
(1)
ℓ,ρ := {x : 〈x, ϕℓ〉 ≥ ρ}, C(2)

ℓ,ρ := {x : 〈x, ϕℓ〉 ≤ −ρ}, (2.4)

which we call a stable linear separation along the direction of the singular values. Clearly,

the distance between C
(1)
ℓ,ρ and C

(2)
ℓ,ρ is 2ρ > 0. For every pair C

(1)
ℓ,ρ , C

(2)
ℓ,ρ from the sequence

of classes the classification is stable uniformly with respect to ℓ ∈ N.

The images of the classes C
(1)
ℓ,ρ , C

(2)
ℓ,ρ under the application of the operator A is given

by

C̃
(1)
ℓ,ρ := {y = Ax : 〈x, ϕℓ〉 ≥ ρ},

= {y ∈ A(X) : 〈A−1y, ϕℓ〉 ≥ ρ},
= {y ∈ A(X) : 〈y, (A∗)−1ϕℓ〉 ≥ ρ},
=

{

y ∈ A(X) :
〈

y, 1
µℓ
gℓ

〉

≥ ρ
}

,

= {y ∈ A(X) : 〈y, gℓ〉 ≥ µℓρ}, (2.5)

and

C̃
(2)
ℓ.ρ := {y : 〈y, gℓ〉 ≤ −µℓρ}. (2.6)

The distance between the classes C̃
(1)
ℓ,ρ and C̃

(2)
ℓ,ρ is 2µℓρ. The distance is depending on

ℓ ∈ N and since the singular values µℓ tend to zero for ℓ → ∞, the stability of the

separation of the pairs of classes is no longer uniform in ℓ. We summarize these basic

but important observations in the following lemma.

Lemma 2.2 Consider a compact linear operator A between Hilbert spaces X and Y .

Then the image classes for stable linear separation along the direction of the singular

values for a uniform separation distance ρ will no longer be uniformly separable in the

image space Y .

The general case. Next, we consider the general case of a sequence of linear

classes C1, C2, C3, .... Let vℓ, ℓ ∈ N be the corresponding vectors in X and ρℓ, ℓ ∈ N

be the affine distances. Here, we also assume that the sequence (vℓ) does not have a

convergent subsequence. Clearly, the classes are given by

Cℓ = {x : 〈x, vℓ〉 ≥ ρℓ}, ℓ ∈ N. (2.7)
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We use a calculation similar to (2.5) to show that if vℓ is in the range of A∗, then

C̃ℓ := ACℓ = {y : 〈y, (A∗)−1vℓ〉 ≥ ρℓ}. (2.8)

With the definition

ψℓ := (A∗)−1vl

�
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and with the same argument we also have the slightly more general form of this statement
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Theorem 2.5 Consider a linear class C in X defined by its normal vector v and some

distance ρ to the origin and let A be a compact linear operator A : X → Y . If v 6∈ A∗Y ,

then the distance of C̃ = AC to the origin is zero.

Proof. Since the norm of R∗

αv

||R∗

αv||
is bounded by one, there is a weakly convergent

subsequence for α→ 0, for which we denote the regularization parameters by αℓ, ℓ ∈ N.

We call the limit element ψ∗ ∈ Y . We note that for j ∈ N the element

yαj
:= ψ∗ · 2

ρ

||ψ∗||2||R∗
αj
v|| (2.35)

satisfies

〈

yαj
,
Rαℓ

v

||Rαℓ
v||

〉

=
2ρ

||ψ∗||2||Rαj
v||
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3. Static Magnetic Tomography

Here, we collect basic notation and results on static magnetic tomography, for more

details we refer to [



On Discrimination Algorithms for Ill-Posed Problems 11

Wannert et.al. In [
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There are two basic options to approach the classification problem from magnetic
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Example. As a two-dimensional example for our nonlinear class we consider the

space R
2 with two classes C1, C2 defined by

C1 := {j ∈ R
2 : j1 ≥ ρ
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for every L ∈ N. With the area or volume
∣

∣

∣Ω
(L)
ℓ

∣

∣

∣, respectively, of some set Ω
(L)
ℓ we define

χ
(L)
ℓ (x) :=







1
∣

∣

∣Ω
(L)
ℓ

∣

∣

∣

1/2 , x ∈ Ω
(L)
ℓ ,

0, otherwise.
(4.12)

the functions χ
(L)
ℓ are in L2(Ω) for ℓ = 1, ..., nL and L ∈ N. Then we have

∣

∣

∣

∣

∣

∣χ
(L)
ℓ

∣

∣

∣

∣

∣

∣

L2(Ω)
= 1 (4.13)

We now collect all vectors χ
(L)
ℓ for ℓ = 1, ..., nL and L = 1, 2, 3, ... into one sequence, for

which we use the letter vk, k ∈ N.

For the fuel cell application nonlinear classes will naturally appear when the flow

through the cell membrane is monitored. For example, the vectors χ
(L)
ℓ can be chosen to

be the special basis used for current reconstructions by Wannert and Potthast [22]. Here,

the class C
(L)
ℓ is the set of all currents which have a component larger than ρ

(L)
ℓ along the

direction χ
(L)
ℓ ∈ L2(Ω). Good cells are those where we have a homogeneous distribution

of the current, which means that all components are larger than some threshold ρ. This

corresponds to the nonlinear class C defined in (4.6), which is composed of a sequence

of linear classes.

We may choose a hierarchy of finer and finer discretizations to test the homogeneity
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5. On the Ill-Posedness of Fisher’s Linear Discriminant for Remote Data

So far we have studied the ill-posedness of classification problems which can be based on

linear classification. We have shown that in general linear compact operators map stably

separable problems into classifications which are no longer stably separable. However,

we have not yet studied a particular algorithm for such classifications.

The task of this section is to investigate a well-known scheme for supervised

classification 2.1 known as Fisher’s Linear Discriminant. We will show that the method

is also ill-posed in the sense that for an increased number of measurement points the

norm of the inverse operators employed by the method become unbounded. As a

particular application, we will apply the method to the problem of fuel cell classification

and investigate the relationship between different ways to regularize the problem.

5.1. Fisher’s Linear Discrimination on j and H

Fisher’s linear discriminant is not strictly speaking a discriminant but rather a method

of reducing the dimensionality of the input space in such a way that we have maximum
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We will complete this section by a rigorous proof showing that in this case the norm

of the inverse
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from which the statement follows. �

Since W : (C(Ω))3 → (C(Λ))3 is compact and W ∗ : (C(Λ))3 → (C(Ω))3 is compact

as well, the operator S
(H)
F is compact in (C(Λ))3.

A discretization of this operator is achieved by using numerical quadrature for all

three of its factors. With nodes zκ, κ = 1, ...,M in Ω and quadrature weights sκ we

discretize x via zι and y via zκ. Then, the operator S
(j)
F
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uniformly for all M̃ ∈ N, such that (5.20) is satisfied. We denote an interpolation

operator on Λ by Q
(M̃)
Λ and assume to have

||Q(M̃)
Λ ψ||∞ ≤ c||ψ||∞ (5.20)

with some constant c uniformly for M̃ ∈ N and a result analogous to (5.18).

The continuous form of the Biot-Savart operator W is given by (3.1). A

discretization of W via standard quadrature or via finite integration technique leads
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Lemma 5.6 Let W : X → X be a compact linear operator where X is a Banach space.

Let WN : X → X be a family of operators which are invertible on a subspace XN ⊂ X

of dimension N , such that WN tends to W pointwise. Then
∣

∣

∣

∣W
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5.2. Comparison of the two approaches

The goal of this part is to work out the analysis to compare the two approaches to the

classification problem, i.e.

(i) Classification after the reconstruction: first reconstruct the current densities j and

then carry out a classification on the reconstructed current densities,

(ii) Classification on the field data: Apply the classification directly to the magnetic

field data.

We will first look at the unregularized problem and then study their relation when

Tikhonov regularization is applied. We will find that the unregularized approaches are

equivalent, but of course they are not practically applicable since the ill-posedness needs

to be taken care of. We prove that the regularized versions cannot be equivalent.

Theorem 5.7 The unregularized Fisher’s linear discriminant algorithm applied to the

magnetic field vectors is equivalent to the algorithm applied to the currents which are

reconstructed from the magnetic fields by an unregularized inversion of the operator B.

Proof. For the classification task we start with the samples H(ω). When we carry

out the reconstruction by a numerical method, the corresponding currents are linked to

these by

H(ω) = Bβ(ω) = WJ
(

β(ω)
)

, (5.34)

where W is a discretized version of the Biot-Savart operator and J and B are discretized

current and magnetic field matrices respectively. Then, the scatter matrix for the

approach in the image space is

S
(H)
F =

∑

ξ=1,2

∑

H(ω)∈Cξ

(

H(ω) − m
(H)
ξ

) (

H(ω) − m
(H)
ξ

)T

=
∑

ξ=1,2

∑

β(ω)∈Cξ

(

WJβ(ω) − WJm
(β)
ξ

) (

WJβ(ω) − WJm
(β)
ξ

)T

(5.35)

where m
(H)
ξ and m

(β)
ξ represent the means of the magnetic field and basis function

coefficient classes respectively. Therefore

S
(H)
F = WJS

(β)
F JT WT

= BS
(β)
F BT . (5.36)

If we substitute (5.36) into (5.7) we find that the classification vector w(H) in the image

space is given by

w(H) ∝
(

S
(H)
F

)−1 (

m
(H)
2 − m

(H)
1

)

=
(

BS
(β)
F BT

)−1 (

m
(H)
2 − m

(H)
1

)

, (5.37)
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where w(H) represents the weight vector found by applying Fisher’s linear discriminant

to H. Then

w(H) ∝
(

BT
)−1

(

S
(β)
F

)−1

B−1
(

WJm
(β)
2 − WJm

(β)
1

)

=
(

BT
)−1

(

S
(β)
F

)−1 (

m
(β)
2 − m

(β)
1

)

. (5.38)

It is linked to the classification vector w(β) in the input space by

w(H) ∝
(

BT
)−1

w(β), (5.39)

which is a discrete version of (2.9). Classification in the image space given some data

H is carried out by calculating (w(H))T H. In the state space it is given by
(

w(β)
)T
β =

(

w(β)
)T

B−1H =
(

w(H)
)T

H, (5.40)

which proves the theorem. �

Finally, we need to study the relation between the two regularized versions of

Fisher’s linear discriminant. The first version uses Tikhonov regularization directly

applied to invert S
(H)
F , i.e. we calculate

R(H)
α :=

(

αI +
(

S
(H)
F

)∗

S
(H)
F

)−1 (

S
(H)
F

)∗

, α > 0. (5.41)

The regularized version of (5.37) is thus given by

w(H)
α := R(H)

α

(

m
(H)
2 − m

(H)
1

)

. (5.42)

The second version applies the discrimination algorithm to the reconstructed coefficients,

i.e. it uses

β(ω)
α :=

(

αI + BT B
)−1

BT H(ω), α > 0. (5.43)

We define mξ,α as the mean of the β(ω)
α for Cξ and

S
(β)
ξ,α :=

∑

β(ω)∈Cξ

(

β(ω)
α − mξ,α

) (

β(ω)
α − mξ,α

)T

(5.44)

for ξ = 1, 2 and S
(β)
F,α = S

(β)
1,α + S

(β)
2,α as usual. Then, we calculate

S
(β)
F,α =

(

αI + BT B
)−1

BT S
(H)
F B

(

αI + BT B
)−1

. (5.45)

Now, the second version calculates a regularized verson of the discrimination vector w(β)

by

w(β)
α :=

(

S
(β)
F,α

)−1 (

m
(β)
2,α − m

(β)
1,α

)

. (5.46)

Lemma 5.8 The two regularizations of the discrimination problem for magnetic

tomography are not equivalent, in the sense that in general they will not provide

identical classifications, even if all corresponding parameters and discretizations are

chosen appropriately.
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Figure 4. Fisher’s linear discriminant was performed on vectors β(ω) of basis function
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Figure 6.
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