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In this paper we explore classification techniques for ill-posed problems. Two classes
are linearly separable in some Hilbert space X if they can be separated by a hyperplane.
We investigate stable separability, i.e. the case where we have a positive distance
between two separating hyperplanes. When the data in the space Y is generated
by a compact operator A applied to the system states _ € X, we will show that in

general we do not obtain stable separability in Y even if the problem in X is stably
separable. In particular, we show this for the case where a nonlinear classification is
generated from a non-convergent family of linear classes in X.

We apply our results to the problem of quality control of fuel cells where we classify
fuel cells according to their e ciency. We can potentially classify a fuel cell using
either some external measured magnetic field or some internal current. However we
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of tumours [1]. In [4] the cancer area classification problem is investigated with voxels
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training patterns which are used for discrimination is high. We show that, in the case of
data generated by a compact integral operator, it cannot stay stable when the number

of measurement points tends to infinity.
= d, we investigate the application of classification algorithms to classify ”yr.‘

»
7.5
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study particular nonlinear classes which are obtained from linear classes as intersections
of a ne halfspaces Uy, =1,...,n, i.e.

C:= U. (2.2)

In this case we can reduce the study of stability of the classification to the stability in the

linear case. For smooth classes, i.e. where the boundary of C is a smooth manifold in X,

we can locally approximate the general nonlinear classification by a linear classification,

such that in this case the stability analysis can also be carried over from the linear to
the nonlinear case.

The process of classification is given by the way to achieve a definition of a class C.

Definition 2.1 (Supervised Classification) (, w* ,'-z Ln n r.,ﬂbd an ot
by 5 .’v,{rﬁs b samples x\, .. x%Nl) e X ik igny r‘ - g wl :‘ﬁ;‘:“r/;
ﬂr"fr‘ ;* n’rfnr n, Uwr' yf’ L 17.\ C1 c X LJC Ay g e rrn r‘?i.s ng) W = = 1,. i\ll
wn C1 Ox{n .W'rr v e r;nbrnr x“ g =1,. . Ng L’i‘ }n g rn,, Ty €, %
_)(\(;1 W’n yﬂ J»A‘ , o .t L J, r‘targetvalues W o nd e L b@ o €, ’
.,,,nr rn € . ng.k Wr ,,,m . superwsed classification algorlthm fv

1/‘;‘ N1 rn urr nn' Nnu;'n ngﬁ_fg'ﬂi Jrr v mq

1-(
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when we study stable classifications in X and how they can be achieved on the images
in Y without the inversion of the operator A.

A generic example. As a first step towards the clarification of the situation we
first want to consider a special case. We use the singular value decomposition of the
operator A, compare [6], i.e. we have an orthonormal basis {¢p, € X, € N} in X and
an orthonormal basis {g¢ € Y, € N} and a monotonously decreasing sequence (H¢)¢ n
of positive real values such that

Abr=Hge, A ge= b (2.3)
for all € N. We define a linear stable classification by
Cii={x: (%09 >p}, CEi={x: (x¢)<—p}, (2.4)

which we call av, Nt nr fvé,‘; K}* n, Lng - q. rrcﬂL by y.‘ﬂr T, ng T, . ‘n Clearly,
the distance betweén Ce - and CW is2p > 0. For every pair Ceﬂ, Cg , from the sequence
of classes the classification is stable uniformly with respect to < N.

The images of the classes cgﬂ, Cﬁ) under the application of the operator A is given

by
Cil={y=Ax: (x4, >p},
{y e AX): (A7ly, b0 > p},
{y e ACX): (y,(A) "oy > p},
yEAX): ¥, 5090 >p
= {ye AX): (y,9¢ > M}, (2.5)

and
C&l=1{y: (y,90 < —pp}. (2.6)

The distance between the classes C@ -» and Cg,. is 2u¢p. The distance is depending on

€ N and since the singular values pu, tend to zero for — oo, the stability of the
separation of the pairs of classes is no longer uniform in . We summarize these basic
but important observations in the following lemma.

Lemma 2.2 Chis b, én p e, o, wLw b A CL e e X Y

—ﬁr‘ﬁ .‘ﬂr"g g"'c,‘ a3 ”L%L KA ”Lry rabn Lng ‘50/" o, rrc.}nbfy.\ﬂr v, ngJ‘

M 1
{L N J” R W‘j} T .w?n d;}‘nar p ,',. nL kng'fl’ J" Y v,; l,"t “n .‘ﬂ‘r

m .Q'EQ)U‘Y

The general case. Next, we consider the general case of a sequence of linear
classes Cy,C;,Cs,.... Letvy, € N be the corresponding vectors in X and p,, € N
be the a ne distances. Here, we also assume that the sequence (v¢) does not have a
convergent subsequence. Clearly, the classes are given by

Ce={x: (X,vo) >pe}, €N (2.7)
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We use a calculation similar to (2.5) to show that if v, is in the range of A , then
Coi=AC={y: (y.(A)7'vo) >p}. (2.8)
With the definition
Pe:=(A )_IVL
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and with the same argument we also have the slightly more general form of this statement
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Theorem 2.5 "Lm aF e wC on X dr?mdey F nbfz rc.}r“v ndxj’n r*

f7'77.:}narp.‘bq,p"t .95m, nn'r.\ALr J' &t.k.,w PLAVF.PFA X =Y TWEAY
.‘ﬂrnﬁﬁr dx?ny"vC AC L.W'ér’g;n x

Proof. Since the norm of ”g“ T is bounded by one, there is a weakly convergent
subsequence for a — 0, for which we denote the regularization parameters by a,, € N.
We call the limit element ¢y € Y. We note that for j € N the element

p
= 22— 2.35
e =V 2 RIR ] (2:39)

satisfies
R.v 2p

W [[F][R vl
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3. Static Magnetic Tomography

Here, we collect basic notation and results on static magnetic tomography, for more
details we refer to [
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Wannert et.al. In |

11
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There are two basic options to approach the classification problem from magnetic
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Example. As a two-dimensional example for our nonlinear class we consider the
space R? with two classes C;, C; defined by

Cii={eR: jizp
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for every L € N. With the area or volume Q(@L) , respectively, of some set Q(@L) we define

;, X € Q(ZL)’
xPx) = o | (4.12)
0, otherwise.
the functions x'* are in L3(Q) for =1,...,n; and L € N. Then we have
X =1 (4.13)

L2(9)

We now collect all vectors x(f) for =1,..,n;and L =1,2,3,... into one sequence, for
which we use the letter v , k € N.

For the fuel cell application nonlinear classes will naturally appear when the flow
through the cell membrane is monitored. For example, the vectors x(f) can be chosen to
be the special basis used for current reconstructions by Wannert and Potthast [22]. Here,
the class CgL) is the set of all currents which have a component larger than p(f) along the
direction X(EL) € L3(Q). Good cells are those where we have a homogeneous distribution
of the current, which means that all components are larger than some threshold p. This
corresponds to the nonlinear class C defined in (4.6), which is composed of a sequence
of linear classes.

We may choose a hierarchy of finer and finer discretizations to test the homogeneity
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5. On the llI-Posedness of Fisher’s Linear Discriminant for Remote Data

So far we have studied the ill-posedness of classification problems which can be based on
linear classification. We have shown that in general linear compact operators map stably
separable problems into classifications which are no longer stably separable. However,
we have not yet studied a particular algorithm for such classifications.

The task of this sectior; is to invest!gate a well-known scheme for supervised
classification 2.1 known as  zp7 #v L “r FPxery 1 n.. We will show that the method
is also ill-posed in the sense that for an increased number of measurement points the
norm of the inverse operators employed by the method become unbounded. As a
particular application, we will apply the method to the problem of fuel cell classification
and investigate the relationship between di erent ways to regularize the problem.

V f’L A B

A o Lo Kgerg gy onrnen g, nd H

Fisher’s linear discriminant is not strictly speaking a discriminant but rather a method
of "fr‘c?thng .‘,{r‘a’g rﬁv?@ . »y Of the input space in such a way that we have maximum
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We will complete this section by a rigorous proof showing that in this case the norm
of the inverse
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from which the statement follows. O

Since W : (C(Q))? — (C(N))? is compact and W : (C(A))? — (C(Q))? is compact
as well, the operator wa ) is compact in (C(A\))3.

A discretization of this operator is achieved by using numerical quadrature for all
three of its factors. With nodes z., Kk = 1,...,M in Q and quadrature weights s. we
discretize x via z, and y via z.. Then, the operator Sfp)
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uniformly for all M € N, such that (5.20) is satisfied. We denote an interpolation
operator on A by Q(M) and assume to have

1Q %) o0 < ¢/[t)]]oo (5.20)

with some constant c¢ uniformly for M € N and a result analogous to (5.18).
The continuous form of the Biot-Savart operator W is given by (3.1). A
discretization of W via standard quadrature or via finite integration technique leads



Lemma56LrW X—>Xﬁ‘
LrZWy : x—>x,’: Ga sy et e
Lydm ran N wcﬂ - .kWN .{ﬁf[ .\L. W ‘Jn.kw

W
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The goal of this part is to work out the analysis to compare the two approaches to the
classification problem, i.e.

1) &, v, gg .‘Ln i{f - “ri NN Jc.\iLn first reconstruct the current densities j and

then carry out a classification on the reconstructed current densities,

(i) G, wv, ’j’g L b - % vd ., Apply the classification directly to the magnetic
field data

We will first look at the unregularized problem and then study their relation when
Tikhonov regularization is applied. We will find that the unregularized approaches are
equivalent, but of course they are not practically applicable since the ill-posedness needs
to be taken care of. We prove that the regularized versions cannot be equivalent.

Theorem 5.7 ﬂr Jnrrg4 rowrd Mrrr v “rdxery ) Tl d‘f’w . o yd L
n. gnr“dt 7.4 rcﬂ "qw rﬁ.\.l “/V N NN (ff,k NY4 clﬂrnﬁk b@ cﬂﬂ "rr‘b
NS 4&{'7 "L‘n aﬂ’n grzr.wc 9. e e ™ V794 rwd n rrrb Ly.@ré 7 .kLr’ B

Proof. For the classification task we start with the samples H“). When we carry
out the reconstruction by a numerical method, the corresponding currents are linked to
these by

=BA“ =wJ gw | (5.34)

where W is a discretized version of the Biot-Savart operator and J and B are discretized
current and magnetic field matrices respectively. Then, the scatter matrix for the
approach in the image space is

S%H) — H(w) . m/(éH) H(w) /(QH) v
{12 HW) CE
— w) (8) w) B) v
= wag¥ —waim?  wig“ —wim} (5.35)
12 3@) C¢

where m( and m represent the means of the magnetic field and basis function
coe C|ent classes respectlvely Therefore

S%H = WJSF Jv Wy
=BS'By. (5.36)

If we substitute (5.36) into (5.7) we find that the classification vector w™ in the image
space is given by

W o g T

wH)

= Bs?YBy m®_m® | (5.37)



On p}’crﬁ ) ._}n A,Jﬂrw v %‘r’ ~ P d Pk s 93
R ‘ 4 L
where wH) represents the weight vector found by applying Fisher’s linear discriminant
to H. Then
— -1
w® o By s BT wam?® — wam!®

-1

=B s mP_m? (5.38)
oIt is linked to the classification vector w( ) in the input space by
w® o By 'w®), (5.39)

which is a discrete version of (2.9). Classification in the image space given some data
H is carried out by calculating (w)y H. In the state space it is given by
wh rvg= wl® 1BTtH= wt) v 4 (5.40)

which proves the theorem. O

Finally, we need to study the relation between the two regularized versions of
Fisher’s linear discriminant. The first version uses Tikhonov regularization directly
applied to invert S®| i.e. we calculate

-1
R := aql+ s s = g g, (5.41)

4

The regularized version of (5.37) is thus given by
wi = RED m) _ m(F) (5.42)

The second version applies the discrimination algorithm to the reconstructed coe cients,
I.e. it uses
B“ = al+ByB 'ByH®, a>0. (5.43)

We define m; . as the mean of the 8 for C. and

s = B9 _m.. BY_m;. " (5.44)
B Cg

for § =1,2 and Sﬁf)&= S§ﬁ1+ Sgﬁ)& as usual. Then, we calculate

-1

s¥ = al+ByB 'BiS™B al +BiB (5.45)

Now, the second version calculates a regularized verson of the discrimination vector w®
by

-1
W@ = P T m® _me) (5.46)

» . » - - - 1 4 1 &
Lemma 5.8 /7/".‘#\ TR .“L\m* L‘”y a7 dEery .‘,kn p‘rb\e_rn %‘f n, gL
oL ] Aan - » N : o b ST
<p 9l ey a Y TN T }’ W oy a0 IV g7l e - AT
- - - d » - r'y - »- »
>d"ﬁﬂi$ . ¢ e “; s *"r"‘rrp";» ‘nd ;ng Y in V'.{‘."‘f't# nd d}‘t"’?’.{ig Ay Ty v
b ]

T PRSPV ""7" .
QI N, BT, LY
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Fig re 4 Fisher’s linear discriminant was performed on vectors ﬁ(“) of basis function
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